
IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1970 73

ilarly, the number of distinct delay row numbers associ- method which is most appropriate for hiis sequential
ated with the states of the second block of Gi corresponds machine design purposes.
to the number of blocks K(0) contains. Of course, the
number of blocks in J(6i) and K(Oi) provides the informa- REFERENCES
tion as to the amount of state variable dependency [1] H. A. Curtis, "Systematic procedures for realizing synchronoussequential machines using flip-flop memory: Part I," IEEE Trans.
possessed by the respective Ji and Ki or Ki flip-flop Computers, vol. C-18, pp. 1121-1127, December 1969.
input functions. Thus, the Gi whose associated Ji and [2] T. A. Dolotta and E. J. McCluskey, "The coding of internal

states of sequential circuits," IEEE Trans. Electronic Computers,
Ki or Ki input functions have the least combined van- vol. EC-13, pp. 549-563, October 1964.
able dependency is chosen. [3] P. Weiner and E. J. Smith, "Optimization of reduced dependeln-

cies for synchronous sequential machines," IEEE Trans. Elec-
In conclusion, it is hoped that the several generaliza- tronic Computers, vol. EC-16, pp. 835-847, December 1967.

tions of the DM and WS methods presented in both [4] C. Harlow and C. L. Coates, "On the structure of realizationsusing flip-flop memory elements," Inform. Control, vol. 10, pp.
parts of this study will permit the reader to choose that 159-174, February 1967.

Short Notes_
A Logic-in-Memory Computer integration, it has become clear that the cost and com-

HAROLD S. STONE plexity of microelectronic packages are only partly
influenced by the number of gates or the number of

Abstract-If, as presently projected, the cost of microelectronic transistors per package. MViodule cost is influenced pri-
arrays in the future will tend to reflect the number of pins on the manly by the cost of packaging and testing, while
array rather than the number of gates, the logic-in-memory array is ' v . .
an extremely attractive computer component. Such an array is es- module complexity is more strongly influenced by the
sentially a microelectronic memory with some combinational logic number of pins per module. It is conceivable that com-
associated with each storage element. ponent cost will become so heavily dependent on factors

A logic-in-memory computer is described that is organized around other than the number of gates per package that
a logic-enhanced "cache" memory array. Used as a cache, a logic- doubling or tripling the number of gates per package
in-memory array performs as a high-speed buffer between a conven-
tional CPU and a conventional memory. The effect on the computer may not affect the cost of the package materially, pro-
system of the cache and its control mechanism is to make the main vided that other factors-such as the number of pins
memory appear to have all of the processing capabilities and almost per package, the process yield, and the cost of testing-
the same performance as the cache. remain the same. Such projections provide a challenge

Operations within the array are naturally organized as operations to the logic designer and system architect because it
on blocks of data called "sectors." Among the operations that can be
performed are arithmetic and logical operations on pairs of elements appears to be technically and economically feasible to oh
from two sectors, and a variety of associative search operations on a tain a substantial increase in hardware complexity of a
single sector. For such operations, the main memory of the computer computer system, provided that new computer system
appears to the program to be composed of a collection of logic-in- designs satisfy the restrictions and limitations of ad-
memory arrays, each the size of a sector.

Because of the high-speed, highly parallel sector operations, the vanced microelectronic technology.
logic-in-memory computer points to a new direction for achieving A natural starting point in meeting the challenge is
orders of magnitude increase in computer performance. Moreover, the design of a memory system using microelectronic
since the computer is specifically organized for large-scale integra- components. Memory is inherently cellular by nature;
tion, the increased performance might be obtained for a compara- consequently, it is particularly well-adapted to realiza-
tively small dollar cost. tion in two-dimensional microelectronic arrays. The

Index Terms-Cache memories, computer architecture, logic-in- number of external connections required for a two-
memory, microelectronic memories, unconventional computer sys- dimensional memory array is a linear function of the
tems. array dimensions, whereas the number of elements in

I. INTRODUCTION ~the array is a quadratic function of the array dimen-
sions. In view of pin limitations of microelectronics,

