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Preface:

“ Computer Science is no more about computers
than astronomy is about tel escopes.”
E. W. Dijkstra

An artificial neura network is a (simplified) mathematical model of the human brain.
Many different types of neural network models are suited, but we shall describe just
one, caled feed-forward neural network with one hidden layer (adso called as
multilayer perceptron with one hidden layer).

Since 1960 a number of results have been published showing that a multilayer neura
network with only one hidden layer can approximate arbitrary well a continuous
function of n real variables. E.g. poofs have been given by Cybenko (1989), Halbert
White (1990) and Kurt Hornik (1991), the later proofs require less assumptions on the
activation functions. The problem with these proofs is that they are not constructive
(and not elementary). These theorems do not state how many neurons should be used
in the hidden layer, and they do not claim anything about the error of the
approximation with a given number of neurons. Our main aim was to prove the
universal approximation theorem of the feed-forward artificial neural networksin a
constructive (and may be elementary) way and if possible also estimate the error. The
basic form of this theorem claims that every continuous function defined on a
compact set of the n™ dimensional vector space over the real numbers can be arbitrary
well approximated by a feed-forward artificial neural network with one hidden layer
(with finite number of artificial neurons). In other words, the function space defined
by the feed-forward artificial neural networks with one hidden layer is densein C(R").

In the first chapter we describe a few basic things about the artificial neural networks:
e.g. the artificial neurons, the types of activation functions and the multilayer feed-
forward architecture. After that, in the second chapter we describe the computation
capacity of the feed-forward artificial neural networks, e.g. computation of boolean
functions and the universal approximation theorem; and also in this chapter we
introduce the method of arranging the neurons that alows us to build up different
kind of mother functions (defined later) from the used activation function. We used
this method to prove the different variations of the universal approximation theorem.
In the third chapter we prove the universal approximation theorem for some special
cases. for the three basic (most popular) activation function (the threshold/step
function, the piecewise linear and the sigmoid/logistic function) only in one
dimension. The fourth chapter consists a generalisation of our results for an arbitrary
activation function and another theorem by Debao Chen (1993) that estimates the
error of the approximation. During the fifth chapter we will improve the
approximation by an iterative (successive/multiresolution) approximation method and
by using the theory of wavelets. We use a previously defined method of arranging the
neurons to build a mother wavelet (by the combination of several logistic activation
functions) and with this technique we can give another proof. In the appendix there
are some programs in Maple and Matlab that demonstrate our results.

Baldzs Csanad Csjji
Eindhoven, June, 2001



1. Introduction:

“ Numberless are the world’ s wonders,
but none more wonderful than man.”
- Sophocles

1.1. About Neural Networks:

Neural networks, or artificial neural networks (ANN) to be more precise have been
motivated right from its inception by the recognition that the human brain computes
in an entirely different way from the conventional digital (von Neumann) computer.
The brain is a highly complex, nonlinear and parallel computer (information
processing system). It has the capacity to organise its structural constituents, known as
neurons, so as to perform certain computations (e.g. pattern recognition, perception,
and motor control) many times faster than the fastest digital computer in existence
today. In its most general form, an artificial neural network is a machine that is
designed to model the way in which the brain performs a particular task or function of
interest. The ANNSs are usually implemented by using electronic components or are
simulated in software in adigital computer.

Neural networks present a technology that is rooted in many disciplines:
neurosciences, mathematics, statistics, physics, computer-science and engineering.
Neural networks find application in such diverse fields as modelling, time series
analysis, pattern recognition, signal processing, and control by virtue of an important
property: the ability to learn from input data with or without a teacher.

The use of neura networks offers the following useful properties and capabilities:

(1) Nonlinearity: an artificial neuron can be linear or nonlinear. Nonlinearity is a
highly important property, particularly if the underlying physical mechanism
responsible for generation of the input signal (e.g. speech signal) in inherently
nonlinear.

(2) Input-Output Mapping: the network can learn an input-output mapping with a
teacher with a method called supervised leaning. This involves modification of
the synaptic weights by applying a set of labelled training samples.

(3) Adaptivity: neural networks have a built-in capacity to adapt their synaptic
weights to changes in the surrounding environment.

(4) Evidential Response: In context of pattern classification, a neural network can
be designed to provide information not only about which particular pattern to
be selected but also about the confidence in the decision made.

(5) Contextual Information: Knowledge is represented by the very structure and
activation state of a neural network. Every neuron in the network is potentially
affected by the global activity of al other neurons in the network.



Consequently, contextual information is dealt with naturally by a neural
network.

(6) Fault Tolerance: a neural network implemented in a hardware form, has the
potential to be inherently fault tolerant, or capable of robust computation, in
the sense that its performance degrades gracefully under adverse operating
conditions. Due the distributed nature of information stored in the network, a
damage has to be extensive before the overall response of the network is
degraded serioudly. Thus, in principle, a neural network exhibits a graceful
degradation in performance rather then a catastrophic failure.

(7) VLS Implementation: The massively parallel nature of a neural network
makes it potentially fast for computation of certain tasks. This same feature
makes a neural network well suited for implementation using very-large-scale-
integrated (VLSI) technology.

(8) Uniformity of Analysis and Design: Basically, neural networks enjoy
universality as information processors, since the same notations is used in all
domains involving the application of neural networks.

(9) Neurobiological Analogy: The design of neural network is motivated by
analogy with the brain, which is a living proof that fault toleranct parallel
processing is not only physically possible but also fast and powerfull.
Neurobiologists look to (artificial) neural networks as a research tool for the
interpretation of neurobiological phenomena.
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Figure 1.1
Draft picture of a“real” (non-artificial) neuron



1.2. Artificial Neurons:

A neuron is an information-processing unit that is fundamental to the operation of a
neural networks. Figure 1.2 shows the model of a neuron, which forms the basis for
designing (artificial) neural networks. The artificial neurons we use to build our neural
networks are truly primitive in comparison to those found in the brain. An artificia
neuron has several inputs but only one output. Here we identify four basic elements of
the neuronal model:

(1) Synapses or connecting links, each is characterised by a weight or strength of its
own. Specifically, a signal x; at input of synapse j connected to a neuron is
multiplied by the synaptic weight w;.

(2) An adder for summing the input signals, weighted by the respective synapses of
the neuron.

(3) An activation function for limiting the amplitude of the output of a neuron.
Typically, the normalised amplitude of the output of a neuron is written as the
closed unit interval [0,1] or aternatively [-1,1].

(4) The model of a neuron also includes an external bias, denoted by b, which has the
effect of increasing or lowering the net input of the activation function.

Synaptic
weights Bias

X1

Activation

function
Input X2

signals

o) —»y
Output

junction
Xn

Figure 1.2
Nonlinear model of a neuron

In mathematical terms, we may describe a neuron by:

y=(p(ZWjX1 +b)

=1

where Xi,.. Xn are the input signals ws,...,w, are the synaptic weights of the neuron, b
isthe bias, ¢ isthe activation function and y is the output signal of the neuron. Such a
neuron (with a threshold type activation function) is referred in the literature as the
McCulloch-Pitts model, in recognition of the pioneering work done by McCulloc and
Pitts (1943).



1.3. Types of Activation Functions:

The activation function, denoted by ¢ : R— R defines the output of a neuron. During
this paper when we speak of an activation function, we mean a function with the
following assumptions: ¢ is bounded and:

limg(x)=a and lim ¢(x)=b (a#b)
Here we identify three basic types of activation functions:
(1) Threshold function: ]

1 x=0 o

¢(X)={O <0 o4

(2) Piecewise linear function: 2 3 7 5

Vi N |

P(X) =< X+

(3) Sgmoid function (logistic function): O; /ﬂ

o(x) =

N~ X

o NIF R
|
NI v
v b
>
|
N[~

1+e™

The sigmoid function, whose graph is s-shaped, is by far the most common form of
activation function used in construction of artificial neural networks. An example of
the sigmoid function is the logistic function. An important feature of the sigmoid
function that it is differentiable (whereas the threshold function is not).

