
A Scalable Processing-in-Memory Accelerator
for Parallel Graph Processing

Junwhan Ahn, Sungpack Hong*
Sungjoo Yoo, Onur Mutlu+

Kiyoung Choi

Seoul National University *Oracle Labs +Carnegie Mellon University

International Symposium on Computer Architecture 2015

Seminar on Computer ArchitectureRoknoddin Azizibarzoki

Executive Summary

 Problem: Performance of graph processing on conventional systems does not scale in
proportion to graph size

 Key Idea: Make use of Processing-In-Memory to provide high bandwidth, and design
specially architected cores to utilize that bandwidth

 Goal: Design an infrastructure with scalable performance for graph processing

 Results: up to 13.8x performance improvement and 87% energy reduction

!2

 Observation: High memory bandwidth can sustain scalability in graph processing

Graph Processing

Graphs

!4

Abstractions used to represent objects and their relations

Vertices are used to represent objects

Edges are used to represent the relation
between the objects

These representations can sometimes become very huge in real world applications

Graphs used in this paper can reach up
to 200 million edges, 7 million vertices,
and 3-5 GB of memory footprint

Image obtained from: Grandjean, Martin (2015), "Introduction à la visualisation de données, l'analyse de réseau en histoire", Geschichte und Informatik 18/19 (PDF), pp. 109–128

Graph Processing Workloads

Large amount of data is processed in parallel and almost independent of each other

!5

Example: Page Rank
Originally designed to sort

webpages based on number of
views for Google, so as to do
better webpage suggestions

1

2

3

4

5

6

for (v: graph.vertices):

for (u: v.successors):

u.new_rank = v.rank * weight

for (v: graph.vertices):

v.rank = v.new_rank

 v.new_rank = alpha

3

4

u.new_rank = v.rank * weight

for (v: graph.vertices):

!5

Parallel computation almost independent for each vertex

Graph Processing Workloads Characteristics
Characteristics of this parallel, vertex
independent computation:

!6

1. Frequent random memory accesses 2. Small amount of computation per vertex

2

3

for (u: v.successors):

u.new_rank = v.rank * weight

2
1

Each successor might lead you
to a whole new subgraph Simple multiplication computation

32 Cores
DDR3

(102.4GB/s)

128 Cores
DDR3

(102.4GB/s)

128 Cores
HMC

(640GB/s)

1

2

3

4

5

6

Sp
ee
du
p

+42%
+89%

Page Rank performance on conventional graph processing infrastructures:

2. Conventional systems do
 not utilize bandwidth

1. More bandwidth helps!

Graph Processing on Conventional Systems

!7

32 Cores
DDR3

(102.4GB/s)

128 Cores
DDR3

(102.4GB/s)

128 Cores
HMC

(640GB/s)

1

2

3

4

5

6

Sp
ee
du
p

+42%
+89%

128 Cores
HMC Internal BW

(8TB/s)

5.3x

Ideally!

!7

IDEA:
1. Let’s use HMC based Processing-In-Memory to provide high bandwidth

2. And design specially architected cores to exploit this bandwidth
(Tesseract Cores)

INSIGHT:
High bandwidth can mitigate the performance bottleneck!

Tesseract System

Tesseract System

!9

Ho
st

 P
ro

ce
ss

or

-A network of HMC cubes
-Memory mapped accelerator
interface, non-cacheable, and
no support for virtualization

- Each HMC cube contains 32 vaults, each armed
with a simple in-order core in their logic layer, so
that the cores can use HMC’s internal BW
- Vaults communicating over a crossbar network
for remote function calls

- Specialized cores, armed with latency
tolerant programming model and graph
processing based prefetching mechanisms
- Message passing interface, prefetching
mechanisms

Processing-In-Memory with 3D stacked DRAM

Large amount of bandwidth available for the cores to utilize

Specialized cores, armed with latency tolerant programming model
and graph processing based prefetching mechanisms

