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Abstract. At the end of 2011, Google released version 4.0 of its Android
operating system for smartphones. For the first time, Android smart-
phone owners were supplied with a disk encryption feature that transpar-
ently encrypts user partitions. On the downside, encrypted smartphones
are a nightmare for IT forensics and law enforcement, because brute
force appears to be the only option to recover encrypted data by techni-
cal means. However, RAM contents are necessarily left unencrypted and,
as we show, they can be acquired from live systems with physical access
only. To this end, we present the data recovery tool FROST (Forensic
Recovery of Scrambled Telephones). Using Galaxy Nexus devices from
Samsung as an example, we show that it is possible to perform cold boot
attacks against Android smartphones and to retrieve valuable informa-
tion from RAM. This information includes personal messages, photos,
passwords and the encryption key. Since smartphones get switched off
only seldom, and since the tools that we provide must not be installed
before the attack, our method can be applied in real cases.

1 Introduction

In 2011, 83 percent of the American adults had a cell phone from which 42 per-
cent had a phone that can be classified as a smartphone [1]. Android is today
the most common smartphone platform, followed by iOS, Blackberry OS, and
Windows Phone. Since most consumers use their smartphones for both business
and personal applications, missing devices often contain personal and corporate
data. For example, the survey The Lost Smartphone Problem [2] on 439 U.S.
organizations objectively determined that in a 12-month period 142,708 out of
3,297,569 employee smartphones were lost or stolen, i.e., 4.3 percent per year.
5,034 of these smartphones were known to be subject to theft, while the oth-
ers were “missing”. Only 9,298 smartphones were recovered within the time of
the study. Results like those make clear that people must take precautions to
secure their smartphones against physical loss. The most popular method to
protect data against physical loss is encrypting it with AES. Android, for ex-
ample, enables users to encrypt their user partition with AES since version 4.0,
which was released in October 2011. However, encryption technologies are am-
bivalent as they also enable criminals to hide digital evidence, so that encrypted
smartphones have a serious impact on digital forensics.
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Contributions. In this paper, we aim at recovering valuable information from
encrypted smartphones. Roughly speaking, we analyze the characteristics of the
remanence effect [3] on smartphones, prove that Android’s boot sequence enable
us to perform cold boot attacks [4], and show that valuable information can be
retrieved from RAM. To this end, we present our recovery tool FROST (Forensic
Recovery of Scrambled Telephones). FROST can be loaded to a smartphone after
we got physical access to it, and without the need to have user privileges before.
We carried out our experiments exemplarily for Galaxy Nexus devices. In detail,
our contributions are:

1. Fwvaluation of the Remanence Effect: We analyze the characteristics of the
remanence effect on smartphones for the first time. According to previous
results on PCs, the decay of bits in RAM correlates with both the operating
temperature of a device and its time without power. However, contradictory
to previous results, we show that the remanence interval on smartphones
is shorter. 50% of all bits are decayed after 2-4s, depending on the device
temperature.

2. Cold Boot Attacks: The bootloader of Galaxy Nexus devices (and many other
Android-driven smartphones) can be unlocked with physical access only. Un-
locking the bootloader does not destroy RAM contents, but it requires us to
reboot the smartphone. According to our results about the remanence effect,
we can reboot a smartphone quickly while preserving a significant amount
of RAM. After rebooting a Galaxy Nexus device, unlocking its bootloader,
and booting up our recovery tool, we were still able to recover much sensitive
information. Among others, we recovered emails, photos, contacts, calendar
entries, WiFi credentials, and even the disk encryption key.

3. Breaking Disk Encryption: If a bootloader is already unlocked before we gain
access to a device, we can break disk encryption. The keys that we recover
from RAM then allow us to decrypt the user partition. However, if a boot-
loader is locked, we need to unlock it first in order to boot FROST, and the
unlocking procedure wipes the user partition (but preserves RAM contents).
Since bootloaders of Galaxy Nexus devices are locked by default, and since
we conjecture that most people do not unlock them, disk encryption can
mostly not be broken in real cases. In addition we integrated a brute force
option that breaks disk encryption for short PINs.

The fact that user partitions are wiped out when unlocking the bootloader is a
serious limitation of our method. Forensic experts from law enforcement might
not be allowed to delete a user partition in order to retrieve digital evidence from
RAM. Any data on disk would irretrievably be lost. However, this depends on the
actual case and the respective legislation of the country. In any event, criminals
do not care about this fact and it is therefore important to discuss the attack
vector “RAM” irrespectively of its forensic application. With FROST, we are
always able to acquire memory dumps from switched-on Galaxy Nexus devices,
and we conjecture that our attack can be extended to a wider range of devices
with the tools that we provide. A tutorial, a photo series, source codes, and
precompiled binaries of our project are available at wwwl.cs.fau.de/frost/.
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2 Background Information

We now provide necessary background information about the encryption support
in Android 4.0 and subsequent versions (Sect. Z1). We then give information
about the remanence effect, and about cold boot attacks on PCs (Sect. 22).
Finally, we give details about our device under test, namely the Samsung Galaxy

Nexus (Sect. [23]).