These activation functions defined above range from O to +1.
It is sometimes desirable to have the activation function
range from —1 to +1 in which case the activation function
assumes an antisymmetric form with respect to the origin.
Specifically, the threshold function becomes the signum
function. For the corresponding form of a sigmoid function
we may define the hyperbolic tangent function:

#(x) = tanh(x)

Allowing an activation function of the sigmoid type to assume negative values.



1.4. Multilayer Feedforward Architecture:

In alayered neural network the neurons are organised in the form of layers. We have
at least two layers: an input and an output layer. The layers between the input and the
output layer (if any) are called hidden layers, whose computation nodes are
correspondingly called hidden neurons or hidden units. The source nodes in the input
layer of the network supply respective elements of the activation pattern (input
vector), which constitute the input signals applied to the neurons (computation nodes)
in the second layer (i.e., the first hidden layer). The output signals of the second layer
are used as inputs to the third layer, and so on for the rest of the network. A layer of
nodes projects onto the next layer of neurons (computation nodes), but not vice versa.
In other words, this network is strickly a feedforward or acyclic type. The neuronsin
each layer of the network have as their inputs the output signals of the preceding layer
only. The set of output signals of the neurons in the output (final) layer of the network
constitutes the overall response of the network to the activation pattern supplied by
the source nodes in the input (first) layer. Neura networks with this kind of
architecture is also called as multilayer perceptron.

Figure 1.3
A fully connected feed-forward neural network with one hidden layer

The function of hidden neurons is to intervene between the external input and the
network output in some useful manner. By adding one or more hidden layers, the
network is enabled to extract high-order statistics. In a rather loose sense the network
acquires a global perspective despite its local connectivity due the extra synaptic
connections and the extra dimension of neural interactions. The neural network is said
to be fully connected in the sense that every node in each layer of the network is
connected to every other node in the adjacent forward layer. (otherwise the network is
called partially connected)



2. Computation Power:

“ 0O, it isexcellent to have a giant's strength;
but it istyrannousto useit like a giant.”
William Shakespeare

In this chapter we study the computation power of the feedforward artificial neural
networks. we are interested in what kind of problems can be solved with neural
networks? First we examine the feedforward neural networks without hidden neurons.
Next we show that every boolean function can be computed by a feedforward neural
network with one hidden layer. Finally we consider the universal approximation
theorem, which claims that every continuous functions defined on a compact set can
be arbitrary well approximated with a neural network with one hidden layer. At the
end of the chapter we introduce a method called arranging the neurons that will help
us building constructive proofs during the following chapters.

2.1. Single-Layer Perceptrons:

A single layer perceptron is the simplest form of a neural network used for the
classification of patterns. Basically, it consists of a single neuron with adjustable
synaptic weights and bias. It can be easily shown that a finite set of training samples
can be classified correctly by a single-layer perceptron if and only if it is linearly
separable (i.e. patterns with different type lie on opposite sides of a hyperplane). Thus
e.g. if welook at the boolean functions (using the identification true = 1 and false = 0)
it is clear that the “and” or the “or” functions can be computed by a single neuron
(e.g. with the threshold activation function) but the “xor” (exclusive or) is not. A
neuron can be trained with the perceptron learning rule given by Rosenblatt (1958).

2.2. Computation of Boolean Functions:

It isawell known result that if we use the threshold function as an activation function
then we can compute every boolean functions with a multilayer perceptron with one
hidden layer (using the identification true = 1 and false = 0). We look over the proof

briefly: if we consider afunction f :{01" —{0,3} then we can write f in disunctive
normal form', i.e. f can be written as a digjunction of clauses ¢;:

f(X,X)=¢ Ve, v..ve, where ¢ =l Al A Al
Each clause ¢; is a conjunction of literals l;x, and each literal |;x is a parameter x; or its

negation —x;. The values of a clause can be computed with one layer in the following
way: assume that clause c is given by (we can rename the inputsif it is necessary):

C= X:L/\“'/\ Xr /\—|Xr+1 /\"'/\_'XHS

! It isastandard result that every boolean function can be written in disjunctive normal form



To compute this clause we use asingle artificial neuron: wecanusew; = 1if 1<i<r,
wi=-1lifr+1<i<r+sandwi=0if r+s+1<i<n withb=05 —r:

0.5—r+Zn:Wixi :0.5—r+zr:xi - fxi >0
i=1 i=1 i=r+1

ifandonly if Vie{l..,r}:x =1AVie{r+1...,r+s:x =0

For the computation of f we now construct a multilayer perceptron: the first layer
consists of p neuron that computes the clauses c,...,C, in the way described above.
The output layer consists of one neuron with p inputs, that ssimply computes the
digunction of values of the p clauses. It is easily seen that the digunction can be
computed by a neuron with all weights equal to 1 and the threshold equalsto —0.5. m

Before we continue our examination of the computing power of neural networks, we
formalise the output of afeedforward neural networks with one hidden layer and with
one linear output unit as a function of the inputs:

Figure 2.1
A feedforward neural network with one hidden layer

If we have a multilayer perceptron neural network with one hidden layer that consists
of n hidden unit, and the network has m inputs (see Figure 2.1) then we can formalise
the output of the network as a function of the inputs by:

m

(A )% %) = 2 W03 3, +D)

i=1

where &; is the weight of the synapse that goes form the input x; to the i™ hidden
neuron, b is the bias of the j"™ hidden neuron, ¢ is the activation function, and w; isthe
weights of the synapse that goes to the (linear) output neuron form the j™ neuron.



2.3. The Universal Approximation Theorem:

The universal approximation theorem claims that the standard multilayer feed-forward
networks with a single hidden layer that contains finite number of hidden neurons,
and with arbitrary activation function? are universal approximators in C(R™). Kurt
Hornik (1991) showed that it is not the specific choice of the activation function, but
rather the multilayer feedforward architecture itself which gives neural networks the
potential of being universal approximators. The output units are always assumed to be
linear. For notational convenience we shall explicitly formulate our results only for
the case where there is only one output unit. (The general case can easily be deduced
from the simple case.) The theorem in mathematical terms:

Theorem 2.3.1 (universal approximation theorem):

Let ¢(.) be an arbitrary activation function. Let X = R™ and X is compact. The space
of continuous functions on X is denoted by C(X). Then Vfe C(X), Ve>0: 3ne N, &;, b;,
wieR, iefl.n}, jefl.m}:

(A D)% 0) = S Wo(3 3, +B)

as an approximation of the function f(.); that is
If -Af|<e

(In the notation Af, n shows the number of hidden neurons) How to measure the
accuracy of approximation depends on how to measure closeness between functions,
which in turn varies significantly with the specific problem to be dealt with. In many
application, it is necessary to have the network simultaneousy well on al input
samples. In this case, closeness measured by the uniform distance between functions,
that is:

[f - A =suplf () - (A, )Y

In other applications, we think of inputs as random variables and are interested in the
average performance:

[f-Af], =§/J|f(z)—(Af)(z>|pdu<z>

1< p<eo, the most popular choice being p = 2, corresponding to the mean square

error. Of course, there are many more ways of measuring closeness of functions. In
particular, in many applications, it is also necessary that the derivates of the
approximating function implemented by the network closely resemble those of the
function to be approximated, up to some order.

? pisan activation function if and only if @isbounded and lim p(x)=a, limg(x)=b, azb



2.4. Arrangement of the Neurons:

Sometimes it is a good idea to build a different kind of mother function for the
approximation from our activation functions. (We can build a function space with a
tranglation and dilation of a mother function, and we want to prove that this function
space is dense in another function space (e.g. C(R™)) The simplest thing that we
could do is to make couples from the neurons and build a function that has some
useful property. (E.g. zero or “small” outside of an interval or forms a wavelet)

Figure 2.2
Arrangement of the neuronsin couples

We can take the difference of two shifted activation function to build (define) our new
basi'mother function:

v(x a,b) = p(ax+b) - p(ax—b)
Thus, for example the approximation in R is looks like this (see Figure 2.2):
v (X) = w(x=x,8,b)
(A D00 = 2w v, 09

The method of arranging the neurons is only a notation, it doesn’t effect the neural
network itself, but sometimes it is very useful for building a constructive proof.
Sometimes (e.g. building a mother wavelet) we could use more then two neurons to
build a new function.