As the microelectronics industry has developed from large-memory arrays have favorable ratios of complexity
integrated circuits into so-called medium-scale integra- to number of pins. It is also reasonable to attempt to
tion, and as the future promises to bring large-scale enhlance a microelectronic memory by including addi-

tional logic in the memory array to enable a certain
MIanuscript received October 22, 1968. This work was supported amounofpcesgtobpromdinhe eoy

at Stanford Research Institute by the Office of Naval Research, In- nt of prcssn tob efre ntemmr
formation Systems Branch, under Contract Nonr-4833 (00), Requisi- array, provided that the high complexity-to-pin ratio
tion NR048-206.cabessandIntimanrth"lg-nmmoy

The author is with Stanford Research Institute, Menlo Park, cnbsutie.Ithsm nr,he"oc--eoy
Calif. array can be made extremely powerful by virtue of its

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 22,2020 at 13:35:09 UTC from IEEE Xplore. Restrictions apply.

74 IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1970

ability to perform logical operations in memory and
the inherent potential for parallelism of operation.

It has been typical of the research in logic-in-memory
arrays that each type of array lhas been visualized as a
functional unit of a computer system. Most attention PROCESSOR CONTROL MEMORY
has been directed to the arrays themselves rather than
to the computer system in which such arrays are em-
bedded in order to gain a fundamental understanding
of the characteristics of cellular logic-in-memory arrays
and to establish the techniques for their design. One
functional behavior that the logic-in-memory array
could assume is that of an associative memory; several
other forms have been investigated by Kautz et al. Fig. 1. The structure of acache-organized computer.
[I]-[4], including logic-in-memory arrays for perform-
ing threshold logic processes, permutation switching,
error-correcting code implementation, and sorting. It is usually a magnetic drum or disk, and access times are
is the purpose of this note to focus attention on the 103 to 104 times greater than access time for the main
problem of embedding logic-in-memory arrays in a memory. Clever memory management techniques have
computer system. Specifically, we describe how a class been developed for bulk memories that allow typical
of logic-in-memory arrays can be used as high-speed computations to proceed at rates only two to ten times
buffer memories as an extension of the approach used in slower than they would in a large high-speed memory
the design of the IBM 360/85 [5]. That approach in [6], [8]. Since the memory management techniques
turn owes its design to the Ferranti Atlas virtual mem- have been well proven in practice, the designers of the
ory [6] and to Wilkes' slave memory [7]. 360/85 had a great deal of past experience to aid them

Section II is a brief review of the characteristics of in the design of their system.
the high-speed buffer memory as used in the iBM Memory management algorithms are all based on the
360/85. Section III then describes the characteristics empirical observation that memory accesses tend to be
of a computer in which the high-speed buffer is a cellular highly correlated. Regions of active memory can be
logic-in-memory array. Section IV considers extensions identified at particular points in time during the execu-
to the approach of Section III, with particular empha- tion of a program; these regions of activity tend to
sis on explicit (rather than implicit) control of the high- change relatively slowly compared to the basic speed of
speed buffer memory. program execution. The algorithms are designed so that

active areas of memory tend to reside in high-speed
II. A COMPUTER ORGANIZATION CONTAINING memory, and as the activity changes, newly active

A HIGH-SPEED BUFFER MEMORY regions of memory exchange places in high-speed mem-

In terms of today's economics, the cost per bit of ory with regions that have become dormant.
storage is much cheaper for magnetic technologies than In the 360/85, a high-speed microelectronic memory,
for microelectronic technologies. However, since micro- called the "cache," serves as a buffer between the main
electronic memories are orders-of-magnitude faster than memory and CPU. The organization is shown in Fig. 1.
magnetic memories, microelectronic memories are at- The cache can hold 16 sectors of memory, each sector
tractive for computer systems in spite of their rela- containing 1024 bytes. The cache is an 80-ns memory,
tively high cost. The economic picture is bound to while main memory operates anywhere between 750
change in the near future to make microelectronic and 8000 ns. All memory requests from the CPU are
memories even more attractive, although it is doubtful directed to the cache; as long as the requests can be
that the per-bit cost of microelectronic memories will granted by the cache, the computer system operates
drop below that of magnetic memories. Hence, it is unhindered by the relatively slow speed of the main
reasonable to use both types of memories within one memory. When a request is directed to a sector of mem-
computer system in order to attain the high performance ory that is not resident in the cache, that sector of
of microelectronics while deriving the cost benefit of memory is brought into the cache for manipulation by
magnetic devices. As an example of such a system, we the CPU.
consider here the IBM/ 360/85 computer which uses a To mechanize the operation of the cache, a 16-word
microelectronic buffer memory 64 to 256 times smaller associative memory (one word for each sector in the
than main memory as an interface between the central cache) identifies each sector in the cache by its address
processor and main memory. in main memory. When a memory request is issued, the
The coupling of memories described here is similar to address of the request is compared associatively with the