2.1 Disk Encryption Since Android 4.0

With Android 4.0, support for AES-based disk encryption was introduced. While
third party apps that extend the functionality of Android smartphones are pri-
marily written in Java, disk encryption resides entirely in system space and is
written in C. Android’s encryption feature builds upon dm-crypt, which has been
available in Linux kernels for years. Dm-crypt relies on the device-mapper infras-
tructure and the Crypto API of the Linux kernel. It provides a flexible way to
encrypt block devices by creating a virtual encryption layer on top of all kinds
of abstract block devices, including real devices, logical partitions, loop devices,
and swap partitions. Writing to a mapped device gets encrypted and reading
from it gets decrypted. Although dm-crypt is suitable for full disk encryption
(FDE), Android does not encrypt full disks but only user partitions.

Dm-crypt is kept modular and supports different ciphers and modes of oper-
ation, including AES, Twofish and Serpent, as well as CBC and XTS. Android
4.0 makes use of the cipher mode aes-cbc-essiv:sha256 with 128-bit keys [5].
The AES-128 data encryption key (DEK) is encrypted with an AES-128 key
encryption key (KEK), which is in turn derived from the user PIN through
the password-based key derivation function 2 (PBKDF2) [6]. Using two different
keys, namely the DEK and the KEK, renders cumbersome reencryption in the
case of PIN changes unnecessary. The encrypted DEK as well as the initialization
vector (IV) for PBKDF2 are random numbers taken from /dev/urandom. These
values are stored inside a crypto footer of the disk. The crypto footer can either
be an own partition or it can be placed at the last 16 kilobytes of an encrypted
partition. The crypto footer becomes important for our implementation because
it holds necessary information to decrypt encrypted partitions.

Unlike i0S, which automatically activates disk encryption when a PIN is set,
Android’s encryption is disabled by default. Activating it manually takes up to
an hour for the initial process and cannot be undone. Furthermore, it can only be
activated if PIN-locks or passwords are in use. In Android, PINs consist of 4 to
16 numeric characters, and passwords consists of 4 to 16 alphanumeric characters
with at least one letter. New screen locking mechanisms like pattern-locks and
face recognition are less secure, and so Google forbids them in combination with
disk encryption. Pattern-locks, for example, can be broken by Smudge Attacks [7],
and face recognition can simply be tricked by showing a photo of the smartphone
owner [§].



376 T. Miiller and M. Spreitzenbarth

2.2 Remanence Effect and Cold Boot Attacks

Adversaries with physical access to their target can perform cold boot attacks
against encrypted PCs. Cold boot attacks have become publicly known in 2008,
when Halderman et al. [4] proved that the remanence effect can be exploited
to recover disk encryption keys from RAM. The remanence effect, however, has
already been known since decades and is neither specific to encryption keys nor
to memory chips of PCs [3l9]. The remanence effect says that contents of volatile
memory fade away gradually over time, rather than disappearing immediately
after power is cut. It also says that low temperatures slow down the fading
process. Anderson and Kuhn first outlined attacks exploiting the remanence
effect of cooled down memory chips [I0]. In applied cryptography, the remanence
effect is also used as a timing source [11], and as an entropy source [12].

On PCs, secret keys can be traced in RAM after a reboot from malicious USB
drives, due to the remanence effect. Above that, cooled down RAM chips can
physically be replugged into another PC. The replug variant is more generic than
the reboot variant, because it works irrespectively of BIOS and boot sequence
settings. With a recovered secret key, adversaries can decrypt the hard disk
and eventually access all data. Cold boot attacks are generic and constitute a
threat to all disk encryption solutions. However, it has not been reported yet if,
and how, cold boot attacks are applicable against ARM-based devices such as
smartphones and tablets. According to Halderman et al., by cooling down RAM
chips the remanence interval is extended from 30 seconds up to ten minutes.
According to our results, the remanence interval on smartphones is much shorter
(see Sect. B2). An interesting question at the beginning was if we can obtain a
physical RAM dump from smartphones at all? Unlike x86 PCs, Android devices
have soldered RAM chips that we cannot unplug, and no bootable USB ports.
Hence, we had to find another way to boot system code. The popular trend
towards open bootloaders in recent Android devices opened more avenues for
attack. Galaxy Nexus devices (and many other Android-driven smartphones)
have now bootloaders that can be manipulated with physical access only.

