
Transactional Memory
Architectural Support for Lock-Free Data Structures

Maurice Herlihy
Digital Equipment Corporation 

Cambridge Research Laboratory 
Cambridge MA 02139 
herlihy@crl.dec.com

J. Eliot B. Moss
Dept. of Computer Science 

University of Massachusetts 
Amherst, MA 01003 
moss@cs.umass.edu

Presented by Philipp Brodmann, 23 April 2020

ISCA '93: Proceedings of the 20th annual International Symposium on Computer Architecture



Executive summary

• Problem: Software implementations of lock-free data structures often 
do not perform as well as their locking-based counterparts.

• Goal: Make lock-free synchronization as efficient as conventional 
lock-based techniques.

• Key idea: Introduce custom cache and instructions as transactional 
memory, which removes the need for locks entirely

• Results: Transactional memory generally performs better in the 
benchmarks than conventional techniques

2



Background & Problem

3



Conventional locking techniques

• Use a lock to enforce mutual exclusion:
• Only one thread at a time has access to a specified resource

• Other threads must wait until resource is free

• Comes with several problems:
• Priority inversion

• Lock convoy

• Deadlock

4



Priority inversion

A lower-priority process is preempted while holding a lock needed by 
higher-priority processes.

5

LockL

M

H
held by wants

preempts

Example:

• L holds lock that H wants

• M preempts L

• H unable to run 

• Priorities inversed at that moment



Lock convoy

• Threads of equal priority try to acquire lock

• Failing threads force context switches

• Overhead of repeated context switches degrades overall performance

6



Deadlock

• Can occur when processes try to lock 
the same set of objects in different 
orders.

• Avoidance can be difficult if this set is 
not known in advance.

Example: A cannot progress, because it 
needs the lock held by B and B cannot 
progress, because it needs the lock 
held by A. They will wait forever.

7

Lock 
2

A B

held by wants

Lock 
1 held bywants



Lock-free data structures

• Also known as non-blocking data structures

• Avoid prior problems

• Are optimistic, assume that in most cases, processes don’t access the 
same data at the same time.

Problem: Software implementations do not perform as well as their 
locking-based counterparts in absence of the previous mentioned 
problems.

8



Novelty, Key Approach & Ideas

9



Novelty

• Transactional memory achieves easy lock-free synchronization as 
efficient as conventional, locking-based techniques

• Introduces multiprocessor architecture with designated transactional 
cache and instructions

10



What is a transaction?

• Finite sequence of machine instructions, executed by a single process

• Satisfies:
• Serializability: The steps of one transaction never seem to be interleaved with 

the steps of another.

• Atomicity: First makes tentative changes, then either commits and makes 
them visible instantaneously, or aborts.

11



Instructions and possible use case

Transactional memory to replace short critical sections in lock-free 
data structures. Example:

1. LT or LTX // read from a set of locations

2. VALIDATE // check that the values read are consistent

3. ST // modify a set of locations

4. COMMIT // make the changes permanent. 

5. If either VALIDATE or COMMIT fails, return to step (1)

Compared to a software-implemented lock-free data structure:

1. Read value v

2. Modify v -> v’

3. Try to set v’ with CAS (compare-and-set)

4. Return if success, restart at (1) otherwise

12

• Load-transactional (LT)

• Load-transactional-exclusive 
(LTX)

• Store-transactional (ST)

• Commit (COMMIT)

• Abort (ABORT)

• Validate (VALIDATE)



Mechanisms & Implementation

13



Basic idea for implementation

• Modify standard multiprocessor cache coherence protocols

• Any protocol capable of detecting accessibility conflicts can also 
detect transaction conflict at no extra cost
• Accessibility conflict: Two processors want to access the same resource at the 

same moment

14



Implementation

• Non-transactional operations works the same as they would have in 
the absence of transactional memory.

• Custom hardware for L1 cache, new instructions for processor

• Committing and aborting a transaction is an operation local to the 
cache.

15



Implementation

• Processors maintain two caches
• Regular cache for non-transactional operations

• Transactional cache for transactional operations

• Caches are exclusive (L1 cache)

• Transactional cache
• Holds all the speculative (tentative) writes without propagating when 

transaction still in progress

• Fully associative

16



Implementation

• Two main disadvantages if only one cache:
• Modern caches are direct mapped or set-associative, not fully associative

• Set size would determine maximum transaction size if set overflow not handled

• Parallel commit/abort logic would need to be provided for large L1 cache
instead of small transactional cache

17



• Normal cache line states:
• INVALID, VALID, DIRTY, RESERVED

• Transactional tags, exclusive to transactional memory:

Cache line states & transactional tags

18

Name Meaning

EMPTY Contains no data

NORMAL Contains committed data

XCOMMIT Discard on commit

XABORT Discard on abort

• Modifications are made to the XABORT entry
• On transaction commit:

• Set XCOMMIT to EMPTY
• Set XABORT to NORMAL

• On transaction abort
• Set XABORT to EMPTY
• Set XCOMMIT to NORMAL



Processor actions

• Each processor maintains two flags
• Transaction active (TACTIVE) indicates whether transaction is in progress

• If so, transaction status (TSTATUS) indicates whether that transaction is active 
(true) or aborted (false).

• VALIDATE: Return TSTATUS. If false, set TACTIVE false, TSTATUS true

• ABORT: Discard cache entries. Set TACTIVE false, TSTATUS true

• COMMIT: Return TSTATUS. Commit cache entries. Set TACTIVE false, 
TSTATUS true.

