
The Alpha 21264 microprocessor

François Costa - Seminar in computer architecture
R.E Kessler, E.J. McLellan, D.A. Webb
Compaq Computer Corporation, Shrewsbury, MA, USA

1

Executive summary

Goal : Design a processor that is able to run intensives applications like database, real-time

visual computing, data mining, medical imaging

Problem :

1. Current processor execute instructions sequentialy. Hence limited parallelism

2. With pipelined design branches are problematic

Idea :

1. Reorder instructions

2. Predict when data is not available

2

Overview of the Pipeline

3

Overview of the Pipeline

Stage 1

Fetch engine

4

Overview of the Pipeline

Stage 2

Split int and float operations

5

Overview of the Pipeline

Stage 3

Rename engine

6

Overview of the Pipeline

Stage 4

Issue queue

7

Overview of the Pipeline

Stage 5

Register read

8

Overview of the Pipeline

Stage 6

Execute

9

Overview of the Pipeline

Stage 7

Memory

10

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Speculative loads

• Cache hit speculation

11

Out of order execution overview

Out of order execution - Reorder instructions to increase parallelism

ADD R1  R1, R2

ADD R5  R6, R7

ADD R3  R1, R4

ADD R1  R1, R2

ADD R3  R1, R4

ADD R5  R6, R7

After reordering

12

Mechanism - Out of order execution overview

Instruction in
Register
renaming

Out of
order issue

queue

Execution
engine

Instruction
retire

Instruction
out

13

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

14

Mechanism - Register Renaming

● Eliminates write after write and write after read dependencies but keep read

after write which is necessary

● 31 Float / Int visible registers and 41 Float/Int transparent registers

● Programmer only see when the instruction retires (invisible to the user)

● All next pipeline stages operate on the hidden register

● Register mapper store architectural state to restore in case of miss prediction

15

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

16

Mechanism - out of order issue queue

● Two lists of separate queue floating point and integer instructions

● Can issue 4 int instructions per cycle and 2 float instructions per cycle

● Select oldest ready operation in order to execute less speculative instructions

● A scoreboard maintains the status of the register

● Queue logic selects each cycle available instructions

17

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

18

Mechanism - Execution engine

There are 6 execution engines

Use a clustered design

(-) Simpler but with a cycle overhead

(+) Critical path computation on the same cluster

(+) New motion video instructions (SIMD)

19

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

20

Mechanism - Instruction retire and exception handling

Mechanism :

1. Instructions are issued out of order but are retired in order

2. Each executed instruction are mapped in a in flight window (like for the TCP protocol)

3. The processor can retire when all instructions got executed before and no exception are

generated ⇒ Non-speculative retirement

Characteristics :

1. 80 in-flight instructions + 32 in-flight load + 32 in-flight stores

2. Minimum latency Integer 4 Memory 7 Floating point 8 Branch / subroutine 7

3. Can retire up to 11 instructions per cycle

21

Sliding window protocol

22

X

X X

X X X

X X X

X X X X

X X X X X

X X X X X X

X X X X X X X

X X X X X X X

X X X X X X X X

X X X X X X X X

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

23

Speculative execution overview

24

One miss prediction costs 7 cycles which is a lot !

Execute i1

Execute i2

Execute i3

Should I execute i4 ?

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

25

Mechanism - Branch prediction
algorithm

• Pattern style prediction

• Arbiter between local predictor and

global predictor

Pattern style = Keep track for each branch

history and assign taken or not taken for each

branch history

26

Local Global

In this case, the local /

global predictor is

better

Pattern style branch predictor

27

T T T T T T T T T T

T T N T T N T N T N

N T N T N T N T N T

T N T N T N T N T N

N N N N N T T T T T

N N N N N N N N N N

Predict not taken

Predict taken

Predict taken

Predict not taken

Predict not taken

Predict taken

Example where a local predictor is good

28

Will be taken if last time not taken

Example where a global predictor is good

29

Assume this branch is taken

Assume this branch is taken

What about this branch ?

Example where an arbiter is important

30

Global predictor

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

31

Mechanism - Line and way prediction

The Alpha 21264 has a different cache architecture than the previous version of the

processor (Alpha 21164)

The cache is a 64KB two-way set associative cache instead of 8 KB direct mapped

instruction cache

Consequence : Better hit rates but with some bottleneck

Idea :Predict the next line of the cache and check in parallel

Most miss predictions costs 1 cycle but accuracy is between 85% and 100%

32

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

33

Fetch engine overview

34

Fetch engine overview

Fetch 4 instructions each cycle Processor fetch using speculative mechanism

1. Branch prediction (what is the next

instruction to fetch)

2. Line prediction (Which line contains the next

instruction)

Which one should we choose ?