2.3 Samsung Galaxy Nexus

For our purpose, we have chosen the Galaxy Nexus from Samsung because it was
the first device with Android 4.0 and consequently, it was the first Android-based
smartphone with encryption support. Moreover, it is an official Google phone,
meaning that it comes with an official Android version from Google which is not
modified by the phone manufacturer. Official Google releases are most amenable
for an in-depth security analysis, and flaws can be generalized best to a wider
class of devices.

The Galaxy Nexus family comes with an OMAP4 chip from Texas Instruments
(4460) which has a Cortex-A9 CPU implementing ARMv7. The partition layout
of an encrypted Galaxy Nexus device is given in Fig. [l Most of the thirteen par-
titions can be ignored for our purpose, except userdata, metadata and recovery.
The userdata partition contains the encrypted filesystem, the metadata parti-
tion is the crypto footer that holds necessary information for decryption, and
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block device partition name  description

/dev /block/mmcblkOp1 xloader bootloader code

/dev /block/mmcblk0p2 sbl bootloader code

/dev /block/mmcblkOp3 efs static information like IMEI
/dev /block/mmcblkOp4 param boot parameters

/dev /block/mmcblkOp5 misc system settings like carrier ID
/dev /block/mmcblkOp6 dgs unknown (zero filled on all devices)
/dev /block/mmcblk0p7 boot boot code

/dev /block/mmcblk0p8 recovery recovery image

/dev /block/mmcblk0p9 radio radio firmware (GSM)
/dev/block/mmcblkOpl0  system Android operating system
/dev/block/mmcblkOpll  cache cache (e.g., for user apps)
/dev/block/mmcblkOpl2  userdata user data (encrypted)
/dev/block/mmcblkOpl3  metadata crypto footer

Fig. 1. Partition layout of an encrypted Samsung Galaxy Nexus device

the recovery partition is a partition that holds a second bootable Linux. The
recovery partition is different from the main Android system (which is stored on
the system partition). It can be compared best with a rescue system of ordinary
PCs and allows basic operations on the hard disk without booting into full An-
droid. The recovery partition plays a vital role in our cold boot attack, because
we make use of it to boot our own system code.

3 Cold Boot Attacks on Galaxy Nexus Smartphones

We now give an evaluation about the remanence effect on Galaxy Nexus devices
and probe the effectiveness of cold boot attacks. To this end, we rely on our
recovery tool FROST; we describe the technical details of FROST in Sect. @l We
now describe how FROST can be booted (Sect. BIl). Based on FROST, we then
examine how the operating temperature of a Galaxy Nexus device correlates
with the decay of bits (Sect. B2). Afterwards, we have a look at personal data
that we can gain from RAM when the phone is encrypted (Sect. B3)). Finally,
we have a look to the special case when bootloaders are already unlocked before
accessing the phone (Sect.B4). If so, we can break Android’s encryption feature
entirely and decrypt all data on the phone.

3.1 Booting the FROST Recovery Image

The question we answer in this section is, how do we reboot a smartphone and
run FROST if physical access to it has just been gained? An important point at
the beginning is to ensure that the device has sufficient power for a live analysis.
Otherwise, it must be charged, because once an encrypted device loses power, all
possibilities other than brute force are lost to gain data from it. After charging,
the device must be cooled down in order to increase the remanence interval (see
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Sect. B2)). As a rule of thumb, we experienced good results when putting the
device into a —15°C freezer for 60 minutes. Before that, it should be packed up
in a freezer bag in order to protect it against water condensation.

After the phone has been charged and cooled down, we can reboot it. Since
the Galaxy Nexus device has no reset button (like most other smartphones), we
have to reboot it by unplugging the battery briefly. Shutting the device down
from the lock screen is too slow and valuable information in RAM would get lost.
In order to boot up the device quickly after reinserting the battery, the power
button must already been held before removing the battery. The entire process
has to happen so quickly that the phone is without power only for a few hundred
milliseconds. Once a smartphone is up again, the risk of losing RAM contents
is defeated, because neither unlocking the bootloader nor booting into FROST
destroys any important memory lines according to our tests.

Additionally, the buttons volume up and volume down must be held during
boot to enter the fastboot mode. Once the phone is in fastboot mode, it can
be connected to a PC via USB. First, we assume the bootloader is locked. If
so, we have to run fastboot oem unlock first. This command requires us to
confirm the following warning on the phone: “To prevent unauthorized access to
your personal data, unlocking the bootloader will also delete all personal data
from your phone”. Once we confirm this warning, the encrypted user partition
gets wiped. However, “all personal data” is not deleted from the phone — RAM
contents are preserved.

