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Executive summary

• Problem: Software implementations of lock-free data structures often 
do not perform as well as their locking-based counterparts.

• Goal: Make lock-free synchronization as efficient as conventional 
lock-based techniques.

• Key idea: Introduce custom cache and instructions as transactional 
memory, which removes the need for locks entirely

• Results: Transactional memory generally performs better in the 
benchmarks than conventional techniques
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Background & Problem
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Conventional locking techniques

• Use a lock to enforce mutual exclusion:
• Only one thread at a time has access to a specified resource

• Other threads must wait until resource is free

• Comes with several problems:
• Priority inversion

• Lock convoy

• Deadlock
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Priority inversion

A lower-priority process is preempted while holding a lock needed by 
higher-priority processes.
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Example:

• L holds lock that H wants

• M preempts L

• H unable to run 

• Priorities inversed at that moment



Lock convoy

• Threads of equal priority try to acquire lock

• Failing threads force context switches

• Overhead of repeated context switches degrades overall performance
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Deadlock

• Can occur when processes try to lock 
the same set of objects in different 
orders.

• Avoidance can be difficult if this set is 
not known in advance.

Example: A cannot progress, because it 
needs the lock held by B and B cannot 
progress, because it needs the lock 
held by A. They will wait forever.
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Lock-free data structures

• Also known as non-blocking data structures

• Avoid prior problems

• Are optimistic, assume that in most cases, processes don’t access the 
same data at the same time.

Problem: Software implementations do not perform as well as their 
locking-based counterparts in absence of the previous mentioned 
problems.
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Novelty, Key Approach & Ideas
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Novelty

• Transactional memory achieves easy lock-free synchronization as 
efficient as conventional, locking-based techniques

• Introduces multiprocessor architecture with designated transactional 
cache and instructions
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What is a transaction?

• Finite sequence of machine instructions, executed by a single process

• Satisfies:
• Serializability: The steps of one transaction never seem to be interleaved with 

the steps of another.

• Atomicity: First makes tentative changes, then either commits and makes 
them visible instantaneously, or aborts.
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Instructions and possible use case

Transactional memory to replace short critical sections in lock-free 
data structures. Example:

1. LT or LTX // read from a set of locations

2. VALIDATE // check that the values read are consistent

3. ST // modify a set of locations

4. COMMIT // make the changes permanent. 

5. If either VALIDATE or COMMIT fails, return to step (1)

Compared to a software-implemented lock-free data structure:

1. Read value v

2. Modify v -> v’

3. Try to set v’ with CAS (compare-and-set)

4. Return if success, restart at (1) otherwise
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• Load-transactional (LT)

• Load-transactional-exclusive 
(LTX)

• Store-transactional (ST)

• Commit (COMMIT)

• Abort (ABORT)

• Validate (VALIDATE)



Mechanisms & Implementation

13



Basic idea for implementation

• Modify standard multiprocessor cache coherence protocols

• Any protocol capable of detecting accessibility conflicts can also 
detect transaction conflict at no extra cost
• Accessibility conflict: Two processors want to access the same resource at the 

same moment
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Implementation

• Non-transactional operations works the same as they would have in 
the absence of transactional memory.

• Custom hardware for L1 cache, new instructions for processor

• Committing and aborting a transaction is an operation local to the 
cache.

15



Implementation

• Processors maintain two caches
• Regular cache for non-transactional operations

• Transactional cache for transactional operations

• Caches are exclusive (L1 cache)

• Transactional cache
• Holds all the speculative (tentative) writes without propagating when 

transaction still in progress

• Fully associative
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Implementation

• Two main disadvantages if only one cache:
• Modern caches are direct mapped or set-associative, not fully associative

• Set size would determine maximum transaction size if set overflow not handled

• Parallel commit/abort logic would need to be provided for large L1 cache
instead of small transactional cache
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• Normal cache line states:
• INVALID, VALID, DIRTY, RESERVED

• Transactional tags, exclusive to transactional memory:

Cache line states & transactional tags
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Name Meaning

EMPTY Contains no data

NORMAL Contains committed data

XCOMMIT Discard on commit

XABORT Discard on abort

• Modifications are made to the XABORT entry
• On transaction commit:

• Set XCOMMIT to EMPTY
• Set XABORT to NORMAL

• On transaction abort
• Set XABORT to EMPTY
• Set XCOMMIT to NORMAL



Processor actions

• Each processor maintains two flags
• Transaction active (TACTIVE) indicates whether transaction is in progress

• If so, transaction status (TSTATUS) indicates whether that transaction is active 
(true) or aborted (false).

