The Alpha 21264 microprocessor

Francois Costa - Seminar in computer architecture
R.E Kessler, E.J. McLellan, D.A. Webb
Compaqg Computer Corporation, Shrewsbury, MA, USA

Kxecutive summary

Goal : Design a processor that is able to run intensives applications like database, real-time
visual computing, data mining, medical imaging

Problem :

1. Current processor execute instructions sequentialy. Hence limited parallelism
2. With pipelined design branches are problematic

Idea :

1. Reorder instructions
2. Predict when data is not available

Overview of the Pipeline

Fetch Slot Rename Issue Register read Execute Memory
0 % 2 3 s 4 5 6
Integer
Integer Integer s~ oyecution | Y
Branch _ Integer issue | | register " Addr
predictor —=| register queue [file | © [integer | (™0
rename (20 (80) ™™ execution | :
entries) |
= Data L:‘:EI'
nteger
Integer |- exerilgtion cache - cache
register ((?:;(“bvy;e)s, and system
file -« | Integer Ad‘!_[Y interface
(80) execution | !
Line/set ‘ o
prediction v =
Instru;:.'tion Floating- Flg?)::.'r';g- . |Floating-| _ Floating-point
640?(% e »| point issue _ | point [T multiply execution
. ytes, register queue | | register
wo-way) rename (15) file | Floating-point
(72) add execution

*

Overview of the Pipeline

Stage 1
Fetch engine

(7]
E—
c
=
-
‘o
o
2
o)
[
0
=
(1 59

Fetch ot Rename Issue Register read Execute Memory
0 1 2 3 4 5 6
Integer
Integer Integer (w—a exocution
Branch Integer issue register

predictor | register —»| queue file Tnteger | Addr
rename (20 (80) [execution
entries)
Level-
Data

Integer cache wo

Integer "‘% execution le—{ cache
register (64 Kbytes, and system

fle | integer | Addr| Wovay) interface
(80) execution

3 T
1]

Line/set
prediction

Instru bh on instruction B Floating- o Floating- Floating-point
s:f(%"e point issue point | multiply execution
cache s 0, [e [2
) rename (15) file | Floating-point
11 72) add execttion

f

Overview of the Pipeline

Bus ;
“nteltlface - L]teger Stage 2

umt l|

Split int and float operations

(72}
iy
c—
c
=
-
= ueue
(o) M w —
2. [Memory £ S Integer
o | ~controller queue
.E Fetch Slot Rename Issue Register read Execute Memory
- 0o 0 1 2 3 4 5 6
—
| QO = | O
- 00 - Integer
T Integer leger execution
. S Integer issue register -
i T o | register | queue file Integer o
el rename (20 (80) execution
| (/)] entries) o
: c Data Avel-
: - Integer Jasgr cacne | | b
register il (04 Kbyles, and system
i - 1)] (?;'3) el:::ﬁgﬂ Addr| two-way) inteitace
(3
= 4]
i I n St ru bh on Floating- F':z::}’ Floating- Floating-point
2 pont [1 EON L ol point [*T™ multiply execution
: a register R register
- rename (15) file Floating-point
’ (72) add execution

Overview of the Pipeline

Stage 3
Rename engine

(72}
—
{ =
=
prey
£
(o}
9.
(o)}
o
=
)
L

Fetch Siot || Rename Issue Register read Bz e
o 0 1 2 3 4
. —
-
O Integer
3 o Integer Integer | excuion
A Branch Integer issue register
) predictor > register 1> queue file Integer
o rename (20 (80) ™™ execution
(/)] entries)
[- Data Lm"
i nteger cache
Integer [oyecution (64 Kbytes, (<> __cache
register Woway) and system
file | - Integer interface
= (80) execution
! Line/set [}
prediction i
I n Stl‘u bh on '"s"‘;g""" I=: Floating- F'gf,:',;g' Floating- Floating-point
540‘:(1;9 point NI 208 point | multiply execution
cache e o [e [2
) rename (15) file |w Floating-point
l I f (72) add execution
i1 -