Next, FROST must be booted. This can be done in two different ways. Ei-
ther we run fastboot flash recovery frost.img to install it persistently on
the recovery partition, or we run fastboot boot <kernel> [ramdisk] to start
FRroST temporarily. The latter is interesting for forensic investigations in the
case that the bootloader was already unlocked, because it then prevents the
forensic examiner from modifying the state of the phone (which might be illegal
depending on the case and/or country). However, if the bootloader must get un-
locked first, the state of the phone must be modified anyway. In that case, either
the first or the second command can be used interchangeable. Again, criminals
most likely do not care about changing the phone state, and thus it is important
to discuss both attack vectors, irrespectively of their forensic applicability.

After installing FROST to the recovery partition of a phone, the recovery mode
option must be selected from the phone’s boot menu in order to launch FROST.
With the help of FROST, personal data and even encryption keys can now be
recovered (see Sect. B3] and Sect. B4]). We strongly recommend to practice the
entire procedure several times before carrying it out in real cases. The time of
battery removal is critical and the entire procedure must happen quickly (see

Sect. B2).

3.2 The Remanence Effect

We now analyze the remanence effect of RAM on Galaxy Nexus devices. That is,
we analyze the number of decayed bits in RAM after power is cut, in dependence
of the operating temperature of a phone and the time of battery removal. Earlier
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€ 0.5 —1s 1—2s 3 —4s 5 — 6s
5—-10°C 0 (0%) 2 (0%) 1911 ( 5%) 8327 (25%) 24181 (73%)
10—-15°C 0 (0%) 976 (2%) 2792 ( 8%) 18083 (55%) 25041 (76%)
15—-20°C 0 (0%) 497 (1%) 4575 (13%) 20095 (61%) 25433 (77%)
20-25°C 0 (0%) 421 (1%) 16461 (50%) 23983 (73%) 27845 (84%)
25—-30°C 1 (0%) 2204 (6%) 16177 (49%) 27454 (83%) 28661 (87%)

Fig. 2. Number of bit flipping errors per physical page (in total and percentage) in
dependence of the phone temperature and the time of battery removal

in our investigations, we recognized that the chance to recover personal data with
FROST increases considerably if the phone is cold. We then experimented with
putting the phone into a fridge and into a freezer, and we got even better success
rates. In the following we give exact benchmarks for this effect.

Fig. 2l lists the bit error rate of memory pages as a function of the device
temperature and the time without power before reboot. To determine the device
temperature we utilized an infrared thermometer and pointed it to the exactly
same position on the phone’s motherboard each test run. To cool down the phone,
we put it into a -15 °C freezer. 25-30 °C is the normal operating temperature of
a Galaxy Nexus, 20-25 °C is reached after 10 minutes, 15-20 °C after 20 minutes,
10-15 °C after 40 minutes, and 5-10 °C after 60 minutes inside the freezer. In
several test cases, we never observed damage to the phone when putting it into
the freezer for 60 minutes or less (longer periods have not been tested).

To determine the bit error rate, we used FROST to fill memory pages at fixed
physical addresses entirely with Oxff. The page size in Android is 4,096 and so
we filled each page with 4,096 -8 = 32, 768 bits. After booting into FROST, as de-
scribed in Sect. 3], we reconsidered the pages that we recently filled and counted
the bits that were now zero. By this means, we got the total number of decayed
bits and we were able to estimate the overall bit error rate, as listed in Fig. 2l
Note that the highest possible bit error rate is 87.5%, and not 100%, because
the passive state of 50% of RAM lines is 0xc0, and not 0x00. We reproduced our
test for different physical addresses, and all pages exhibited the same behavior.

The most inaccurate measures in our test set-up are the times that a device
is without power. According to Sect. B} for rebooting a Galaxy Nexus quickly
the battery must be removed manually. Milliseconds are crucial for the number
of decayed bits, but the mechanic task of battery removal cannot be handled ex-
actly. Therefore, with & we define the quickest unplugging/replugging procedure
that we “were able to perform”; we claim this was consistently below 500 ms.
Moreover, we define four intervals up to six seconds, and say that we replugged
the battery “somewhen” within these intervals. We explain inconsistencies of our
results given in Fig. 2 and [3 mostly with inaccurate timings.

In Fig. Bl we visualized the data set from Fig. 2l It becomes clear that the bit
error rate of RAM increases with both the temperature and the time without
power. For example, at a temperature of approximately 25 °C' we have a bit
error rate of 50% after two seconds, whereas the corresponding bit error rate at
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Fig. 3. Bit error ratio (y-axis) in dependence of time (x-axis) and temperatures. The
bit error rate decreases with both lower temperatures and shorter times without power.