• VALIDATE: Return TSTATUS. If false, set TACTIVE false, TSTATUS true

• ABORT: Discard cache entries. Set TACTIVE false, TSTATUS true

• COMMIT: Return TSTATUS. Commit cache entries. Set TACTIVE false, 
TSTATUS true.
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Processor actions: Example

• Active transaction (TACTIVE true) issues LT instruction 

• Probe memory for entry:
• XABORT exists: Return its value if there is one

• No XABORT, but NORMAL exists: Change NORMAL to 
XABORT, allocate second entry with XCOMMIT and same 
data

• Neither XABORT nor NORMAL exist: Issue transactional 
read cycle, if successful, set up XABORT and XCOMMIT 
entry with read data. If unsuccessful, abort transaction
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TACTIVE: indicates whether 
transaction is in progress

TSTATUS: indicates whether that 
transaction is active (True) or 
aborted (False)

LT: load transactional

XABORT: discard on abort, 
contains modifications of 
running transaction

NORMAL: contains committed 
data, from a previous transaction

XCOMMIT: discard on commit



Key Results
Methodology and Evaluation
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Simulation

• Simulation using PROTEUS, a high-performance parallel-architecture 
simulator

• Implemented both the snoopy protocol for bus-based architecture 
and the directory protocol (network-based)

• 32 processors

• Regular cache: 2048 lines, 8 bytes each, direct mapped

• Transactional cache: 64 lines, 8 bytes each
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Benchmarks & mechanisms

• 3 Benchmarks
• Counting, producer/consumer, doubly-linked list

• Compare transactional memory against 2 software and 2 hardware 
mechanisms:
• Software

1. Test-and-test-and-set (TTS) spin locks with exponential back-off

2. Software queueing

• Hardware
1. LOAD_LINKED/STORE_COND (LL/SC) with exponential back-off

2. Hardware queueing
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Counting benchmark

• n processes (n ranges from 1 to 32)

• Each increments a shared counter 216/n 
times

• Critical sections are short, contention 
correspondingly high
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Successful commit, reset backoff

Commit failed, wait, increase backoff

Load, increase, store



Counting benchmark results
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• TTS at least 5 memory 
accesses

• Transactional memory no 
explicit locks, only 3 
accesses required

• LL/SC outperforms as only 
2 accesses needed

Bus-based and network-based protocol, lower is better

Transactional memory 
sometimes performs 
better



Producer/consumer benchmark

• n processes share a bounded FIFO buffer, 
initially empty

• Half of the processes produce items, half 
consume them

• Benchmark finishes when 216 operations have 
completed
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Successful commit

Commit failed, wait, increase backoff

Do dequeueing



Producer/consumer benchmark results (bus 
and network)
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• Throughputs essentially 
flat in bus architecture, 
transactional memory 
performs a bit better

• All throughputs suffer 
from contention in 
network architecture, 
transactional memory 
does the least

Bus-based and network-based protocol, lower is better

Transactional memory 
performs slightly better



Doubly-linked list benchmark

• n processes share a doubly-linked list anchored 
by head and tail pointers

• Each process dequeues an item from the tail and 
enqueues it at the head

• Benchmark finishes when 216 operations have 
completed
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Successful commit, 
return

Commit failed, wait, increase backoff

Perform 
enqueueing if 
pointer is 
consistent



Doubly-linked list benchmark results (bus and 
network)
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• Locking implementations 
significantly worse
• They cannot allow overlaps 

of enqueues and dequeues 
as deadlock may happen if 
queue is empty

Bus-based and network-based protocol, lower is better

Transactional memory 
performs substantially 
better



Summary

• Problem: Software implementations of lock-free data structures often 
do not perform as well as their locking-based counterparts

• Goal: Make lock-free synchronization as efficient as conventional 
lock-based techniques

• Key idea: Introduce custom cache and instructions as transactional 
memory, which removes the need for locks entirely

• Results: Transactional memory always faster than software-based 
lock-free data structures
• Special case: LL/SC is faster if the shared object is just one word 
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Strengths & Weaknesses
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Strengths

• Minor, managable changes to hardware needed: Implemented by 
modifying standard multiprocessor cache coherence protocols

• Almost always improves performance, sometimes drastically

• Typically requires fewer memory accesses than techniques based on 
mutual exclusion (memory speed today’s bottleneck in performance)

• Easy to use for programmer (hard to use fine-grained locks), more 
efficient locks
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Weaknesses

• Relies on the assumption that transactions have short durations and 
small data sets. The longer a transaction runs, the greater the 
likelihood it will be aborted.

• Implementation does not guarantee forward progress

• Still needs custom hardware, whereas software transactional memory 
usually only needs minimal hardware support (e.g. compare-and-
swap) 
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Thoughts & Takeaways

• Seems to be rarely used these days.
• IBM Blue Gene/Q, zEnterprise EC12, POWER8

• Intel TSX (Transactional Synchronization Extensions), available in select 
Haswell-based processors and newer
• HLE (Hardware Lock Elision) interface for processors which don’t have TSX 

• Software transactional memory (STM) more widely in use, taking a 
hit on performance

• Lock-free data structures with transactional memory really 
promising for scalability, locks still needed for bigger sections
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Questions
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Discussion

• What could be possible reasons hardware transactional memory isn’t 
more widespread nowadays? (paper was published in 1993)

• Problems with TSX back in 2014 (“errata”) and just again in November 
2019 (ZombieLoad 2 or TSX Asynchronous Abort). Do you expect to 
see such problem disappear? Or how can they be overcome?

36
BleepingComputer, 13 November 2019The Tech Report, 13 August 2014



Other
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Normal cache states
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Name Access Shared? Modified?

INVALID None --- ---

VALID R Yes No

DIRTY R, W No Yes

RESERVED R, W No No