3. Special Cases:

“1f it doesn’t kill me,
it makes me stronger.”
- Friderich Nietzsche

Our main aim during this paper is to prove the universal approximation theoremin a
constructive (and may be elementary) way and, if possible, get an estimation of the
error. Instead of doing this directly in a general form, first we will try to prove the
theorem for the three most popular type of activation functions. for the threshold
(step) function, for the piecewise linear function and for the logistic (sigmoid)
function. We do this not just because these cases have a great practical importance,
but also because when we are dealing with the general case we will find these cases
(especially the case of the threshold function) a great help. The main reason of thisis
that with our assumptions on the activation function (it has a limit in plus and minus
infinity, it is bounded) we can mimic the approximation with the threshold function
(with an other activation function). During this chapter we will assume that our
compact set is the unit hypercube [0,1] and we will formulate our results only for
R — R functions. We will give a very short introduction to the spline theory, because
we will use that during the proof of some theorems.

3.1. About B-Splines:

The B-splines are piecewise functions which can be built by translation and dilation of
the following mother functions:

1 —£< x<i
B,(X) = 2° 7 2
0 otherwise

B, =B,*B,

B, =B,*B;*B,,andsoon

It is clear that B; isaunit step function, and is piecewise constant. It’s called B-spline
of degree O (order 1). It turns out that B, is piecewise linear, B; is piecewise quadratic,
and so forth. We can calculate B, as follows:

V2 1+x -1<x<0

B,() = [B,(Y)B,(x-y)dy= [B,(x-y)dy=11-x 0<x<1
- 2 0 elsewhere

The theory of splines can be generalised to R™ (e.g. with Box splines) and it can be
shown that every continuous function can be arbitrary well approximated with the
linear combination of this kind of functions. We will show that with the method of
arranging the neurons (we described this method in the second chapter) we can build
up the spline basis and that makes the spline theory directly acceptable for our case.



3.2. Case of the Threshold Function:

In this part of the chapter, first we will give a constructive proof by the aid of spline-
theory. After that we will build another approximation that has some optimality
property. We will give an estimation of the error for that approximation, and as a
consequence of this estimation we will prove the universal approximation theorem in
an alternative way. Finally we will show that this approximation is optimal in the
sense that if the biases are independent from the function that we want to approximate
then no better approximation is possible.

Theorem 3.2.1 (approximation with the threshold function):

An arbitrary continuous function, defined on [0,1] can be arbitrary well uniformly
approximated by a multilayer feed-forward neural network with one hidden layer
(that contains only finite number of neurons) using McCulloch-Pitts model neurons®
in the hidden layer and a linear neuron in the output layer. In mathematical terms:

Let ¢()be the threshold function. Then Vfe C([0,1]), Ve>0: 3n € N, w;, b € R,
ie{0..n}:

(A )X = wo(x+h)
i=1
as an approximation of the function f(.); that is

Zéri]I(Aq £ -f(x)|<e

Proof (3.2.1):
With the method of arranging the neurons, we can build the 1% order B-spline mother
function (also known as the Haar function®):

1 1 1
WOKL2) = p(x+ 2) = plx—2) = B,(¥)

It follows from the spline theory that every continuous function could be arbitrary
uniformly approximated by linear combination of the translation and dilation of this
function. m

Comment:

Not only the continuous functions can be arbitrary uniformly approximated with the
Haar basis, but every function that Ve >0 has finite number of split points which are
larger than e.

% artificial neurons with the threshold activation function
* Haar aready proved the approximation for this kind of functions in 1910. The theory of splines and
wavelets are generalisation of hiswork.
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Figure 3.1
The mother function of the Haar basis (a= 1, b = ¥2); Approximation with the Haar basis (n = 30)

Comment:
If we want an approximation with n + 1 Haar functions, the simplest construction is:

(&+1f)(X)=i]w v, (xb), Vie {0.n}: w = f(x), b=2_1n

We excluded a from the parameters, because changing a has no real effect on the
threshold function. Proving the approximation of the feed-forward neural networks by
building the Haar basis (1% order spline basis) is theoretically correct, but that
construction doesn’t give us an effective way of approximating functions. We can
notice that the number of used neurons can be reduced:

D0, (x0) = YW (0 (x—b) - ¢, (x-+B) = Wy (X -B) + 3 (0 — ) (x-b),

n
i=0

where x =iﬁ, b=%, v, 06b) = (X=X ,b) . ¢ (X) = p(x=x ), Vie l0..n}.

At the left side 2(n+1) neurons required, but with a single trick, we can reduce it to:
n+1. With the reduced number of neurons the weights of the approximation are:

(A D09 =Y W, (x-b)

W, = f(Xo)

w=100-3w



By choosing the weights and the biases in a specid way we can build an
approximation with some “optimality” property. All approximation with the threshold
function on [0,1] look like this:

0<X <X, <..<X, <1
(A D09 =Y wp(x-x)

For the easier notations we will use Xo= 0 and xn+1 = 1. It is clear that if our activation
function is the threshold function then the approximation will be constant in [b;, bj+1)
for every 0<i <n. If we use biases which aren't depend on f (if we know nothing
about the structure of the function that we want to approximate) then we can build an
optimal approximation by choosing the parameters of the approximation (0<i <n):

i-1
n
\Niopt — Z(;') _ij

Xi:

y(fi)= sup f(X)+ inf f(X)

Xe[X 1 Xi+1) XE[%,%41)

(A% )00 = X W™ p(x- %)

First we have to prove that with this construction every continuous function can be
arbitrary uniformly approximated. We will do this by estimating the error of the
approximation. To do this we need the definition of the modulus of continuity:

oa(f;d):wpﬂf(x)— f(y)|:x ye Df/\|x—y|£5}.

It is clear from the definition that if f is continuous and a, has the property lima, =0
then limw(f;a,)=0. And Ve >0:w(id;e) =¢, where id is the identity function.

(id(x) =x)

Theorem 3.2.2 (estimating the error):
o(f; )

VneN: vf e [0]] 5R: |f - AP f| < 5 n

Proof (3.2.2):
First we prove that:

Vie {1n} 1 VXxe [Xi ) Xi+l) : (A?pt f )(X) :@
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Fix an ie{l..n} andlet xe[x;,X,). It'sclear from the construction that:

oy LTS
PU=XI=0 si
Then:

(AP 1)) = D Wploxx)) = Juf = + 3w =

j=1

BB Zwom +Zwopt 21D

We can formulate the error of the approximation on the interval [x,X,,) by:

fl)

A, (T AT )= sup \f(x) (AP )| = sup 5

Xl % 41) el %41)

-2 u)I

The last step follows from:

off: ) =wp{|f(x)— F(y)]: % ye [04] Alx—y] g%} .

2sup{|f(x)— f(y)| DX, YE[X 1Xi+1)/\|X—y| 51} _

sup{ 09— F(Y): % ye [ x.)l= sup f(x— inf £()=

xe[%; % 11) *elX %
= z-wpﬂf(x)—’f(;' )

P Xe[X 1Xi+1)}

The total error of the approximation isthe maximal error on the intervals:

1
o(f;=)
Hf—Aﬁ’mf“w—maxd(f AP £) < 2” .=

ie{1..n}

Corollary 3.2.3 (convergence):
If f is continuous then Ilm“f AP f HN =0.