the coupling of a large rotating magnetic memory to a addresses of the sectors in the cache to determine if the
smaller and faster random-access memory so that the desired sector is in there. If a sector must be retrieved
computer system performs as if the entire memory were from main memory, the least recently used sector in
the size of the bulk memory, yet were comparable in the cache is replaced with the desired sector.
speed to the fast random-access memory. Bulk memory The interface between the cache and main memory is

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 22,2020 at 13:35:09 UTC from IEEE Xplore. Restrictions apply.

SHORT NOTES 75

arranged to expedite the transfer of data into the cache. of the cache and its control mechanism is to make main
Main memory is composed of independent memory memory appear to be endowed with all of the capabili-
modules, each module being capable of accessing ties of the cache as well as its performance.
16 contiguous bytes in a memory cycle. Memory ad- Let us consider a cache-organized computer system in
dresses are interlaced among groups of four modules so which each sector of the cache is an independent logic-
that contiguous regions of memory are divided into 16- in-memory array. We assume that data references cause
byte "words," and the words at successive addresses are sectors to be transferred from main memory into the
distributed cyclically among the modules. Data trans- cache if the sectors are not already there. Therefore, the
fers between main memory and the cache are done in 4- CPU and the controlling program can always expect to
word (64-byte) groups called "blocks," and 16 such find requested data in the cache, regardless of the loca-
transfers must be done to move an entire sector into the tion of the data when the request is issued. Conse-
cache. A block can be moved into the cache in approxi- quently, the CPU can issue instructions for manipula-
mately the time it takes for a main memory cycle. The tion of data by a logic-in-memory array and the manip-
four 16-byte words in a block are retrieved from four ulation can be carried out in the cache. In this organiza-
different memory modules by directing memory requests tion, main memory appears to a program as if every
to the modules at 80-ns intervals. Thus the transfer sector in main memory were an independent logic-in-
time required to move an entire sector into the cache is memory array.
on the order of 10 main memory cycles. The types of operations performed by a logic-in-
While the performance benefit of the cache has not memory cache are best described by example. Suppose

yet been reported for a real 360/85, it has been mea- that each sector of the cache is an associative memory.
sured through simulation. Liptay claims that, on the For associative processing, the instruction repertoire of
average, over 95 percent of the CPU memory requests the CPU might include the instructions described below.
were directed to data sectors that were already resident Search on Masked Equality: This instruction has two
in the cache for the mixture of representative programs registers, designated as operands, and a memory
that were simulated [5]. In terms of total performance, address. The first operand register is assumed to contain
the simulated 360/85 performs computations at 80 per- a pattern to be matched; the second operand is a mask
cent of the speed of a similar machine whose entire main to be used in the search. The address is treated as the
memory operates at the speed of the cache, yet the base address of a sector of memory. The execution of
cache is at most a few percent of the size of main mem- this instruction causes a search of the sector for a word
ory. The conclusion to be drawn here is that small that matches the pattern in those positions indicated
microelectronic memories can be embedded effectively by the mask. The first word found that matches the
in computer systems as cache memories. Moreover, as pattern replaces the pattern in the pattern register. All
long as the cost of microelectronic memories is greater words in the sector that match the pattern will have a
than the cost of magnetic memories, it is not reasonable tag bit set to 1.
to construct large microelectronic memories because the Search on Masked Threshold: This instruction is
performance of a large magnetic memory can be made identical to the masked-equality search, except that
almost equal to that of a large microelectronic memory the comparison need not be for exact equality but for
by using a cache in conjunction with the magnetic "greater than" or "greater than or equal." A convention
memory. must be established for dealing with negative numbers

to take into consideration the location of the sign bit
and the representation of the negative number. Other

The description of a cache in the previous section search commands can easily be formulated to do com-
points out that the apparent memory speed of a com- binations of arithmetic comparison, maximum and
puter system can be very close to the speed of the cache, minimum searches, pattern inclusion, and pattern
even though main memory is very much larger and very covering.
much slower than the cache. The operation of the cache Copy Tag Bit: The parameters for this instruction
is invisible to programs, in the sense that memory re- are an indexable operand and a sector memory address.
quests by programs are always executed as if the request The operand is interpreted as a bit position; the execu-
were directed to main memory. Actually, a majority of tion of the instruction causes tethag bits in each word
the memory requests are executed in the cache. The of the designated sector to be copied from their resident
effect of the cache on the execution of the program is to position to the indicated bit position. This operation
make main memory appear to be endowed with the allows tag bits to be stored after they are set by search
performanlce characteristics of the cache. operations.