(7]
E—
c
=
-
‘o
o
2
o)
[
0
=
(1 59

ueue
(P —
_Memory [£
| controller

Instruc;tio
fetch

i
Instruttion

cacPF

Overview of the Pipeline

S | integer

queue

Stage 4
Issue queue

Fetch Siot Rename Issue Register read Erecute Merory
o 2 3 4
moger || [megr +-f EE,
Branch Integer issue register
i ister | file
predictor > register [queue i Integer
rename (20 (80) [execution
entries)
Level-
Data
Integer wo
Integer |- oyection Sache cache
Ly register (64 Kbytes, ind tem
o two-way) and syste
e | _: Integer interface
(80) execution
Line/set [}
prediction i
'"s"‘;g""" I=: Floating- F'gf,:',;g' Floating- | Floating-point
64 Koytes — point | B Slle | point multiply execution
g register register
two-way) rename q2.|1e5u)e file

- Floating-point
add execution

f

(72}
—
{ =
=
prey
£
(o}
9.
(o)}
o
=
)
L

ueue

| controller

Instruc;tio
fetch

i
Instruttion

cacPF

queue

Overview of the Pipeline

Stage 5
Register read

[Memory £ S Integer

Fetch Slot Rename Issue Register read Evecute Memry
) 2 3 4
Integer
Branch Integer issue register .
predictor > register |—»| queue (= fle | | Tnteger d
rename (80) execution
entries)
integer cache
regaer | |t e = cache
- register ol and system
e 0-way) i)
< Integer interface
(80) execution
Linelset
prediction
struction [Floating- Floaino” Floating- | Floating-point
64 Koy pont | Role | point multiply execution
oo = register queue register
y) rename (15) file | Floating-point
(72) add execution

Overview of the Pipeline

Bus —
@ { | = teger = _ Stage 6
= nterface co
55 E
5 unit \ Sy xecute
- 5%
= D 5
()]M D = ‘.d_J' —_
Qo emory |z £ nteger £ <
o | “controller ueue
c q
= S " Fe::h Slot Renzame Issaue Regis(:rread Execute Memdry
. 5 6
0 = |+ &
- 100 Integer
(T8 = Integer Integer <> eyqostion
- QO Branch Integer issue register
o predictor —»{ register | queue file Tnteger | Addr
o rename (20 (80) [execution
entries)
Integer |4k cyqcition oS o [cache
- register (64 Kigtes, and system
- ‘ fie | nteger | Addr| two-ay) interiace
i (80) execution
pretieten 1
Instruttion Insucion|— . Floting i
Siruction I Flgzmg- point Floating-| J __‘ Floating-point
ca chb 64 Kbytes,—] B I rep;lr:(multiply execution
i two-way) rename sy e | *‘ Floating-point
f (72) add execution
1

Overview of the Pipeline

Stage 7
Memory

Integer | £

(7]
e
c
=
i
£
(o}
9.
()]
[
=
)
(1 59

- . Fetch St Rename Issue Register read Execute Memory
) 2 3 4 5 6
| Integer
: eger | [mger o] Jger l

fetch

Instructio

Data Level-

Integer cache bd
[e .
o (= e || | e], 25
file [Addr | two-way) “iertace
le | [integer | 4Addr) interace
80) execution

s 1 L] en(mes)
: L] | _J

Integer register
MSmory co.rollr , el et fie e | |9
&0 - rename 20 1: 80) [+ execution

Line/set [}
prediction i
Instru bh on instruction B Floating- o Floating- Floatinf-point
Mcf(%";e N point | o Sle Lw| point [multiply gkecution
wovay)| =] register queue register
rename (15) file |a— Floatinfi-point
f (72) add exgoution

Mechanism / Important features

Out of order execution

* Overview

* Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
* Speculative loads
» Cache hit speculation