!10

In-Order Core DRAM
 Controller

List
Prefetcher

NIMessage Queue

Message-Triggered
Prefetcher

Prefetch
Buffer

Communications in Tesseract

In-Order Core DRAM
 Controller

List
Prefetcher

NIMessage Queue

Message-Triggered
Prefetcher

Prefetch
Buffer

NIMessage Queue

Data needed by a Tesseract core might be present in
another vaults memory region

!11

Communications in Tesseract
Data needed by a tesseract core might be present in another vaults memory region

2

3

for (u: v.successors):

u.new_rank = v.rank * weight

Vault #x

TC #x

Vault #y

TC #y

u

v

for (u: v.successors):
put(w.id, function() { w.next_rank += weight * v.rank; })

barrier()

Vault #x

TC #x

Vault #y

TC #y

u

v

Non-blocking remote function call,
increases latency toleration in the

source core and guarantees atomicity
Send function address and

arguments to the remote core

12

In-Order Core DRAM
 Controller

List
Prefetcher

NIMessage Queue

Message-Triggered
Prefetcher

Prefetch
Buffer

Prefetching in Tesseract

In-Order Core DRAM
 Controller

List
Prefetcher

NIMessage Queue

Message-Triggered
Prefetcher

Prefetch
Buffer

Message-Triggered
Prefetcher

Prefetch
Buffer

Prefetching the data being referenced in the message queue
(Later noted as MTP in the evaluation section)

When message enters the message
queue, a prefetch request is issued
And the message is ready to be
serviced when data is present

13

Tesseract Core

14

In-Order Core DRAM
 Controller

List
Prefetcher

NIMessage Queue

Message-Triggered
Prefetcher

Prefetch
Buffer

14

Novelties of Tesseract
- Usage of PIM (logic layer integration) to increase the BW available to the cores
- Message passing employed, to increase latency tolerance and guarantee atomicity
- Specially crafted prefetching mechanisms are used to utilize the abundant BW

available for graph processing

2. Programming API
3. Blocking remote function calls

Other Constructs of Tesseract:
1. List Prefetching: Prefetching based on the next elements in the list of
traversal, with a constant stride (later noted as LP in the evaluation section)

Evaluation

Evaluation Methodology

16

Workloads Simulated Systems
3 real world graphs:
• ljournal-2008 (social network)
• enwiki-2003 (Wikipedia)
• indochina-0024 (web graph)

5 graph processing algorithms:
• Average teenage follower
• Conductance
• PageRank
• Single-source shortest path
• Vertex cover

16

- DDR3 + OoO cores
- HMC + OoO cores, higher bandwidth
- HMC + more number of simpler, less powerful cores
- Tesseract, logic layer integration of the HMC with Tesseract cores

Evaluation Results

17

2

4

6

8

10

12

14

16
Sp
ee
du
p

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract
LP

Tesseract
LP + MTP

+56% +25%

9.0x

11.6x

13.8x

Average Performance

Evaluation Results

18

Average Bandwidth Utilization

0.5

1

1.5

2

2.5

3

3.5
M

em
or

y
Ba

nd
wi

dt
h

(T
B/

s)

DDR3-OoO HMC-OoO HMC-MC Tesseract Tesseract
LP

Tesseract
LP + MTP

190GB/s 243GB/s

1.3TB/s

2.2TB/s

2.9TB/s

80GB/s

Evaluation Results

19

Average Memory Energy Consumption

0.2

0.4

0.6

0.8

1

1.2

No
rm

al
ize

d
En

er
gy

-87%

HMC-OoO Tesseract
LP + MTP

Memory Layers Logic Layers Cores

Executive Summary

 Problem: Performance of graph processing on conventional systems does not scale in
proportion to graph size

 Key Idea: Make use of Processing-In-Memory to provide high bandwidth, and design
specially architected cores to utilize that bandwidth

 Goal: Design an infrastructure with scalable performance for graph processing

 Results: 10x performance improvement and 87% energy reduction

!20

 Observation: High memory bandwidth can sustain scalability in graph processing

Analysis

Strengths

22

1. First work to introduce Processing-In-Memory to graph computations

4. The paper is written in a way that is easy to follow

3. Non-blocking remote function call is an effective way to increase latency
tolerance

2. Employing specially designed prefetching mechanisms to better utilize BW

Weaknesses

23

2. The paper has not discussed why it is limited to graph applications

3. Introducing barriers raises the concern of load balancing

1. Data placement is not taken as a serious concern in this work (GraphP [1],
Reduce communication in Tesseract with efficient data placement)