In the 360/85, the cache has the same functional Tag Bit AND: This instruction requires two index-
characteristics as main memory, although it has dif- able operands and a sector memory address as param-
ferent performance characteristics. A moment's refiec- eters. The twro operands inldicate the two bit positions
tion shows that the cache need not be limited to stan- in each word of the designated sector that are to be
dard memory functions but can be capable of perform- ANDed together. The result of the AND operation replaces
ing a wide variety of logic-in-memory operations that the first operand bit. Other similar instructions are OR,
are no0t possible to perform in main memory. The effect EXCLUSIVE OR, and NOT.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 22,2020 at 13:35:09 UTC from IEEE Xplore. Restrictions apply.

76 IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1970

Sector ADD: This instruction requires two sector
memory addresses. Corresponding words of the two
sectors are added together and the result replaces wordsI
in the first sector. Similar sector commands can be in-
cluded to perform the sector multiply operation (inner
product) and the sector copy operation. ADDER

Sector Scale: This instruction takes one operand and
a sector address. The execution of this instruction causes

r . , . , ~~~~~~~~~~~~~SECTOR0 SECTOR 1 SECTOR N
each word in the specified sector to be multiplied by the
operand. A "sector bias" operation is similar except Fig. 2. A word slice of a cache logic-in-memory array
that the operand is added to each word in the sector. with a "sector add" capability.
Two important aspects of the instruction repertoire

given above bear further discussion. The first has to do
with the utility of the instructions; the second concerns to three times as complex as that required for sector
the cost of their implementation. addition alone.
With respect to the utility of the instructions, it It is probably not necessary, or even desirable, to

should be noted that the instructions given here are perform sector arithmetic operations in floating-point
meant to be illustrative of the kinds of instructions that formats. The increased complexity of the floating-point
could be introduced into a computer system with a units, as well as problems in the relative significance of
logic-in-memory cache. The instructions have been results, lead one to expect that fixed-point forma ts
selected because they appear to be useful, i.e., they per- should be used, and that "search for maximum" and
form complex operations that are common to a variety "sector scale" instructions be used to scale data to
of computer programs. The actual utility of these ensure maximum significance of results. The main dif-
instructions, or of any other similar set of instructions, ficulty to be encountered in implementing the instruc-
is a difficult quantity to measure, and is actually a tions described in this section (or similar instructions)
problem for future research. We discuss this point will be in determining if the cost of the implementation
further in Section IV. is balanced by performance improvement. Clearly, if
The cost of implementation of the instructions de- implementation cost drops sufficiently, the implementa-

pends very much on the cost and complexity of logic- tion will easily be justified.
in-memory arrays. Masked-equality searches require a To summarize this section, we have postulated that a
few gates per memory bit in an array and are reasonable cache can be implemented as a collection of logic-in-
to implement today. Examples of such arrays have been memory arrays. The effect of such an implementation is
exhibited in numerous papers [9]-[11]. to make an ordinary magnetic memory appear to a
The "sector add" command requires an adder for program to be a collection of independent sectors, each

each word in a sector. However, only one bank of adders of which is endowed with all of the capabilities and the
is necessary to serve all sectors in a cache if the adders performance of the logic-in-memory arrays in the cache.
are not embedded directly in the sector arrays. Fig. 2 In this organization, programs do not issue commands
shows how this might be done. The figure shows a for controlling the cache, but rather issue commands
"word slice" from a cache with a "sector add" capability. for manipulating data in main memory. A mechanism
The two-bus system shown in the figure connects the that is independent of the programs is responsible for
ith word from any sector to the ith adder input, and the transferring requested data to the cache as required.
adder output to the ith word of any sector. To perform In the next section we will consider the effects of
the "sector add" operation, the first operand is placed giving explicit control of the cache to programs.
on the cache output bus and read into register R.
The second operand is then placed on the output bus IV. LOGICINMEMORY CACHES OPERATING
and gated through the adder, where it is added to the UNDER PROGRAM CONTROL
contents of R. The adder output is placed on the cache One principal attribute of the cache as described in
input bus and is gated into the appropriate sector. (It Section II is that the cache is completely invisible to
may be necessary to place a temporary register on the programs. There are several advantages in operating a
adder output to ensure proper timing.) computer system with this assumption; the mo)st