11

Out of order execution overview

Out of order execution - Reorder instructions to increase parallelism

ADD R1 € R1, R2 ADD R1 € R1, R2
ADD R3 € R1, R4 After reordering ADD R5 € R6, R7
ADD R5 € R6, R7 ADD R3 € R1, R4

12

Mechanism - Out of order execution overview

Fetch St Rename Issue Register read Execute Memory
0 1 2 3 4 6

. Integer
R Register Out of - g ||| ||t el | 1
Instruction in renaming order issue o [T 3
queue g iteger [(02T siche e catne
register (64 Kbytes, and system

file integer | Addr two-way) interface
(80) execution

L =
.y

|

i

i

Line/set
prediction
Insm;ﬁﬁon = Floating- Fllo):mg- Floating- Floating-point
e ;es pont | | po »| point multiply execution
Mo_way)-] register queue register
W || E e

t

s : nteger |3 :
{magper

[Memory [S integer Execution Instruction Instruction

controller queue

“1r-m Data and control buses engine retire out

o J2E 2

==

0
—
<
3
=
£
[=}
Q.
O
o]
(=
=
©
w

Atlo
h m—

Instruc
fetcl

(7]
Instrubtion
cach

Mechanism / Important features

Out of order execution

+ Overview

» Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

14

Mechanism - Register Renaming

Eliminates write after write and write after read dependencies but keep read
after write which is necessary

31 Float / Int visible registers and 41 Float/Int transparent registers
Programmer only see when the instruction retires (invisible to the user)

All next pipeline stages operate on the hidden register

Register mapper store architectural state to restore in case of miss prediction

15

Mechanism / Important features

Out of order execution

+ Overview

* Register renaming

« Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

16

Mechanism - out of order issue queue

Two lists of separate queue floating point and integer instructions

Can issue 4 int instructions per cycle and 2 float instructions per cycle
Select oldest ready operation in order to execute less speculative instructions
A scoreboard maintains the status of the register

Queue logic selects each cycle available instructions

17

Mechanism / Important features

Out of order execution

* Overview

* Register renaming

» Out of order issue queue

+ Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

18

Mechanism - Execution engine

There are 6 execution engines

Use a clustered design
(-) Simpler but with a cycle overhead
(+4) Critical path computation on the same cluster

(-+) New motion video instructions (SIMD)

Integer
Floating point Cluster 1 9 Cluster 0
Floating- MVI/PLZ Integer multiply
point Shifbranch | +1 | Shift/branch
multipl
masd Addlogic Addllogic
72 registers 80 registers 80 registers
Floating-point
add Add/logic Addllogic
Floating-point +1
divide -
Floating-point
SQRT Load/store Load/store

MVI Motion video instructions
PLZ Integer population count
and leading/trailing
zero count unit
SQRT Square-root functional unit

19

Mechanism / Important features

Out of order execution

+ Overview

* Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

20

Mechanism - Instruction retire and exception handling

DO

[\

Mechanism :

. Instructions are issued out of order but are retired in order

Each executed instruction are mapped in a in flight window (like for the TCP protocol)

. The processor can retire when all instructions got executed before and no exception are

generated = Non-speculative retirement

Characteristics :

. 80 in-flight instructions 4 32 in-flight load + 32 in-flight stores

Minimum latency Integer 4 Memory 7 Floating point 8 Branch / subroutine 7

. Can retire up to 11 instructions per cycle

21

Sliding window protocol

Mechanism / Important features

Out of order execution

+ Overview

* Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

23

Speculative execution overview

string username = "Hello"; e Execute i1
passwor‘d = 12345; — EXecute i2
if(db[username] == password) Ko BEN=CEUCHE
do Somethlng ¢ Should | execute i4 ?

One miss prediction costs 7 cycles which is a lot !