Fig. 4. A Droid-bitmap in RAM of a Galaxy Nexus device after 0, €, 0.5s, 1s, 2s, 4s,
and 6s without power. The cold boot attacks have been deployed at room temperature.

temperatures around 10 °C' is only 5%. Hence, besides replugging the battery
quickly, putting a device into a freezer increases the chance to recover personal
data from RAM notably.

In Fig. [ we visualized the remanence effect on Galaxy Nexus devices by
visualizing decayed bits as a series of Droid bitmaps. For this series, we used
4096-byte bitmaps that exactly fit into one physical page. We used bitmaps
rather than JPEGs to visualize bit errors, because using JPEGs entire blocks
get destroyed rather than single pixels. We then increased the interval that the
phone was without power during boot successively from ¢ to 6 seconds. Whenever
the bitmap header got destroyed, we fixed it manually in order to display the
image. Fig. M graphically shows the remanence effect and the distribution of bit
errors. It also shows that the passive state of the first half of a physical RAM
page is 0x00, while the passive state of the second half is 0xcO0.

In contrast to Halderman et al., who considered the remanence effect on PCs,
we cannot cool down RAM chips below 0°C without risking serious damage to the
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phone’s hardware. Particularly the display and the battery are likely to suffer
damage from temperatures below 0°C. Nevertheless, for temperatures above
0°C our experiments reveal shorter remanence intervals than those identified by
Halderman et al. [4]. But, as we see in the next section, the shorter remanence
intervals still enable us to perform cold boot attacks against smartphones.

3.3 Recovery of Personal Data

We now investigate which data we can forensically recover from encrypted smart-
phones through cold boot attacks. Specifically, we are after personal data and
digital evidence such as address book contacts, documents, messages, photos,
and calendar entries. For our main case, we set up a Galaxy Nexus as personal
phone and used it for everyday communications over a week. We then took a
photo and did a phone call immediately before the attack. Our goal was to
recover as much personal data from the entire week as possible, and the time
before the attack in particular. To this end, we attacked the phone by means of
FRroOST and took a memory dump. The memory dump of our test case was near
optimal, i.e., we cooled down the phone below 10°C and replugged the battery
so quickly that we had a bit error ratio of about 0% according to Fig. 2l Hence,
we conjecture we recovered nearly everything that was available in RAM.

We then examined the memory dump with known system utilities like strings
and hexdump, and made use of data recovery programs like PhotoRec. Besides
photos, PhotoRec can recover websites, text files, databases, sound files, source
codes, and binary programs from raw memory images. From the memory dump,
we were able to recover 68 JPEG and 199 PNG pictures, 36 OGG tracks, 295
HTML and 386 XML files, 215 SQlite databases, 28 ZIP and 105 JAR archives,
1214 ELF binaries, 485 JAVA source codes, and 6, 331 text files.

We then analyzed all recovered data sets thoroughly. While most PNG images
that we recovered were system images and logos (and hence, of no interest for
us) many JPEG files were personal photos. We were able to recover both the pic-
ture that was recently taken and older pictures. We were surprised when we even
recovered pictures that were taken with another smartphone weeks before the at-
tack. The reason was that these pictures got synchronized in the background via
Dropbox (a common filehoster). For the photo we took immediately before the
attack, we could recover two variants, a small thumbnail and a high-resolution
variant. For the other photos, we could only retrieve the small thumbnail.

As stated above, most PNG images that we recovered were system files, but
also the Wikipedia and Wikimedia logos were available. Indeed, we surfed to
wikipedia.org in the week before the attack, and it was one of the webpages
we accessed last, but we did not access it immediately before the attack. Even
though, we could also trace its HTML source in RAM. Moreover, we found
residues of other webpages in RAM, too. Besides that, we found personal text
files and recent emails in RAM. And we found the entire chat-history of What-
sApp (a popular messenger). We also explicitly searched for names of our contact
list, and we found each name to be present in RAM several times. Near the mem-
ory locations where we identified a name, we found respective phone numbers,
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Personal information fully recovered partly recovered not recovered
Address book contacts v

Calendar entries v

Emails and messaging v

GPS coordinates v
High resolution pictures v

Recent phone calls v
Thumbnail pictures v

Web browsing history v

WhatsApp history v

WiFi credentials v

Fig. 5. Set of personal information that we exemplarily searched for. Most of the data
we search for could at least partly be recovered.

email addresses, and other contact details. We also found the remaining entries
of our contact list that we did not explicitly search for, indicating that the entire
address book is in RAM. Additionally, we recovered dates like birthdays from
Jorte Calendar, indicating that also the calendar is in RAM. Interestingly, we
even found plaintext passwords. Actually, we did search for the SSID of our de-
partment WiFi and we could easily locate the according username and password
in plaintext. We did not enter the password right before the attack but days
before; the password is probably loaded into RAM each time before connecting
to the WiFi.