N—eo

Theorem 3.2.4 (optimality):
VneN: A™f isoptimal inthe sensethat if the biases are independent from f then if

i—1

Jie L. n}x,;«r:—1 v diefl. n}w;zt;[(]c ) ZW

then:
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o(f:5)
Afe[0-R: [f-Af| > 2“
Proof (3.2.4):
Case 1: Assume that Jie {1..n}: x ;t';nl. Inthat case 3j e {0..n}: X, — X, >%.(xo
=0, Xv1 = 1). Let =X;,,—X;. It is clear that Aqf is constant on [x;, X+1). Let
1
foid Thend (1A 020 TrusfoAf] 29512 00n
=id. Thend (f, >—.Thus ||f - >—>—=
(ADZG Ths|i-at] 255k -

Case 2: We can assume that Vie {1...n}: x =% otherwise we aready proved in

i-1

Case 1 that exists such an f. Assume that Jie {1..n}:w ;ﬁ@—z“wj Letf=id.
=L

Inthat case 3 j e {0..n}: Vxe[x,,X,,,) 1 (A F)(X)=c= Z(IS'I) =X; +%' If

c>2"'7 then ‘f(XJ) (A]f)(xj)‘_—C—Xj>Xj+__xj—__|f c<Z2'7 then
' A1 = — 1 1
x|1!xlil+|1|f(x) ( f)(X)| Xj+l c> Xi+1+__xj+1_ o

3.3. Case of the Piecewise Linear Function:

Theorem 3.3.1 (approximation with the piecewise linear function):
Let ¢(.)be the piecewise linear function. Then Vfe C([0,1]), Ve>0: IneN, w, &,
beR, ie{0..n}:

(A= wo(ax+h)
i=1
as an approximation of the function f(.); that is

sup|f (x) - (A, )| < e

xe[0,1]
Proof (3.3.1):

With the method of arranging the neurons, we can build the mother function (the tent
function) of the 2" order (1% degree) spline basis:

WXL D) = p(x+ )~ plx-2) =B, (¥

It's a well-known result that every continuous function can be arbitrary uniformly
approximated with the 2™ order spline basis. m
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Figure 3.2
The tent mother function; Approximation with tent functions (n = 10)

Comment:
We can use the trick of reducing the number of neurons again, and the similar
recursive formulas are valid for the weights as in case of the threshold function.

3.4. Case of the Logistic Function:

Theorem 3.4.1 (approximation with the logistic function):

An arbitrary continuous function, defined on [0,1] can be arbitrary well uniformly
approximated by a multilayer feed-forward neural network with one hidden layer
using the logistic function as activation function (¢) .

I dea of a proof (3.4.1):

With the notations of theorem 7.2. We can build a bell shaped basis'/mother function
again with the trick of arranging the neurons (we can take the difference of two
shifted logistic function):

v(x.ab) = p(ax+b) - p(ax—b)
v, (x,8) = y(x-x,a,b) ‘Zlﬁ

Without the loss of generality we can fix b to an arbitrary nonzero value. We can
notice that the width of the bells depends only on the parameter a and the height of the
bells depends on the parameter b. For the proof we want the weighted sum of our
basis functions to interpolate at the points x;:

(Ao D) =3 W, v, (03

Vie{o.n}: (A, F)wa,x)=f(x)



Now we can define the following vectors and matrix to compute the weights:
b=[f(x) f(x) .. f(x,)]

w=[w, woow]

Wo(xo’ao) \VO(Xl’ao) Wo(xn!ao)
§(§)= \Vl(xzo’a1) Wl(x:l’al) Wl(x;n,al)
Wn(xoian) \Vn(xlian) Wn(xn’an)

w-G(a)=b

&

w=b-G(a)™

We have to prove that g(gt)‘1 is exists. We can use Gershgorin’'s theorem to estimate

the eigenvalues of the matrix, because our G matrix has it's large elements in it's
diagonal (with a suitable a):

big small --- small

Il bi -+ small
s@=" v T
small small --- big

Note that we can find Gershgorin’s theorem at the end of the chapter. Thus we can
claimthat G(a)™ existsif:

Vie{0.n}: Dy (xa) <wv(x,a)

j#i
We can notice that wv,(x,a) does not depends on & and it is equa to
V,(0) = ¢(b) —¢(—b) . We should find a suitable a (for a specific n) which satisfies
this inequality and we have to prove that the error of the approximation is getting
smaller if n getting larger to prove the theorem. O

Comment:

A theoretically correct proof will be shown in the next chapter for the approximation
with the logistic function. The reason that we have included this kind of approach is
that this will give a practically effective way of approximation (if we could guess a
good a). We don’t even need to use the bells: if we use directly the logistic functions
then the G(a) will be upper triangona dominant, and will be invertable for a suitable

a, but the proof will be more difficult. (But for practical reasons that is the advised
way)
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Figure 3.3
The bell shaped basis function (a= 1, b = 1); Approximation with the bells (n = 8)

Hypothesis:
This kind of approach can be generalised to any monotone-increasing activation
function that has ¢(0) # 0. For example for the threshold function and the piecewise

linear function. (See Appendix; for an example in MapleV)
We used Gershgorin’s theorem during the idea of proof of theorem 3.4.1:

Gershgorin’stheorem:
Each eigenvalue of A=(a;),_, liesin at least one of the Gershgorin disks:

{z:|z—aﬁ|SZ‘aﬁ \} e fin)

J#

Comment:
If each pair of the n Gershgorin disks has an empty intersection, then each disk
contains exactly one eigenvalue of A, which istherefore simple.



4. General Case:

“We think in generalities,
but we live in detail .”
Alfred North Whitehead

Now we consider a more general case: in the first part of this chapter we prove the
approximation for an arbitrary activation function, however we still restrict ourselves
to one dimension. Generalisation to higher dimensions is nontrivial. See the Epilogue
for more details about this problem. We use our results from the previous chapter
(Special Cases), specially the results for the threshold function. In the second part of
this chapter we present a theorem given by Debao Chen in 1993 that directly
acceptable to estimate the error of a multilayer feedforward artificial neural network
with a given number of hidden units.

4.1. Approximation with Arbitrary Activation Function:

Theorem 4.1.1 (universal approximation theorem):

An arbitrary continuous function, defined on [0,1] can be arbitrary well uniformly
approximated by a multilayer feed-forward neural network with one hidden layer
(that contains only finite number of neurons) using neurons with arbitrary activation
functions in the hidden layer and a linear neuron in the output layer. Formally:

Let ¢(.)be the arbitrary activation® function. Then Vfe C([0,1]), Ve>0: Ine N, w,
a,beR,ice{0.n}:

(A D9 =3 wplax+D)

as an approximation of the function f(.); that is

Zﬁ]'(A" £ -f(x)|<e

Proof (4.1.1):
Because ¢ is an activation function: it is bounded and we can assume without the loss
of generdity that limg(x)=1 and lim¢(x)=0. First we will assume that

VX:p(x)e[0]]. We aready proved the universa approximation theorem in the

theorem 3.2.1, 3.2.3 in two different ways in the case when our activation function is
the threshold (step) function. We aso have an estimation of the error for this casein
theorem 3.2.2. We will show that every function that can be approximated by alinear
combination of threshold functions z(x—x), can aso be approximated by a linear

combination of functions of the form ¢@(m(x—x)). The idea is smply that a
threshold function 7(x—x) can be approximated by @(m(x—x)) if m is large

® g isan activation function if and only if @isbounded and lim p(x)=a, limg(x)=b, a#b



enough. We will show that if we have an approximation with a maximal error of € by
alinear combination of threshold functions then there existsan m> 0 such that if we
change al the 7(x—x;) into ¢(m(x—x;)) then the error of the approximation will be

less or equal then 4e.

Let an approximation of f by a linear combination of threshold functions with a
maximal error of £ be given by:

(AP0 =8, 7(x-X).

It is not arestriction to assume that the points x; are increasing and in the interval

[0,1]: 0 X <X, <..<X, <Ll

Sincef is continuous at the points x; and | f(X) - Z ar(x—x)|<g& weobtain that for
i=1

i >0, the coefficients |a,| < 2¢. Only if x, =0, this may not hold for i = 0. Therefore

we assume for the moment that either x, >0 or that |a,| < 2¢. We now compute the
maximal error of the approximation:

(A )09 = Y ag(m(x-x)).

We define 6 by 5:%mi_n | % —X; |. We now consider two cases:
i#]

1. Supposethat | x—x [ o foral ie{0,...,n}. Then the limiting behaviour of ¢
impliesthat | 7(x—x) —@(m(x—x)) | can be made smaller than a given & by
taking mlarge enough. Thisimplies that

|ZaiT(X_Xi)_zai¢(m(x_xi)) |<€1Z|ai |
i=1 i=1 i—1
if mislarge enough.
2. Supposethat | x—x; |<J for some je{0,...,n}. Then
la;z(x-X%;) —a;e(M(Xx- X)) K| a; 2.

For i # j weinfer from the definition of dthat | x— x [ ¢ , which means that
these terms can be bounded in the same way asin case 1.