Since Fig. 2 shows only a "word slice," one must important is that the system can make effective use of
imagine the connection in the figure repeated for every the cache wvithout any explicit guidance from prograrns.
word in the cache. Clearly, this calls for a good deal However, in some circumstances, programas can provide
more complexity than is found in today's computers; information that will contribute to even greater effec-
however, it is reasonable for the future if the cost of tiveness to the use of the cache. Among the control
microelectronics diminishes as projections promise. commands that might be issued by a program are those
While still greater complexity is required to implement that help the computer system anticipate future re-
the "sector multiply" command, even this complexity is quests for data. Data arrays and program segments
realistic. M/ultiplication can be done as a sequence might be identified as "sequential" to cue the computer
of shifts and adds; the circuitry would possibly be two to remove sectors containing these items from the cache

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 22,2020 at 13:35:09 UTC from IEEE Xplore. Restrictions apply.

SHORT NOTES 77

immediately upon access to the last item in the sector. in part, data from n times as many words as could be
Directives might be issued that establish priorities for obtained without the bit-slice mode. M'ass arithmetic
sectors, that "hold" sectors in the cache (if space is can be performed by obtaining successive bit slices and
available), and that "release" sectors when they are noo doing logical operations, by sector, on the data in the
longer needed. cache. This allows us to perform mXn simultaneous

Another interesting type of cache control is the con- additions, for example, in a number of operations that
trol that instructs the computer system how to load the depend linearly upon the number of bits in an operand;
cache. Heretofore we have assumed that sectors in the the only logic required is AND, OR, EXCLISIVE OR, and
cache correspond to sectors in main memory; however, NOT on corresponding bits of sectors in the cache. Simi-
this is not strictly necessary. Matrices can be allocated larly, many associative operations can be performed bit-
to main memory so that either rows or columns of data sequentially as on many as mXn words of data at a
can be fetched to the cache. The technique is to skew the time. A number of examples of algorithms for a bit-
matrix in memory so that both rows and columns of data slice processing mode are given in [15].
are interlaced among the memory modules as is done in It is possible to obtain greater parallelism if fewer
the ILLIAC IV [12]. Then a row of data can be fetched than m Xn words are to be manipulated. The cache can
in the usual way by accessing data at addresses S, S+1t, be loaded from memory in bit-slice mode so that it
S+2, etc., or a column of data can be accessed contains a slice of two or more bits from each word,
by fetching data from the address S, S+A, S+2l, instead of a single bit from each word. The number of
S+3v, ,where A 1 mod n, and n is the number of different words that are accessed during a load of the
memory modules in the address interlacing pattern. In cache is inversely proportional to the number of bits per
conventional computers, rows and columns of matrices word that are placed in the cache. The best bit-slice
usually cannot be manipulated with equal ease when arrangement to use depends on the number of words to
there is a potential for parallelism. In the computer be manipulated and on the type of manipulation.
organization outlined in the previous section, the rows There are many ways in which the various cache
of data can be treated in a highly parallel fashion, but controls can be implemented in a computer system. De-
columns of data essentially must be treated sequentially. tailed functional behavior of the controls can be formu-
With the addressing control mentioned above, columns lated from the rough description above to help guide the
and rows of data can be treated equally well in a parallel implementation. The descriptions included here are
fashion. In fact, the operation of taking a matrix trans- sufficient for the purposes of this paper to illustrate the
pose in an NXN matrix can be done in N sector loads control and data manipulation processes in the logic-
and N sector stores if there are at least N words in a in-memory cache-organized computer.
sector. Most implementations of the Gauss-Jordan
reduction for matrix inversion require a facility for inter-
changing pairs of rows and pairs of columns. The Several facets of the cache-organized computer lend
addressing control postulated here gives just that themselves naturally to a logic-in-memory implementa-
facility. tion. It should be clear from our discussion that the
Thus far we have considered the use of a cache in resulting computer is very different from the conven-