Overall, we recovered dozens of personal information from RAM with known
recovery tools and common system utilities. However, we could not locate all
information that we were looking for. We tried to find the call history, i.e., we
wanted to find out which number has been dialed last, but we were not success-
ful. Likely, this information is in RAM but we failed to identify the respective
memory structure. We also failed to recover GPS coordinates when we wanted to
construct a movement profile. However, we are confident that more information
can be retrieved from RAM with more efforts in the future. Fig. Bl summarizes
our results.

3.4 Recovery of the Disk Encryption Key

Apart from personal data, we were also able to recover the disk encryption keys
(given that no or only a few bits were decayed). However, on devices where the
bootloader is locked, the bootloader must get unlocked first (see Sect.B1l). On cur-
rent Galaxy Nexus devices, the unlocking process deletes the userdata and cache
partition. We verified that Google actually wipes the userdata and cache parti-
tion, meaning that these partitions get zero-filled. As a consequence, it becomes
pointless to retrieve encryption keys from RAM, although this is still possible.
Since the wiping process is induced by the telephone software rather than the
PC, it cannot easily be bypassed. And since the bootloader of a new Galaxy
Nexus is locked by default, we conjecture that most Galaxy Nexus devices have
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locked bootloaders. However, it is generally a device-dependent property whether
a bootloader is locked or unlocked by default, and whether partitions get wiped
during unlocking or not. The first series of Galaxy Nexus devices, did not delete
user partitions when unlocking the bootloader [I3]. Later versions of the Galaxy
Nexus apparently delete userdata partitions but do not wipe them if the phone
is not encrypted [14]. Other devices, like the Samsung Galaxy SII, are shipped
with unlocked bootloaders even by default [I5], such that unlocking is never
necessary.

If we find a bootloader to be unlocked, then FROST can even be applied to
break disk encryption, i.e., to decrypt the entire user partition. In that case, it
is pointless to discuss which personal data apart from the key can be recovered
from RAM (see Sect. B3)), because we have access to the entire disk. We built
necessary key recovery and decryption tools into FROST. In short, we go over
all physical memory pages in order to trace AES key schedules. For details, see
Sect. [

To conclude, for all Android-based smartphones with an unlocked bootloader,
or those that can get unlocked without wiping the user partition, we can perform
cold boot attacks on the disk encryption key. For all other devices, we can “only”
perform cold boot attacks to retrieve valuable information from RAM.

4 Implementation of the FrROST Recovery Image

We now present details on the implementation of the FROST recovery image.
Technically, FROST is a set of recovery tools that we developed and compounded
together into an easy-to-use GUIL. Notably, FROST displays a GUI that allows
forensic examiners to acquire full memory dumps, to recover encryption keys
directly on the phone, to unlock the encrypted user partition with recently re-
covered keys, and to crack weak PINs with brute force. We come back to these
points in the subsequent sections.

4.1 Linux Kernel Module and GUI

The centerpiece of FROST are its loadable Linux kernel modules (LKMs). Ac-
cessing physical memory requires system level privileges, and to gain system
level privileges we load LKMs. As a basis for our recovery image, we chose the
recovery image from ClockworkMod, which is a known provider for custom An-
droid ROMs. We integrated our FrROST LKM, as well as user mode utilities and
third party tools, into the ClockwordMod recovery image and modified it’s GUI
such that forensic data recovery can be operated comfortably. Users can choose
between one of the following options in the FrosT GUI:

— Telephone encryption state: To check the encryption state of the phone, we
try to mount the userdata partition and check whether that succeeds.

— Key recovery: This option searches for AES keys (see Sect. [£.2]). On success,
the recovered key is displayed to the user and saved internally for later use.
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— RAM dump via USB: This option saves a full memory dump of the smart-
phone to the PC for offline analysis.

— Crack 4-digit PINs: Performs brute force attacks against weak PINs (see
Sect. [£3). Recovered PINs and keys are displayed and the key is saved for
later use.

— Decrypt and mount data: Decrypts the user partition with recently recovered
keys.