24

Mechanism / Important features

Out of order execution

+ Overview

* Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
* Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

25

Mechanism - Branch prediction

algorithm

® Pattern style prediction
® Arbiter between local predictor and
global predictor

Pattern style = Keep track for each branch
history and assign taken or not taken for each
branch history

In this case, the local /
global predictor is
better

r

| ocal

26

Pattern style branch predictor

T |T |T |T |T Predict taken
N |[T [N |T |N Predict taken
T I[N |T [N [T Predict not taken
N |T [N |T [N Predict taken
T |T [T |T (T Predict not taken
N [N [N |[N [N Predict not taken

27

Kxample where a local predictor is good

while (CONDITION) {
1++;
l‘F(l % 2 == 9) { Will be taken if last time not taken

print(“Even");

28

Kxample where a global predictor is good

while(CONDITION) {
i = random();
iF(i % 4 == 0) {
print("You win 4$"); Assume this branch is taken

}
if(i % 3 == 0) {

print("You win 3%$"); Assume this branch is taken

}
if(i % 12 == 0) {

print("You win 123%"); What about this branch ?

29

Kxample where an arbiter is important

int credits = 1000;
while(true) {

1 = random();

if(i % 4 == @) print("You win 4%");

if(i % 3 == 0) print("You win 3%");

if(i % 12 ==) print("You win 12%$"); Global predictor

if(credits == @) break;
credits--; LO“”Memqo
r

30

Mechanism / Important features

Out of order execution

+ Overview

* Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

31

Mechanism - Line and way prediction
The Alpha 21264 has a different cache architecture than the previous version of the
processor (Alpha 21164)
The cache is a 64KB two-way set associative cache instead of 8 KB direct mapped
instruction cache
Consequence : Better hit rates but with some bottleneck

Idea :Predict the next line of the cache and check in parallel

Most miss predictions costs 1 cycle but accuracy is between 85% and 100%

32

Mechanism / Important features

Out of order execution

+ Overview

* Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

33

Fetch engine overview

Fetch Slot: Rename Issue . Register read Execute : Memory
A 1 2 3 : 4 5 : 6
Y
: Integer | :
Integer Integer .=~ oyecytion | Y
Branch : Integer issue .| register " Addr
predictor —»=\ register queue = file | © [integer | "0
: ename (20 ; (80) ™™ execution | :
entries)
| i Data Level-
. Integer | two
Integer |~ execijgtion : cache - cache
register c (64 Kbytes, and system
Addr| two-way) fivd
file | _:_ Integer inlalaly interface
(80) ™™ 7 execution |
Line/set A .
prediction ' =
Instruction Floating- F'gg}:_"';g‘ [Frcating-] _ Floating-point
mha’ »| Point issue L | point [T multiply execution
yles, register ueue | | register
two-way) rename q(1 5) file | Floating-point
(72) add execution

*

34

Fetch engine overview

Fetch 4 instructions each cycle Processor fetch using speculative mechanism
1. Branch prediction (what is the next
— instruction to fetch)
column 0 column 1
address _block address _ block 2. Line prediction (Which line contains the next

c
©
=]
o
c
2
x
T
°
c

instruction)
— > i §

A J
[y|compare

Which one should we choose ?
corr:;)are
_j select <

‘ block
{ @}E- offset

35

Mechanism / Important features

Out of order execution

+ Overview

* Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Speculative load
» Cache hit speculation

36

Mechanism - Address and control structure

Load come in the engine in order and instructions retire in order

Loads and stores can be reordered

Problem : An older store after a younger load can appear =» need a
squash mechanism (more details in next slide)

Speculative bypass of older store into younger load

Eight entry miss address file tracks and forward miss to the bus interface
unit

37

Mechanism - load store

Goal : Load as early as possible

Problem : Read after Write dependencies are hard to handle A\

Solution : Train the mechanism to know which store can predicted or reordered

int arr[100];
arr[random_0_99] = 0x000CAFFE;
int variable = arr[1];

Mechanism / Important features

Out of order execution

+ Overview

* Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

39

Mechanism — speculative cache hit mechanism
e Speculation mechanism = three cycle load integer latency in the best case
e Assume that the data is already in the cache although it’s not always case
Result 1 : Correct = continue work normal
Result 2 : Do a “mini restart” = two cycles latency penalty

The processor chooses to predict or not to predict depending on the application

40

Mechanism / Important features

Out of order execution

+ Overview

* Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

41

Mechanism - prefetching

Goal : Allow the programmer to take full benefit of the cache management and high
bandwidth capacities. Very good for benchmarks with huge arrays.