Summarising we have shown that for all xe[0,1] that



S arx-x)-Yaemx-x) k&Y la |+2

Since & can be made as small as needed by increasing m, the right hand side of this
term can be made smaller than 3e Our assumption was that the error of the
approximation with the threshold function is at most & hence we have shown that f

can be approximated uniformly on [0,1] by Zai(p(m(x— X)) with an error at most
i=1

3e+ e=4¢& It remains to get rid of the assumption that either x; > 0 or that |ai| <
2¢. Forif x, = 0 and a, > 2¢, then in case 2 the term |a,; 7(x— x;) —a;¢(M(X - X, )) |
cannot be bounded by 2e However in this case a,7(Xx—x)=4a,, and this can be

approximated uniformly by a ¢(m(x+ b)) by taking b large enough. Now we go back
to the assumption: Vx: ¢@(x) € [0,]] . If it not holds, then we must use the bound (B =

le]. = sup |¢(x)]) in our estimations, that makes them slightly more complicated:
e (oo )

In the first case (| x—x [ d for al i€{0,...,n}) we can get the same estimation, but
in the second case (| x- X; [< 6 for some j e {0,...,n}) we can only get:

la;z(x=x;)—a,p(M(x—x;)) K (B+1 |a; k 2¢(B+1)

which implies:
I arx-%)- D apmx-x) ke |a |+2(B+1 < (28+2¢

Thus we proved, that error of the new approximation will be at most (2B + 3)¢, thus
the convergence is al'so proved in that way. m

In a concrete case the bound given in this theorem can be improved: assume for

which means we consider the standard logistic function.

instance that ¢(x) = !
1+

e’

A smple computation shows that now: | 7(x— x,) — @(m(x — x,)) |< max(e™™! ,%)
Then it is easily verified that the bound above can be replaced by

1> az(x—x)- > ap(m(x-x)) < 2Be™ +2Be*™ +2Be™™ +..+¢£=
i=1 i=1
e—mé‘

= ZBl_e—_2m5+8

where B=max|a |. This allows to compute the actual value of min a concrete

case.



4.2. Debao Chen’'s Theorem:

Definition:
Fixing an activation function ¢ and an integer n, we consider the class of functions of
the form (xe R):

009 = Y. agp(mes k)

By varying the parameters aeR, meN, and k€ Z, we obtain the class being
considered, and we denote it by ®(¢,n) . A question about “degree” of approximation

can now be posed: How well can a function fe C([0,1]) be approximated by elements
of ®(¢,n) ? To make the question precise, define:

dist(f, ®(p, ) =inf {ff— g|_ : ge B(p,n)}

Theorem 4.2.1 (by Debao Chen in 1993):

Vfe C([0,1]): dist(f,®(¢,n)) < ||¢)||c0(f,%) ;

uhece g = sup lp(3).

I dea of the proof (4.2.1):
Because f is an activation function it is bounded and we can assume without the loss

of generality that lim ¢(x) =1 and lim ¢(x) =0. Having afixed n we define:

n-1

(L F)(X) = fop(mx+m) + Z(fi—l = fe(mx—mx),

i=1
where x =Iﬁ’ f=1f(x),ic{0.n}

Observe that if mis multiple of n, then L f € ®(¢,n) . Debao Chen showed that if m
goes to infinity through the multiples of n then the error goes to the expected one. O

Comment:
The complete proof can be found in the book of Ward Cheney and Will Light (A
Course in Approximation Theory).

Comment:
With this theorem of Debao Chen the Universal Approximation Theorem is proved,

because: | ¢ is constant and lim co(f;i) =0 if fis continuous.
N—oo n



5. Improving the Approximation:

“Tofind afault is easy;
to do better may be difficult.”
- Plutarch

Now we try to improve the approximation with a multiresolution approach. First we
will present an agorithm that gives such an approximation with a monotone
increasing activation function. This algorithm has been motivated by wavelets, so it
will help us understand the wavelet approach. The idea of the multiresolution is that
first we build a raw approximation with a few (e.g. one) neurons, and after we add
some details by approximating the error on smaller (e.g. half size) intervals. After this
we can add some more details again by approximating the error on smaller intervals,
and so on. The advantages of the multiresolution approach are:

e Suppose we have a artificial neural network that approximates a function with
& error and we want a better approximation, e.g. with & < & error. With the
algorithm presented in the previous chapters we need to build a completly new
neural network, but with the multiresolution algorithm we can ssmply add a
few more neurons to the original neural network to improve the accuracy of
the approximation.

e If we have a physicaly built artificial neural network, then one of its useful
properties is its robustness. But with the methods defined in the previous
chapters, the neural network is unstable in the sense that if one of the neurons
is damaged, then the whole networks goes wrong. But with this
multiresolution approach there is a great probability that if a neuron is
damaged, then the error isincreasing only dightly in a small interval.

Disadvantage of this approach that in the most cases the neural network is redundant.
Later we will define wavelets and prove that we can build a mother wavelet with the
linear combination of several logistic function. We will prove that with this kind of
wavelets a numerically stable computation of the wavelet coefficients (synaptic
weights) is possible because these wavelets (the wavelets that are generated from our
mother wavelet) form aframe.

5.1. General Multiresolution Algorithm:
We assume, that our activation function is monotone-increasing and:

XIir+nm(p(x)=1, XIirﬁrl,q)(x):o and ¢@(0)=0

And the function f that we want to approximate is continuous on [0,1]. Our main aim
iSto construct an approximation with the following property:

o zn—l

VXE [0’1] Zzwn,i¢n,i (X) = f (X)

n=1 i=1
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We define the sequence of the knots (&, ) and the shifts (77,,,) by:

A g, it
2n n,i 2n—l

gn,i

We can easily check, that the knots and shifts has following properties i € {1...2" "} :

1
77n,i = 77n+1,2i—11 nn,i < fn,i < 77n,i+1 ' 77n,i+l - 77n,i = F

The approximation in the step n will approximate f in the knots (&, ; ). We define our
basis functions by (a, is the scaling parameter, it is something like 2")

Doy = 9@, (X=17,,))
Then the n™ level of the approximation (L, f)(x) and the approximation in the step n
(A F)(X) are:
(L, H)(x) = ziZn__jWn,i(ﬂn,i (X
(A D00 = (L D),
where wj is such that:

Vie L2} (A )& = F (&)

f(£1)
(2% (< 11)

Itisclear that for the first level it must be: w;, =

If our activation function is such that: ¢(x) =0 if x < 0 (like the threshold function)
then we can define the weights like:

. n1l. _ (&) - (ALT)E) ~ i1 L
Vie {12 }.Wn,i = P JZ:;‘W"‘J(DH,J )

In the general case it can be done by matrix inversion (suppose we computed the
weights for al the levels lesser then n):

i=1

G, =l G R=(fEI)-ALDEI  Wo=(w, )

@

W, G, =F, oW, =F -G ™

n



(Of course, first we have to prove that det(G,) = 0) If we use the threshold function

as activation function then we can prove the convergence of our algorithm in asimilar
way that we used in the theorem 3.2.3. In that case we can get an upper estimation of
the error:

1
2n—l

VneN: vf e [01] -R: |[f - A f|_ <o(f;=)

It is an important thing that we recognise that A.f requires 2"-1 hidden neurons with
this algorithm! So as we see in Debao Chen’s theorem the error could be smaller thus
this algorithm doesn’t give an optimal approximation. It is redundant. We lost the
optimality, but we gain some other good properties (see the beginning of this chapter).
It depends on the task what kind of approximation must we choose. For practical
reasons it is advised to swap the activation function at every level of the
approximation to equalise that the functions have their small values (because they are
monotone-increasing) at the beginning of the interval and their large values at the end
of the interval (if we do so, we need a little change in the shift sequence). In the
Appendix; we can find a Matlab program that computes the approximation with that
algorithm. Figure 5.1 shows how the neurons in the hidden layer are arranged to form
the levels of the multiresolution approximation.