conjunction with a conventional magnetic memory. It tional von Neumann organization, and is also remark-
is possible that the main memory might be unconven- ably different from other unconventional computers that
tional in some way and thereby lend even greater power have been proposed to perform processes that are well
to the computer system. Consider, for example, the suited to the logic-in-memory computer. For example,
effect of a new access mode in main memory. The nexv compare the logic-in-memory computer with associative
access mode allows a bit slice of data to be accessed, one computers and Solomon-like computers.
bit from each word in a block of words, instead of all It is also interesting to note that the logic-in-memory
bits from one word. The number of bits accessed by any computer is general-purpose by nature, and can be justi-
single module in bit-slice mode is the same as the num- fied as an economical general-purpose computer, pro-
ber accessed in word mode. The bit-slice mode of access vided that the cost of computational facilities in the
h-as been described in the context of a "horizontal- cache remains small. Very much depends on the ad-
vertical" computer [13], and it appears to be economi- vancement of microelectronics technology, and on the
cally feasible to modify a standard 22 D memory to development of algorithms that make good use of the
support this mode of access [14]. functional power available in a logic-in-memory com-
With the bit-slice mode of access, a very large number puter.

Of different words can be accessed simultaneously, and In Section III wTe raised the problem of evaluating the
data from these words can be placed in a single sector utility of a repertoire of operations. In order to evaluate
of the cache. For example, let a sector contain m words, the operations described in this note, or any other set of
each with n bits. Now assume that wve direct accesses to operations, one must riot only determine where they
main memory modules in bit-slice mode, and control the might be used in existing programus, but must also pro-
accesses so that a bit slice, say the first bit, of mXn ject how new programs and algorithms could make use
different words is placed in a sector of the cache. This of the new instructions to perform processes that might
extremely powerful feature allows us to manipulate, otherwise be done differently. Even more important is

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 22,2020 at 13:35:09 UTC from IEEE Xplore. Restrictions apply.

78 IEEE TRANSACTIONS ON COMPUTERS, JANUARY 1970

the fundamental problem of making the power of the REFERENCES
instructions available to the user through high-level
langruages modeled after ALGOL or PL/t Presently,h igh- [1] K. N. Levitt and W. H. Kautz, "Cellular arrays for the parallellanguages m edgimplementation of binary error-correcting codes," IEEE Trans.
level languages are ill-matched to the computers on Information Theory, vol. IT-15., pp. 597-607, September 1969.
which they are executed because the semantics of the [21 W. H. Kautz, K. N. Levitt, and A. Waksman, "Cellular inter-connection arrays," IEEE Trans. Electronic Computers, vol. EC-
language include processes that are inefficient to per- 17, pp. 443-451, May 1968.
form on computers, while the languages do not include [3] W. H. Kautz, "A cellular threshold array," IEEE Trans. Elec-tronic Computers (Short Notes), vol. EC-16, pp. 680-682, Octo-
semantics for many machine primitives such as the ber 1967.
"execute" command, linked-list search instructions, and [4]--, "Cellular-logic-in-memory arrays," IEEE Trans. Compru-

translation-table-oriented instruction. ters, vol. C-18, pp. 719-727, August 1969.translation-table-oriented instruction. [5] J. S. Liptay, "Structural aspects of the System/360 Model 85,
Since there is currently a trend to write computer Part II: The cache," IBM Sys. J., vol. 7, pp. 15-21, 1968. See

also, C. J. Conti, D. H. Gibson, and S. H. Pitkowsky, "Struc-
programs in high-level languages, the incorporation of tural aspects of the System/360 Model 85, Part I: General or-
powerful instructions in machine repertoires has largely ganization," same issue, pp. 2-14.powerful intutosnmciereeti[6] J. Fotheringham, "Dynamic storage allocation in the ATLAS
failed to yield material advantages. The target language computer, including use of a backing store, " Commun. A CM, vol.
of most language translators is normally a subset of the 4, pp. 435-436, October 1961.[7] M. V. Wilkes, "Slave memories and dynamic storage allocation,"
instruction repertoire that is available to the user, and IEEE Trans. Electronic Computers (Short Notes), vol. EC-14,
the instructions that are never used are precisely those pp. 270-271, April 1965.[8] J. Cohen, "A use7of fast and slow memories in list-processing
"powerful" instructions whose use cannot be described languages," Comm`un. ACM, vol. 10, pp. 82-86, February 1967.
in the high-level language. If the logic-in-memory [9] C. C. Yang and S. S. Yau, "A cutpoint cellular associative memi-ory," IEEE Trans. Electronic Computers, vol. EC-15, pp. 522-
computer--and for that matter, any computer orga- 529, August 1966.
nization with an unconventional instruction repertoire [10] D. A. Savitt, H. H. Love, Jr., and R. E. Troop, "ASP: a new