The key recovery mode optimized for Galaxy Nexus devices finishes in about 9s.
To create a full memory dump of 700 MB (which is the RAM size of a Galaxy
Nexus) takes 3m 9s. To load memory dumps to the PC, we make use of the
LiME module [I6]. LIME parses a kernel structure to learn physical memory
addresses and each physical page is then transferred over TCP to the computer.
Alternatively, LIME allows to save physical memory dumps to user partitions,
but this is not an option in FROST because we assume user partitions are en-
crypted. To decrypt the userdata partition, we integrated a statically linked
ARM binary of the dmsetup utility [I7]. This option becomes available only if
one of the key recovery methods or the brute force approach were successful, i.e.,
if the decryption key is known.

A precompiled version of the FROST recovery image for Galaxy Nexus devices
is on our website (http://wwwl.cs.fau.de/frost). Above that, we provide the
code of the FROST LKM and our user mode utilities as open source, such that
similar images can easily be built for a wider class of devices. You may use these
components independently of the recovery image.

4.2 AES Key Recovery

Our key recovery algorithm in FROST is based on the known utility aeskeyfind [4].
Aeskeyfind searches for AES keys in a given memory image from x86 PCs by
identifying AES key schedule patterns in RAM. Contrary to aeskeyfind, FROST
is implemented for ARM and searches for AES keys on-the-fly, i.e., directly on
the phone. In comparison to x86, the endianness of key bytes in ARM is reversed,
for example, such that exisiting algorithms had to be adapted. Our optimized
code recovers AES keys in less than 10 seconds directly on the phone (whereas
aeskeyfind requires always about 10 minutes). An exemplary FROST output is
given in Fig. [6

Our key recovery LKM basically supports two search modes: quick search and
full search. Quick search is highly optimized for Galaxy Nexus devices and looks
for AES keys at certain RAM addresses. In detail, we have chosen the address
space 0xc5000000 to 0xd0000000 because all our tests revealed that AES key
schedules are placed in this range. In quick search mode, the recovery process
finishes within seconds. This mode, however, might fail on other devices because
the search space might be too specific. Therefore, we implemented the full search
mode that considers the entire physical RAM. The full search mode uses a sliding
window mechanism that looks at each physical RAM page twice. In quick search
mode, AES key schedules which are spread over multiple pages, are missed. In
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adb> insmod frost.ko fullsearch=0 ; dmesg adb> ./crackpin
key-32: 4ee35476397b76905828a89f£3d9b872f magic: DOB5B1C4
: ccb6671af6eebffe94ealbc87c0948e4 encdek: 3c4ac402c6095ed46cf4fle2281alf3e
key-32: 4ee35476397b76905828a89f3d9b872f salt: 19043211840adfde95110c7£99263d6¢
: ccb6671laf6eebffe94ealbc87c0948e4
key-16: bcdbc55c£809cb5989e58a40ecbb7164 >> KEK: 2165534cc66099714a8226753d70b576
key-16: bcdbc55cf809cb5989e58a40ecbb7164 >> IV: 05cb47c£3a98d77e563bb4cfcde791aa
>> DEK: bcdbc55c£809cb5989e58a40ecbb7164
Summarizing 4 keys found. >> PIN: [2323]
Fig. 6. Keys recovered with the FROST Fig.7. Key and PIN recovered with
LKM brute fore

practice, however, this is unlikely; in 50 test cases, we never observed an AES
key schedule that was spread over two pages (the page size in Android is 4096
bytes).

If neither the quick search mode nor the full search mode succeeds, the memory
image is too noisy, meaning that too many bits decayed during cold booting (see
Sect B2)). As stated above, our key recovery algorithm is based on the utility
aeskindfind. Aeskeyfind discards key candidates as soon as a given threshold
of bits is reached that are not in line with a typical key schedule structure. If
this threshold is too high, pseudo keys are identified from irrelevant memory
regions. But if the threshold is too low, the recovery algorithm becomes prone
to decayed bits from cold booting. As a tradeoff value that is based on results of
our experiments, we have chosen 64 as default threshold in FROST. That means,
64 out of 1280 bits can be disturbed per key schedule at maximum. In other
words, the bit error ratio is not allowed to exceed 5% to be able to identify key
schedules in FROST.

To overcome the situation that no key bits can be recovered due to noisy
images, we implemented a third search mode. During our RAM analysis, we
recognized that AES keys are typically present in memory five times: once in
the context of an AES forward schedule, once in the context of an AES back-
ward schedule, and three times as a stand-alone bit sequence. Stand-alone bit
sequences are commonly hard to identify as keys, because keys themselves have
no structure. Only their corresponding key schedules have a structure. To exploit
these occurrences, we implemented a search mode that is less generic but offers
good results in practice: Rather than searching for key schedule patterns, we look
after “magic strings” that appear near the desired key. From several test runs
we know fixed offsets from magic strings to key locations. Given these offsets are
correct, we can recover key bits independently of key schedules. However, this
procedure is optimized for Galaxy Nexus devices and specific Android versions;
offsets may change in upcoming releases.