Low resolution level  High resolution levels

Figure 5.1
Arranging the neurons in the only hidden layer into the levels of the multiresol ution approximation



5.2. About Wavelets:

The goal of most modern wavelet research is to create a set of basis functions (or
general expansion functions) and transforms that will give an informative, efficient,
and useful description of a function or a signal. If the signal is represented as a
function of time, wavelets provide efficient localisation in both time and frequency or
scale. A space that is particularly important in signal processing is the L%(R). We use
that space in this chapter instead of C(R). Consequently the used norm is the 2" norm
instead of the supremum norm. We formalise our results in the whole real line, but if
we want to build a wavelet approximation with a feedforward neura network with
finite number of hidden units then we must restrict ourselves to a compact set.
Another central idea of the wavelets is the multiresol ution where the decomposition of
asignal isin terms of resolution of detail. Before delving into the details of wavelets
and their properties, we need to get some idea of their general characteristics and what
we are going to do with them: a signal or function f(x) can often be better analysed,
described, or processed if expressed as a linear decomposition by:

f)=2av (X

where | is an integer index for the finite or infinite sum, a are the real-values
expansion coefficients, and v, (t) are a set of real-valued functions of t called the

expansion set. If the expansion is unique, the set is called basis for the class of
functions that can be so expressed. If the basis is orthogonal, meaning:

(o) = i v (k=0 k=l

with the usual inner product, then the coefficients can be calculated by:
a, =(f.y)= [FOIw, (x)ax

If the basis set is not orthogonal, then a dual basis set v, (t) exists such that the inner

products with the dual basis gives the desired coefficients. For the wavel et expansion,
atwo-parameter system is constructed such that:

f(x)= Zzaj,k \Vj,k(x)

where both j and k are integer indices and the v, (t) are the wavelet expansion

functions that usually form an orthogonal basis. The wavelet expansion set is not
unique. There are many different wavelet systems that can be used effectively. The set
of expansion coefficients g« are caled discrete wavelet transform (DWT). If the
signal is a function of continuous variable and a transform that is a function of two
continuous variables is desired, the continuous wavelet transform (CWT) can be
defined by (if the wavelets are not orthogonal, then we must use the dual basis again):



F(ab)= [f(9v, (X,

with an inverse transform of:

00 oo

f(0= [ [Fab)y,,(dado,

—oo—00

where v, (X) isusually defined by (a = 0):

Yap(X) = |al_% \I’( = bj

a
In both cases (the discrete and the continuous wavelet transform) we will assume that:

o]w(x)dx =0

We can notice, that if our activation function is amother wavel et then we can build up
a function by a feedforward artificial neural network with one hidden layer using the
discrete wavelet coefficient as weights of the linear output neuron (modification
possible). The class of neural networks which use (mostly orthogonal) wavelets as
activation functions is called: wavelet neural networks. We will show that we don’t
need to build in directly the wavelets into the activation function, we can build
wavelets from the standard logistic functions (or from the threshold or the piecewise-
linear functions).

Wavelet expansions and wavelet transforms have proven very efficient and effective
in analysing a very wide class of signals and phenomena. The main reasons of this:

1. The size of wavelet coefficients g drop off rapidly with j and k for a large
class of signals. This property is being called an unconditional basis and it is
why wavelets are so effective in signal and image compression, denoising, and
detection.

2. Thewavelet expansion allows a more accurate local description and separation
of signal characteristics (e.g. then a Fourier transform). A wavelet expansion
coefficient represents a component that is itself local and is easy to interpret.
The wavelet expansion may allow a separation of components of a signal that
overlap in both time and frequency.

3. Wavelets are adjustable and adaptable. Because there is not just one wavelet,
they can be designed to fit individual applications. They are ideal for adaptive
systems (e.g. neural networks) that adjust themselves to suit a signal.



4. The generation of wavelets and the calculation of discrete wavelet transformis
well matched to the digital computer. It can be shown that the defining
equation for a wavelet uses no calculus. There are no derivates or integrals,
just multiplications and additions — operations that are basic to digital a
computer.

5.3. Multiresolution Formulation of Wavelets:
Both the mathematics and practical interpretations of wavel ets seem to be best served
by using the concept of resolution to define the effect of changing scale. To do thiswe
will start with a scaling function ¢(t)° rather than directly with the wavelet u(t).
Almost all of the so called first generation wavelets is constructed from a scaling
function. After the scaling function is defined from the concept of resolution, the
wavelet functions will be derived from it. A set of scaling functions can be defined
form the basic scaling function by integer translation:

P (X) = p(x—K) kez  geL’(R)
The subset of L%(R) spanned by these functions is defined by:

Vo = ?Jzan{qpk (X}

The over bar denotes closure. This means that

VEXeV, : f(0=Y ap,()

One can generaly increase the size of the subspace spanned by changing the time
scale of the scaling function. A two-dimensional family is generated from the basic
scaling function by scaling and trandlation:

i x (X) = 2”2(0(2] x—k)
whose span over Kk is:

v, =Span(p, 2/} = panlg, (0}

For j > 0 the span can be larger since ¢ k(t) is narrower and is translated in smaller
steps. It, therefore can represent finer detail. For j <0, ¢ k(t) iswider and is trandl ated
in larger steps. So these wider scaling functions can represent only coarse
information, and the space they span is smaller. A requirement for a scaling function
that it must be satisfy the following:

® In the previous chapters we used ¢ to identify the activation function, but now we use it to identify
the scaling function, because it is the usual notation for that. (We hope it won't be confusing)



VieZ:V,cV,,
with
NV, =1{0} and UV, =L*R)
j jez

jez

The space that contains high resolution signals will contain those of lower resolution
also. Because of the definition of Vj, the spaces have to satisfy a natural scaling
condition:

f(XeV, & f(2x)eV,,

The important features of a signal can better be described or parameterised, not by
using @ x(t) and increasing j to increase the size of the subspace spanned by the
scaling function, but by defining a slightly different set of functions s k(t) that span
the differences between the spaces spanned by the various scales of the scaling
function. These functions are called wavelets. We now define the wavelet spanned
subspace Wy by orthogonal complement of Vg in Vi:

V, =V, ®W,
which extends to:
V, =V, ®W, ®@W,
In general:

@D
=

L2 =V,

0

when V, is the initial space spanned by the scaling function. The initial space is
arbitrary and could be chosen at a higher or lower resolution:

or even | =— ispossible:

We have now constructed a set of functions that could span al of f e L%(R):

(=3 Da,w,(

j=—o0 k=—oc0

Note that things slightly more complicated when we use non-orthogonal wavelets.
We will use the following way to generate wavel ets from our mother wavelet:

-m/2

l//m,n (X) = a0 l//(a(;mx_ nbo) ’

whereag > 1, by > 0.



5.4. Numerically Stable Reconstruction:

With the wavelets, functions can be characterised by means of their wavelet
coefficients <f,y/m’n> (or <f,y7myn> if the wavelets are not orthogonal, where
(Wmn)mnez 1S the dual basis). But we want more than characterisability: we want to

reconstruct f in a numerically stable way from the coefficients. In order for such an
algorithm to exist, we must be sure that if the sequence (< fl,y/m’n>) _ is“close’ to

the sequence (< f21l//m,n>)m __, then necessarily f; and f were “close” as well. For that
we need atopology on the function space and on the sequence space. On the function

space L4(R) we aready have its Hilbert space topology; on the sequence space we
will choose a similar 1> —topology, in which the distance between sequences

cl = (Cﬁw,n)m.nez and CZ = (Cri,n)m.nez is measured by

2

1 2|2 1 2
|e* -] = XJehn—ch
mneZ

This implicitly assumes that the sequences (<f"//m,n>)mnez are in 1(Z%. That means
that:

2
< oo

> [(f ¥ma)

mneZ

In practice this is no problem. As we will see below, any reasonable wavelet (which
means that  has some decay in both time and frequency, and that its integral is

zero), and any choice for ap > 1, by > 0 leads to:

® 2 K )

“<Bff

We will assume that it holds. With the ((f,,,,)) _interpretation of “closeness’

m,ne

is small then | f|* should
be small aswell. In particular it holds if there existsan a < « so that

2 [(F ina)

mneZ

the stability requirement means that if mmsz Winn) ’

s |fff <a

Now we take an arbitrary f e L%R) and define:
f= ! f

Y (W]

mneZ
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Clearly:
~ 2 ~2
T <t pwe [T <
But this means:
-1
IR
or
@ A< 3 (W)

m,neZ

For some A=a* >0. On the other hand, if this holds for al f, then the distance

2
|f,— f,| cannot be arbitrary large if > mmz‘( fl,l/lm’n>—<f2,l//m'n>
Combining (1) and (2) we obtain that {y/m,n ‘mne Z} should constitute a frame:

is small.