19



Processor actions: Example

• Active transaction (TACTIVE true) issues LT instruction 

• Probe memory for entry:
• XABORT exists: Return its value if there is one

• No XABORT, but NORMAL exists: Change NORMAL to 
XABORT, allocate second entry with XCOMMIT and same 
data

• Neither XABORT nor NORMAL exist: Issue transactional 
read cycle, if successful, set up XABORT and XCOMMIT 
entry with read data. If unsuccessful, abort transaction

20

TACTIVE: indicates whether 
transaction is in progress

TSTATUS: indicates whether that 
transaction is active (True) or 
aborted (False)

LT: load transactional

XABORT: discard on abort, 
contains modifications of 
running transaction

NORMAL: contains committed 
data, from a previous transaction

XCOMMIT: discard on commit



Key Results
Methodology and Evaluation

21



Simulation

• Simulation using PROTEUS, a high-performance parallel-architecture 
simulator

• Implemented both the snoopy protocol for bus-based architecture 
and the directory protocol (network-based)

• 32 processors

• Regular cache: 2048 lines, 8 bytes each, direct mapped

• Transactional cache: 64 lines, 8 bytes each

22



Benchmarks & mechanisms

• 3 Benchmarks
• Counting, producer/consumer, doubly-linked list

• Compare transactional memory against 2 software and 2 hardware 
mechanisms:
• Software

1. Test-and-test-and-set (TTS) spin locks with exponential back-off

2. Software queueing

• Hardware
1. LOAD_LINKED/STORE_COND (LL/SC) with exponential back-off

2. Hardware queueing

23



Counting benchmark

• n processes (n ranges from 1 to 32)

• Each increments a shared counter 216/n 
times

• Critical sections are short, contention 
correspondingly high

24

Successful commit, reset backoff

Commit failed, wait, increase backoff

Load, increase, store



Counting benchmark results

25

• TTS at least 5 memory 
accesses

• Transactional memory no 
explicit locks, only 3 
accesses required

• LL/SC outperforms as only 
2 accesses needed

Bus-based and network-based protocol, lower is better

Transactional memory 
sometimes performs 
better



Producer/consumer benchmark

• n processes share a bounded FIFO buffer, 
initially empty

• Half of the processes produce items, half 
consume them

• Benchmark finishes when 216 operations have 
completed

26

Successful commit

Commit failed, wait, increase backoff

Do dequeueing



Producer/consumer benchmark results (bus 
and network)

27

• Throughputs essentially 
flat in bus architecture, 
transactional memory 
performs a bit better

• All throughputs suffer 
from contention in 
network architecture, 
transactional memory 
does the least

Bus-based and network-based protocol, lower is better

Transactional memory 
performs slightly better



Doubly-linked list benchmark

• n processes share a doubly-linked list anchored 
by head and tail pointers

• Each process dequeues an item from the tail and 
enqueues it at the head

• Benchmark finishes when 216 operations have 
completed

28

Successful commit, 
return

Commit failed, wait, increase backoff

Perform 
enqueueing if 
pointer is 
consistent



Doubly-linked list benchmark results (bus and 
network)

29

• Locking implementations 
significantly worse
• They cannot allow overlaps 

of enqueues and dequeues 
as deadlock may happen if 
queue is empty

Bus-based and network-based protocol, lower is better

Transactional memory 
performs substantially 
better



Summary

• Problem: Software implementations of lock-free data structures often 
do not perform as well as their locking-based counterparts

• Goal: Make lock-free synchronization as efficient as conventional 
lock-based techniques

• Key idea: Introduce custom cache and instructions as transactional 
memory, which removes the need for locks entirely

• Results: Transactional memory always faster than software-based 
lock-free data structures
• Special case: LL/SC is faster if the shared object is just one word 

30



Strengths & Weaknesses

31



Strengths

• Minor, managable changes to hardware needed: Implemented by 
modifying standard multiprocessor cache coherence protocols

• Almost always improves performance, sometimes drastically

• Typically requires fewer memory accesses than techniques based on 
mutual exclusion (memory speed today’s bottleneck in performance)

• Easy to use for programmer (hard to use fine-grained locks), more 
efficient locks

32



Weaknesses

• Relies on the assumption that transactions have short durations and 
small data sets. The longer a transaction runs, the greater the 
likelihood it will be aborted.

• Implementation does not guarantee forward progress

• Still needs custom hardware, whereas software transactional memory 
usually only needs minimal hardware support (e.g. compare-and-
swap) 

33



Thoughts & Takeaways

• Seems to be rarely used these days.
• IBM Blue Gene/Q, zEnterprise EC12, POWER8

• Intel TSX (Transactional Synchronization Extensions), available in select 
Haswell-based processors and newer
• HLE (Hardware Lock Elision) interface for processors which don’t have TSX 

• Software transactional memory (STM) more widely in use, taking a 
hit on performance

• Lock-free data structures with transactional memory really 
promising for scalability, locks still needed for bigger sections

34



Questions

35



Discussion

• What could be possible reasons hardware transactional memory isn’t 
more widespread nowadays? (paper was published in 1993)

• Problems with TSX back in 2014 (“errata”) and just again in November 
2019 (ZombieLoad 2 or TSX Asynchronous Abort). Do you expect to 
see such problem disappear? Or how can they be overcome?

36
BleepingComputer, 13 November 2019The Tech Report, 13 August 2014



Other

37



Normal cache states

38

Name Access Shared? Modified?

INVALID None --- ---

VALID R Yes No

DIRTY R, W No Yes

RESERVED R, W No No