concept in language and machine organization," 1967 Sprinxg
-is to become a reality, then there must be a high-level Joint Computer Conf., AFIPS Proc., vol. 30. Washington,
language for that computer that can describe processes D. C.: Thompson, 1967, pp. 87-102.l11] E. S. Lee, "Semiconductor circuits in associative memories,"
in terms of the functional capabilities of the computer. 1963 Proc. Pacific Computer Conf., pp. 96-108, March 1963.
This calls for a highly integrated parallel development [12] D. L. Slotnik, "Unconventional systems," 1967 Spring Joint

Computer Conf., A FIPS Proc. Washington, D. C.: Thompson,
of language and processor. In spite of our present sophis- 1967, pp. 477-481.
tication in the design of computers and computer lan- [13] W. Shooman, "Parallel computing with vertical data," 1960

Fall Joint Computer Conf., A FIPS Proc., vol. 18. Washington,
guages, we have barely scratched the surface in the D. C.: Spartan, 1960.
problem of mating language with computer for con- [14] H. S. Stone, "Associative processing for general purpose com-

puters through the use of modified memories," 1968 Fall Joint
ventional computers, to say nothing of the problems to Computer Conf., AFIPS Proc., vol. 33, pt. 2. Washington,
be encountered in mating languages with unconventional D.C.: Thompson, 1968, pp. 949-955.

[15] A. D. Falkoff, "Algorithms for parallel-search memories," Com-
computers. mun. ACM, vol. 9, pp. 488-511, October 1962.

Correspondence
A Modified Matrix Algorithm for Determining the networks. The basic idea of this algorithm appeared in a previotus
Complete Connection Matrix of a Switching Network paper by the author [3].

Let Tii be a matrix operator defined thus: Tj(A) = B where
Abstract-An efficient matrix algorithm is described which en- B = {Ib,pa},,. ...,p with

ables one to determine the complete connection matrix in only two
2

steps. bij = {A2}ij = aiiV V aikaIaj
k-i

Index Terms-Boolean connection matrix, combinational switch- k
ing network, product of operators. and ba5 =7aa for all (av, 3) < (i, j).

Let us prove that (Tt1(A))P'=~Ai'. Obviously ACTt(A)CA',
Let at be a combinational switching circuit with p nodes which is hence AP-iC(Tij(A))P-iQ(Ai)P-l =AP-', and this implies

described by a Boolean matrix A-{aa}al,..i..... with aaa==1, (Ti1(A))P-'=AP-'. Let UJbe aproduct of T, for all pairs (i,j), where
called a primitive connection matrix. i7Hj and U1-lpl_ . Tn2. We define U14(A) = U(Un1A)

Note that in a primitive connection matrix, entry aaxn (for ci#j3) By recurrence we obtain (U1(A))1-'=AP-' and (U(A))P-'=A-'.
is limited to a single bilateral element or a group of such elements in For example, (U1(A))X-'= (T1p(T1p_1 * * * Tn2(A)))l'' * *=
parallel. (T12(A))p-1 =Ap-'.

It is shown [i], [2] that the complete connection matrix of the Theorem 1: { U18(A) }ia: {An+i}i,, for all CY=2, * * , p and if
network is equal to the matrix Ar=A r+1 where r<.p-1. U1T (A) = Uir+i(A), then the following relations hold: { Uil (A) }lia

In the following we shall consider a more efficient matrix algo- = {APl}ia for cx =2, * * , pt.
rithim for determining the complete connection matrices of switching Proof: If { U, (A) },la { An+I la for cx =2, * * * p, then by means

Manuscript received June 7, 1968; reviied February 17, 1969. of induction we obtain

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on September 22,2020 at 13:35:09 UTC from IEEE Xplore. Restrictions apply.