Definition (frame):
A family of functions (¢;) ., inaHilbert space H is called a frame if:

3A>0:3B <oV e HAlF <Y|(f. ) <B|f[".
jed
We call A and B the frame bounds. If the two bounds are equal, then we call the frame

atight frame. (A tight frame with frame bounds 1 constitues an orthonormal basis)

Thus we can conclude that: to have a numerically stable reconstruction algorithm for f
from (f,y,,, ), we should requirethat y,,, constitute aframe.

Ingrid Daubenchies proved in (Daubenchies, 1992) that:

Theorem 5.4.1 (sufficient requirements for a frame):
Let  bethe Fourier transform of . If y,a, are such that

oo

O, 2l -o.

@ s Sliape) <o,
3 BO= St;pz y(ags)

1+|s) ™, e>0

y?(ag“§+s)‘ decays at least as fast as

then there exists (), >0 such that the y,,, constitute a frame for al choice of
by < (0y) ¢ - (Where .., = a;™ *w(a;™?x—nby,) ). Moreover (2) and (3) are satisfied



if, e.9. (&) < dé]”@+|£) 7 for some >0,y > o +1.

5.5. Building Wavelets from Logistic Functions:

Now we go back to our original problem: approximation with feedforward neura
networks. We will show that we can build a suitable mother wavelet by linear
combination of several logistic activation function (with the method of arranging the
neurons). If we can prove that, then we have aso proved the universal approximation
theorem in an alternative — multiresolution — way, because, as we saw, the function
space defined by waveletsis dense in L%(R). We will use ¢ inits original meaning: it
will be the activation function of an artificial neuron (specialy the standard logistic
function). We do it because we do not need a scaling function any more. (We directly
define our wavelet, not with a scaling function) To show that our constructed function
is awavelet we must prove, that itsintegral on the rea line is zero, and the functions
that are generated from it forms a frame.

Definition (logistic wavelet):
If ¢ isthe standard logistic function (@(x) = (1+e*)™) then we define the logistic
mother wavelet by:

y(¥) = —cp(ax+b)+cp(ax—b)+c,p(@x+b,)-c,p(a,x-b,)

where ¢y, Cp, &1, @, by, b, € R. Wewill restrict the parametersto let the integral of the
logistic wavelet be zero. (That is arequirement for a mother wavelet) The shape of the
wavelet looks like the Mexican hat. (See the left part of Figure 5.2)

Comment:
Note that these wavelets are not orthogonal! Thus if we want to compute the wavel et
coefficients then we need the dual basis.

Figure 5.2
The logistic mother wavelet; An alternative way to define a logistic mother wavel et



Comment:
An alternative way could be to construct a mother wavelet from the standard logistic
function is to smply take the difference of two logistic function:

V.. (X) =ce(a,xX)-c,p(a,Xx). (a, #a,) (Seetheright part of Figure 5.2) In that case
the integral of the function istrivially zero.

We now examine what kind of parameters are accepted to construct the logistic
mother wavelet:

Theorem 5.5.1 (integral of the logistic wavelet):

Iw(x)dx: (R CL :%
- a &,

Proof (5.5.1):
fp(ax=c, [(~p(ax+b)+p(ax—b))dx+c, [(p(ax+b,)—p(a,x—b,))dx=

2ch, |, 2,

_G _ S Cine __
—ai_i( @(x+b,) + p(x—b,))dx+ . _£(¢(x+b2) @(x—b,))dx -

because oj[((p(x+ b)-@(x-b))dx=2b . m

After that we will assume this holds for the parameters. Now we show that with the
logistic type of wavelets a numerically stable reconstruction is possible, because these
type of wavelets form a frame. We will prove that with the theorem 5.4.1, so we will
need the Fourier transform of our wavelet. We will use the following definition of the
Fourier transform:

F[f1(w) = oj[e““”‘ f (X)dx

Note that the usual definition of the Fourier transform contains a constant (like

1/+2rx), but we only need the Fourier transform to estimate a function, thus we
skipped this constant to made our formulas simpler. We will use the following basic
properties of the Fourier transform:

Flgo f](w)=e™ F[f(X)](w) where g(x)=x+b

F[gﬂ](w):iF[f(x)](gj where  g(x) = ax

Theorem 5.5.2 (logistic wavelets form a frame):
The wavelets that are generated from the logistic mother wavelet by

Yoo =3 w(ay™ ?x—nby) (where ap > 1, b > 0) form aframe,



Proof (5.5.2):
First we will compute the Fourier transform of the logistic (mother) wavelet. After

that we will show that the preconditions of the theorem 5.4.1 are hold for our wavelet,
thus the functions generated from that form a frame. We will express the Fourier
transform of our wavelet by the Fourier transform of its derivate:

Fly'1(w) = Ie"wx v (X)dx = [e"““l//(x)]_w _fe"wxlwz//(x)dx_—lw Je_'MW(X)dX—

= —iwF[y](w)

Note that we used the rule of partial integration. Now we have to compute the Fourier
transform of y’:

v’ (X) = —ca ¢’ (ax+b)+cap’(ax-b)+c,a,0(a,x+b,)-c,a¢ (a,x-b,)

Hence
W
Flylw) =—cae al—F[cﬂ[ j+claie al—F[qﬂ[aJ
Ziw2 w2
o™ i) cas™ el ¥)-
a, a, a, a,
o2 o e
|clsm( a [¢] a ic,sin 2, [¢] y

To compute this we only need the Fourier transform of the first derivate of our
logistic activation function:

0 A S—
- - -
(]_+e ) 2+ 2cosh(x) 4COShZ()2(j

iwx 7 WX = COS(\NX) = il
2 2

We calculated thisintegral by the formulas that can be find in (Gradshteyn, 1980).
Finally we have got the Fourier transform of our logistic wavelet:

Flyl(w) = [Zlclsm(ngF[qo][ j 2iczsin(w&jF[¢’][ﬂB:
& & a, a,
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M W7
:—2—Clsin[Wb1j & +2C23in[Wb2j & =
oA sinh[W”] Yo sinh[W”J
2 a,
s n(Wbl] s n(szj
2, a 2rc, a,

=— +
= sinh[vm] % sinh(wnj
8, a,

With this Fourier transform we will show by theorem 5.4.1 that the logistic wavelets
form aframe. First we will show that for all we R:

Va>0:Vy>a+1i|Fly](w)| < C|W|am

Note that this requires F[w](0) =0, but we required that from the parameters. From
the series expansions we easily obtain that:

gn(ax) =E+O(x2) for X—0
sinh(bx) b

Using this formulafor the computed Fourier transform we get:

27t 2mc, b
O Fpw=-To b 2T b
a, nla, a, 7nla,

=0

+0O(W?) = O(w?) for w—0

On the other hand:

sn@)|_ 1 1w

|sinh(bx)|~ sinh(bx) ~ 2

which implies:

a

2rc,
a'2

@ vwe Ri[Flglw)|< (22 e 4 T2 2

From (1) and (2) we easily obtain that for instance:

1
Flyl(w)] < CMW

Which implies the second and the third condition of the theorem 5.4.1. The only
remaining thing that we must prove is that:
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= 2
3 inf y(@l'é) >0
3 dnf n;jv/(ao &)
From (2) we conclude that there exist positive constants c;, ¢, such that:

Flyl(w)] < c,e "
consequently:

2 ~2c, Ml
Flyl@w)| <cie™™

Since a > 1 this means the series (3) converges very fast if m— . Also since for
m-— —oco:

Fiviw] <cfepwf =e 5 >0 <y

Hence also this converges if m — —eo . We can compute the exact values of the frame
bound if necessary by the formulas that can be find in (Daubenchies, 1992). m



Epilogue:

“You react, Critias, asif | professed to know
the answersto the questions | ask, and could
explain it all to you if | wished. However, the
oppositeistrue, for | amalso inquiring into
the truth of these matters.”