4. No comparison against prevalent graph processing platforms like GPUs is
included in the paper
5. Adapting common applications to the programming model is not easy

Takeaways

24

2. If designed effectively, PIM might be a promising approach to provide high
bandwidth for large scale data processing

1. Optimizing a narrow set of factors might lead to underutilization of
resources

Discussions

25

1. There is the other construct called Blocking Remote Function Calls

The difference is that in that one you have return values that you want to wait
for them to come back to the source core

Can you think of ways to optimize remote blocking function calls?

Discussions

26

2. How hard will it be to expand Tesseract to other applications?

Discussions

3. How bad will Tesseract suffer from unbalanced workloads?

27

Discussions

28

4. What if we switch Tesseract cores with GPU Streaming Multiprocessors?

TOM[2]: Transparent Offloading and Mapping

1. What to offload to the GPU-PIM accelerator: Bandwidth gain
2. How to map the data and schedule the computation to benefit the most:
Subsequent accesses have a certain offset, thus we can map them together

30% average performance gain over a baseline with a GPU
without offloading

28

Discussions

4. What if we switch Tesseract cores with GPU Streaming Multiprocessors?

But still, TOM does not employ specially designed mechanisms to mitigate
communication between vaults and we will have this problem.

New question: if we have a PIM cube which has GPU cores in its logic layer,
how can we reduce the data movement?

28

Discussions

28
SM ID

Vault ID

Pe
rce

nt
ag

e
of

 A
cc

es
se

s

SM Access Breakdown over Vaults (BFS)

1. Remapping?
2. CTA Migration?

CTA is the set of threads
running on a GPU SM at a

given time

Discussions

28
SM ID

Vault ID

Pe
rce

nt
ag

e
of

 A
cc

es
se

s

SM Access Breakdown over Vaults (MUMer GPU)

Discussions

29

5. What about data movement between cubes?
GraphP[1]: Reduce communication between the cubes in Tesseract with efficient
data placement
3 key techniques:

1. “Source-cut” Partitioning: an algorithm to ensure a vertex and all its
incoming edges are in the same cube
2. “Two-phase Vertex Program”: a programming model designed for the
“source-cut” partitioning

3. “Hierarchical Communication and Overlapping”

Discussions

30

6. Other mechanisms for the same problem:

GraphR[3]: Accelerating Graph Processing Using ReRAM

Using dense ReRAM crossbars, they do graph
computations

With ReRAMs you can do analog computation

Results: Up to 4.12x speedup and 10.96% energy saving over Tesseract

30

References

References

32

[1] M. Zhang et al., "GraphP: Reducing Communication for PIM-Based Graph Processing with Efficient Data Partition," 2018
IEEE International Symposium on High Performance Computer Architecture (HPCA), Vienna, 2018, pp. 544-557.

[2] K. Hsieh et al., "Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in
GPU Systems," 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), Seoul, 2016, pp. 204-216.

[3] Song, Linghao & Zhuo, Youwei & Qian, Xuehai & Li, Hai & Chen, Yiran. (2017). GraphR: Accelerating Graph Processing
Using ReRAM. arXiv’17

A Scalable Processing-in-Memory Accelerator
for Parallel Graph Processing

Junwhan Ahn, Sungpack Hong*
Sungjoo Yoo, Onur Mutlu+

Kiyoung Choi

Seoul National University *Oracle Labs +Carnegie Mellon University

International Symposium on Computer Architecture 2015

Seminar on Computer ArchitectureRoknoddin Azizibarzoki

Backup Slides

35

Backup Slides

36

Backup Slides

37

Backup Slides

38

Backup Slides

get(id, A func, A arg, S arg_size, A ret, S ret_size)

put(id, A func, A arg, S arg_size, A prefetch_addr)

disable_interrupt(), enable_interrupt()

copy(id, A local, A remote, S size)

list_begin(A address, S size, S stride)

list_end(A address, S size, S stride)

barrier()