35

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Speculative load

• Cache hit speculation

36

Mechanism - Address and control structure

• Load come in the engine in order and instructions retire in order

• Loads and stores can be reordered

• Problem : An older store after a younger load can appear ➔ need a

squash mechanism (more details in next slide)

• Speculative bypass of older store into younger load

• Eight entry miss address file tracks and forward miss to the bus interface

unit

37

Mechanism - load store

Goal : Load as early as possible

Problem : Read after Write dependencies are hard to handle

Solution : Train the mechanism to know which store can predicted or reordered

38

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

39

Mechanism – speculative cache hit mechanism

● Speculation mechanism ⇒ three cycle load integer latency in the best case

● Assume that the data is already in the cache although it’s not always case

Result 1 : Correct ⇒ continue work normal

Result 2 : Do a “mini restart” ⇒ two cycles latency penalty

The processor chooses to predict or not to predict depending on the application

40

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

41

Mechanism - prefetching

Goal : Allow the programmer to take full benefit of the cache management and high

bandwidth capacities. Very good for benchmarks with huge arrays.

Capacity : Prefetch 64-byte block to overlap cache miss time

How : Implemented via ISA instructions

42

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

43

Mechanism - Internal memory system

● Execute up to two store / loads per cycle

● 32 in-flight load and store + 8 in-flight cache misses

● Use a two set associative 64 KB data cache which gives much better results

than the previous one

⇒ Loads and stores can really exploit the out of order paradigm

44

Mechanism / Important features

Other features

• Prefetching

• Internal memory system

• Bus interface unit

Out of order execution

• Overview

• Register renaming

• Out of order issue queue

• Execution engine

• Instruction retire and

exception handling

Speculative execution

• Overview

• Branch prediction

algorithm

• Line and way prediction

• Fetch engine

• Speculative load

• Cache hit speculation

45

Mechanism - Bus interface unit

● It’s the link between the internal memory system and the L2 cache and

the rest of the system

● It takes MAF files as input and forward victim data (L3 cache) or data

from main memory to the L2 or reverse

● Maintains cache coherent using invalidation cache coherence protocol

● Features : 12 cycles latency for L2 caches access and has a bandwidth

of 1.3 GB / S

46

Key Results

“With more functional units and these dynamic execution techniques, the

processor is 50% to 200% faster than its 21164 predecessor for many

applications, even though both generations can fetch at most four

instructions per cycle”

47

Summary

1. Use out of order execution to increase the amount of parallelism

2. Use a “modern” branch predictor

3. Use a lot of new predictions techniques like branch prediction, line prediction,

prefetching, cache hit prediction

4. Use a more efficient cache

5. High throughput and low latency

48

Strengths

1. Clearly faster execution time

2. Can exploit implicit parallelism

3. Can run intensive workload like real-time visual computing app, database, etc..

“A unique combination of high clock speed and advanced microarchitectural techniques, including

many forms of out-of-order and speculative execution, provide exceptional core computational

performance in the 21264”

“Database, real-time visual computing, data mining, medical imaging, scientific/technical, and many

other applications can utilize the outstanding performance available with the 21264.”

49

Weaknesses

1. Space & Cost overhead

2. Marketing paper

3. Could have bad performance on very special workloads due to the number of

predictions

4. Use a lot of new techniques. They could have some issues that are unknown

(spectre attack)

50

Takeaways

Out of order execution and Branch prediction can speedup a lot of applications. We

clearly see that the performance of this processor is better thant the Alpha 21164

processor even if they both fetch 4 instructions per cycle

Indipendent to the programmer. Fully invisible at software level

High bandwidth and low latency data access

51

Open discussion

We have a lot of speculative execution. What can we do to

improve the predicted rate ?

52

Open discussion

What could be done in the compiler in order to help the

processor ?

53

Open discussion

What about more collaboration between software and

hardware ?

54

Open discussion

Prefetching is implemented at ISA level. How should a

programmer deal with it ?

55

Open discussion

Do you think that a programmer should care about instruction

reordering or not ?

56