- Socrates, quoted in Plato’s Charmides

We have some useful results about the approximation with feedforward artificial
neural networks, however there are several open questions that came up and we had
not got enough time the analyze and answer them all. Here a brief list of the open
guestions:

e Generaization of our result to R—R™ functions is easy (almost trivial),
because we used biases that are independent from the function that we want to
approximate. But how could we generalise to R™ — R functions?

e We saw that our approximation can be optimal (the error will be minimal) in
the case when the biases are independent from the function that we want to
approximate (f). But how could we build an optima approximation if the
biases can depend on f?

e |s the well know backpropagation learning algorithm give this optimal
solution? If yes, how can we prove this? If not how can we build a learning
algorithm that give an optimal solution?

e If we use smooth functions as activation function (e.g. we use the logistic
function) it is possible that the derivates of the approximation approximates
the derivates of the function that we want to approximate up to some order.
How could we choose the parameters if we want an approximation with this
property? Or how steep must we set our function?

e How could we find a numerically effective (not only stable) way to compute
the wavel et coefficients of afunction with our mother wavel ets?

e We can change the property of our wavelet by varying the parameters. For the
fast computation it will be nice to have such a mother wavelet that has: ap = 2
and by = 1. How must we choose the parameters to reach this?

e How can we find the dual basis to our wavelets?

e How can we find a suitable a;, to finish the first proof that we tried to give for
the theorem 3.4.1?

e Proving the convergence of our multiresolution algorithm (the agorithm that
don’t use wavelets) is easy when our activation function is such that: ¢(x) =0
if x < c. But how can we prove the convergence for the general case?
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Appendix;:

“ One must learn by doing the thing;
for though you think you know it,
you have no certainty until you try.”
- Sophocles

For constructing an approximation of an fe C([0,1]) with an artificial neural network
which has a monotone-increasi ng activation functions (act) that has act(0) # 0 we can
use the following MapleV program: to build the approximation for a given number of
interpolating points (n) and for a given width (a) of the bells (the program returns a
lower estimation of the error):

We need the linear algebra package to build the approximation:

restart;
with(linalg) ;

The three “classical” activation function (needless to say, we can use any other
activation function with the given properties):

The threshold function:

act := proc(x)
if (x>=0) then
RETURN (1) ;
else
RETURN (0) ;
£i;
end;

The piecewise linear function:

act := proc(x)
if (x>=1/2) then
RETURN (1) ;
elif (x>=-1/2) then
RETURN (x+1/2) ;
else
RETURN (0) ;
£i;
end;

The logistic function:

act := proc (x)
RETURN (1/ (1+exp (-x)))
end;
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Building the bells (we can fix b to an arbitrary non-zero value):

bell := proc(x,a)
RETURN (act (a*x+b) -~act (a*x-b) )
end;

The approximation of f with an artificial neural network with 2(n+1) hidden neurons
(n+1 bells with a width):

approx := proc(f,n,a)
local F, B, v, i, j, k, temp, y, maxe;
global g, W;

B := linalg[matrix] (n+1,n+1);
F := linalgl[vector] (n+l);
W := linalg[vector] (n+1l) ;
for i from 1 to n+l1 do

F[i] := evalf(f((i-1)/n));
od;

for i from 1 to n+l1 do
for j from 1 to n+l do
B[i,j] := evalf(bell((i-1)/n-(j-1)/n,a))
od;

multiply (F, inverse(B)) ;
Ig-l;
:= proc(x)
local temp;
temp := add(W[i] *bell (x-(i-1)/n,a),i=1..n+1);
RETURN (temp) ;
end;
maxe := 0;
for k from 1 to 20*n+1 do
y := evalf ((k-1)/(20*n)) ;
temp f(y) - gly);
temp evalf (temp) ;
temp abs (temp) ;
if temp > maxe then maxe := temp f£i;
od;
RETURN (maxe) ;
end;

uQ =0
R

To build the approximation of f with 11 bells (22 hidden neurons), we can use:
approx (f,10,20) ;
We can plot the original function and its approximation by typing:

plot([f,g]lo~-1)i
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Appendixa:

“| hear, | forget;
| see, | remember;
| do, | understand!”
- Chinese proverb

This appendix contains of a Matlab program which can be use to build a
multiresolution approximation of a given function (defined on [0,1]). The file act.m
contains our activation function. We can use the built in logistic function as an
activation function (if we have the neural networks toolbox installed):

function ret = act (x);
ret = logsig(1l0*x) ;
return;

Or we can define the threshold (or any other) function by:

function ret = act (x);
for i = 1:length(x)
if x(i) < O

ret (i) = 0;
else
ret (i) = 1;
end;
end;
return;

The successive (multiresolution) approximation program (The input parameter fx
contains an arbitrary vector of the function values in [0,1] and n is the number of
layers that will be used during the approximation. We don’t have to use m):

function ap = succ(fx, n, m)

if (nargin < 3)

m = n;
end;
step = 1/ (length(fx)-1);
X = 0:step:1;
if (m==1)
ap = act(x) .* fx(round(length(fx)/2));
if (n == 1)
plot (x, fx,x,ap) ;
max_error = max(abs(fx - ap))
end;
return;

end;
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o

% pre-processing the indexes:

for i = 1:2:2% (m)
shift ((i+1)/2)
middle ((i+1)/2)
ind ((i+1)/2) =

end;

(i-1)./(2%m);
i./(2%m);
round ( ((length (fx)-1)*1i )./ (2"m)) ;

temp = succ(fx,n,m-1);
ap(l:length(fx)) = 0;

for i = 1:2" (m-1)

coeff (i) = (fx(ind(i))-temp(ind(i)));

for j = 1:(1i-1)

coeff (i) = coeff(i)- (act (m* (middle (i) -
shift(j))) .* coeff(j));

end;

coeff (i) = coeff (i) /act (m* (middle (i) -shift(i)));

ap = ap + act(m*(x-shift(i))) .* coeff(i) ;
end;

ap = ap + temp;

if (m == n)

plot (x, fx,x,ap) ;

max _error = max(abs(fx - ap))
end;

First we need to put the values of the function on [0,1] (in an arbitrary equidistant set
of points) into a vector, than we can use the program by:

X
fx

0:0.001:1;
sin (4*x+1) + (x+1) .7 2+1;

succ (fx, 6)

The program returns a lower estimation of the error and plots the original function and
its approximation.



(D)

(2)

3

(4)

(5)

(6)

(7)
(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

Bibliography:
G. Cybenko: Approximation by superpositions of sigmoidal functions.

Mathematics of Control, Signals, and Systems. 1989.

Kurt Hornik: Approximation Capabilities of Multilayer Feedforward Networks.
Neura Networks, vol. 4, 1991.

Kurt Hornik, Maxwell Stinchcombe and Halbert White: Multilayer Feedforward
Networks are Universal Approximators. Neural Networks, vol. 2, 1989.

Halbert White: Connectionist Nonparametric Regression:  Multilayer
Feedforward Networks Can Learn Arbitrary Mappings. Neural Networks, val. 3,
1990.

Pierre Baldi: Computing with Arrays of Bell-Shaped and Sigmoid Functions.
|EEE Transactions on Neural Networks, vol. 5, 1994.

Simon Haykin: Neural Networks, A comprehensive foundation. 2™ edition.
Prentice Hall, 1999.

Eduard Aved' yan: Learning Systems. Springer, 1995.

Mohamad H. Hassoun: Fundamentals of Artificial Neural Networks. MIT Press,
1995.

C. J. Thornton: Techniques in Computational Learning: an introduction.
Chapmann and Hall Computing, 1992.

Francoise Chatelin: Eigenvalues of Matrices. John Wiley and Sons Ltd, 1993.

Ward Cheney, Will Light: A Course in Approximation Theory. Brooks/Cole,
2000.

C. Sidney Burrus, Ramesh A. Gopinath, Haitao Guo: Introduction to Wavelets
and Wavelet Transforms. Prentice Hall, 1998.

Ingrid Daubenchies: Ten Lectures on Wavelets. Capital City Press, 1992,

Ingrid Daubenchies: Different Perspectives on Wavelets. American
Mathematical Society, 1993.

I. S. Gradshteyn and |I. M. Ryzhik: Table of Integrals, Series and Products.
Academic Press, 1980