The key recovery code of FROST was developed and tested on Galaxy Nexus
devices, but it works for other Android-based smartphones, too. It is a part of
our project which is platform-independent, meaning that it even runs on non-
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Android systems. For example, we have successfully tested parts of our module
on a PandaBoard with Ubuntu. In general, FROST’s key recovery code can be
used on all ARM devices where you have a Linux shell with root access.

4.3 PIN Cracking through Brute Force

PINs are still the most frequent screen lock in use today. But long PINs are too
inconvenient for most people that work on their phones on a daily basis, because
they must be entered for each interaction with the device, e.g., for giving a call,
for writing a message, and for taking a photo. Consequently, people commonly
use short PINs of only 4-8 digits. That is a concern, because in Android the screen
lock PIN necessarily equals the PIN that is used to derive the disk encryption key.
Consequently, besides cold boot attacks, short PINs are another weak point of
Android’s encryption feature. (Note that we find the restriction that encryption
passwords must equal screen lock PINs in Android unnecessary and dangerous.
In practice, it is more time consuming to crack a visual PIN prompt than to
perform automated brute force attacks against encrypted filesystems.)

In 2012, Cannon and Bradford [I8] presented details about Android’s encryp-
tion system and gave instructions on how to break it with brute force attacks
against the PIN. They published their findings in form of a Python script that
breaks Android encryption offline, meaning that it runs on an x86 PC after the
userdata and metadata partition have been retrieved “somehow”. Basically, we
reimplemented their Python script in C and cross-compiled it for the ARM archi-
tecture, so that we can perform efficient attacks directly on the phone, without
the need to download the user partition. To this end, we cross-compiled the Po-
larSSL library for Android, an open source library similar to OpenSSL which
is more light-weight and easier to use and integrate. We then statically linked
our PIN cracking program with the PolarSSL library, because Android does not
support dynamic linking. Both the source code and the statically linked binary
are available on our webpage; an exemplary output of it is given in Fig. [

PINs with four digits are cracked within 2m 58s at maximum, i.e., in one and
a half minute on average. Although we only implemented the important 4-digit
case yet, we can estimate that 5-digit PINs are cracked in about 15m, 6-digit
PINs in 2h 30m, and 7-digit PINs in about 25h.

5 Future Work and Conclusions

To defeat physical access attacks, disk encryption has become an essential secu-
rity mechanism for mobile devices. Virtually all PC operating systems support
disk encryption since years, and smartphones now provide encryption, too. How-
ever, when losing an Android-based smartphone, chances are to lose valuable
information even though encryption was used. The remanence effect shows up
on smartphones, and as we have proven, it can be exploited with cold boot
attacks to retrieve personal data. We believe that our study about Android’s en-
cryption is important for two reasons: First, it reveals a significant security gap
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that users should be aware of. Since smartphones are switched off only seldom,
the severity of this gap is more concerning than on PCs. Second, we provide
the recovery utility FROST which allows law enforcement to recover data from
encrypted smartphones comfortably.

We have several plans for future improvements of FROST. First, we want to
make our recovery image available for more Android devices than just the Galaxy
Nexus. We already provide device independent system utilities like the FROST
LKM and the PIN cracking program on our webpage, so that forensic examiners
can compose recovery images for other devices also on their own. We provide
appropriate howtos and source codes of our project for that. From an academic
point of view, it is more important to analyze Android’s memory structures in-
depth in future. For example, we were not able to recover GPS coordinates and
the list of recent phone calls yet, but we believe that this information is present
in RAM.

To conclude, we have proven that smartphones can be attacked by cold boot
attacks. To this end, we have shown that on Galaxy Nexus devices low tem-
peratures raise the success rate of cold boot attacks (remanence effect). We
also presented FROST, a tool that recovers personal data from encrypted smart-
phones. The biggest limitation of FROST to date, however, is that it requires
an unlocked bootloader for breaking encryption entirely. Recovering the disk en-
cryption key is always possible, but searching for it becomes pointless when the
bootloader was locked (because the user partition gets wiped during unlocking).
Nevertheless, personal data can always be recovered from RAM.

Countermeasures against cold boot attacks are difficult. On x86 PCs, solutions
like TRESOR and TreVisor [19)20] perform encryption on CPU registers only,
thereby thwarting attempts to reveal sensitive key material from RAM. However,
such solutions are limited to encryption keys and cannot protect RAM contents
in general. Protecting all information in RAM is assumed to be infeasible, which
in turn proves the severity of tools like FROST.
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