Capacity : Prefetch 64-byte block to overlap cache miss time

How : Implemented via ISA instructions

Table 3. The 21264 cache prefetch and management instructions.

Instruction Description

Normal prefetch The 21264 fetches the 64-byte block into the L1 data and L2 cache.

Prefetch with modify intent The same as the normal prefetch except that the block is loaded into the cache in a writeable state.

Prefetch and evict next The same as the normal prefetch except that the block will be evicted from the L1 data cache on the
next access to the same data cache set.

Write-hint 64 The 21264 obtains write access to the 64-byte block without reading the old contents of the block

Evict The cache block is evicted from the caches.

42

Mechanism / Important features

Out of order execution

+ Overview

* Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
* Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

43

Mechanism - Internal memory system

e [Execute up to two store / loads per cycle
32 in-flight load and store + 8 in-flight cache misses
Use a two set associative 64 KB data cache which gives much better results

than the previous one

= Loads and stores can really exploit the out of order paradigm

44

Mechanism / Important features

Out of order execution

+ Overview

* Register renaming

» Out of order issue queue

» Execution engine

* Instruction retire and
exception handling

Speculative execution Other features

* Overview » Prefetching
» Branch prediction * Internal memory system
algorithm * Bus interface unit

 Line and way prediction
» Fetch engine

» Speculative load

» Cache hit speculation

45

Mechanism - Bus interface unit

It’s the link between the internal memory system and the L2 cache and
the rest of the system

It takes MAF files as input and forward victim data (L3 cache) or data
from main memory to the L2 or reverse

Maintains cache coherent using invalidation cache coherence protocol
Features : 12 cycles latency for L2 caches access and has a bandwidth

of 1.3GB /S

46

Key Results

“With more functional units and these dynamic execution techniques, the
processor is 50% to 200% faster than its 21164 predecessor for many
applications, even though both generations can fetch at most four
Instructions per cycle”

47

Summary

1. Use out of order execution to increase the amount of parallelism

2. Use a “modern” branch predictor

3. Use a lot of new predictions techniques like branch prediction, line prediction,
prefetching, cache hit prediction

4. Use a more efficient cache

5. High throughput and low latency

48

Strengths

1. Clearly faster execution time
2. Can exploit implicit parallelism
3. Can run intensive workload like real-time visual computing app, database, etc..

“A unique combination of high clock speed and advanced microarchitectural techniques, including
many forms of out-of-order and speculative execution, provide exceptional core computational
performance in the 21264

“Database, real-time visual computing, data mining, medical imaging, scientific/technical, and many
other applications can utilize the outstanding performance available with the 21264.”

49

Weaknesses

1. Space & Cost overhead
2. Marketing paper

3. Could have bad performance on very special workloads due to the number of
predictions

4. Use a lot of new techniques. They could have some issues that are unknown
(spectre attack)

50

Takeaways

Out of order execution and Branch prediction can speedup a lot of applications. We
clearly see that the performance of this processor is better thant the Alpha 21164
processor even if they both fetch 4 instructions per cycle

Indipendent to the programmer. Fully invisible at software level

High bandwidth and low latency data access

51

Open discussion

We have a lot of speculative execution. What can we do to
improve the predicted rate ?

52

Open discussion

What could be done in the compiler in order to help the
processor ¢

53

Open discussion

What about more collaboration between software and
hardware ?

54

Open discussion

Prefetching is implemented at ISA level. How should a
programmer deal with it ?

55

Open discussion

Do you think that a programmer should care about instruction
reordering or not ?

56

