A Case for Bufferless Routing in On-Chip Networks

Thomas Moscibroda Microsoft Research Paper by

ISCA 2009
Austin, Texas
Presented by Bastian Amrhein

Onur Mutlu Carnegie Mellon University

Executive Summary

- Problem: Buffers in the routers of a on chip network occupy much physical area and consume a lot of energy. They ensure however time efficient routing.
- Proposal: New routing algorithms that use packet deflection can make buffers obsolete and thereby reduce the cost and power consumption of a on chip network
- Results: There are viable alternatives to buffered routing
 - □ Area savings of ~ 60%
 - Average energy consumption decrease by 39.4%
 - Average performance decrease by 0.5%
 - Worst-case performance decrease by 3.2%

Section Overview

- What are on-chip networks?
- What the authors propose
- What would be the benefits
- Sample experimental evaluation
- Summary of results & key takeaways
- Strengths/weaknesses of the paper
- Improvements
- Questions & Discussion

What are On-Chip Networks

- Connect cores, caches, memory banks etc....
- Similar to a Computer Network
 - □ Chip router ~ Network router
 - □ Core/L1 Cache ~ Host
 - L2 Cache ~ Server
- Every router has a buffer to store incoming data
- 2x2 mesh with 2 cores and 2 L2 caches:

Design Goals of a On-Chip Network

- High throughput
- Low latency
- Fairness
- Low complexity
- Small size
- Low cost
- Low energy consumption
 - Number of cores increases
 - Less heat
- Same metrics as in Computer Networks

The Problem with Buffers

- High power consumption (~40%)
- Large size (~75%)
- Increase latency
- Highly complex
- Can we get rid of buffers?

Section Overview

- What are on-chip networks?
- What the authors propose
- What would be the benefits
- Sample experimental evaluation
- Summary of results & key takeaways
- Strengths/weaknesses of the paper
- Improvements
- Questions & Discussion

Key Approach

- Instead of buffer routing, use hot potato routing
- Always route a packet
- The links in the system act as the new buffer
- If only one potato/data packet is present:
 - Same latency as with buffers
 - Same power consumption

How does this actually work?

- Flit Bufferless Routing (Flit Bless)
- Split data packet into flits (flow control units)
- Reroute flit to best link
- If no good link is available, flit is deflected
- Multiple flits are routed based on their age -> no deadlock or livelock

Bufferless Routing is not Bufferless

- Buffers are needed to prevent data loss
- Injection routers have more input ports, than output ports

Worm Bless

- A worm is a column of flits following the Head flit
- All flits could arrive together as one worm
- Head flit stores all necessary data to forward worm to next router
- Decrease computation needed for each flit

Worm deflection

What if a younger worm arrives after an older worm

Worm truncation

- What if an older worm arrives after a younger worm
- No deadlocks or livelocks

Routing Mechanism

- Throughput remains the same
- Latency can be improved
- More circuitry with information present.

Section Overview

- What are on-chip networks?
- What the authors propose
- What would be the benefits?
- Sample experimental evaluation
- Summary of results & key takeaways
- Strengths/weaknesses of the paper
- Improvements
- Questions & Discussion

Advantages of bufferless routing

- No routing buffers
- Simpel control flow
- Low router latency
- No dead- or livelocks
- Adaptivity

Disadvantages of bufferless routing

- Increased overall latency, because of deflection
- Lower saturation throughput
- Reduced bandwith
- Increased buffers in the receiver
- Increased link width and power consumption

Section Overview

- What are on-chip networks?
- What the authors propose
- What would be the benefits
- Sample experimental evaluation
- Summary of results & key takeaways
- Strengths/weaknesses of the paper
- Improvements
- Questions & Discussion

Experimental Evaluation

- Different chip-systems, all meshes
 - □ 4x4 with 8 Cores and 8 L2 Caches, sparse
 - 4x4 with 16 Cores and 16 L2 Caches, dense
 - 8x8 with 16 Cores and 64 L2 Caches, sparse
- Different workloads
 - Homogeneous, high propability of simultaneous accesses
 - Heterogeneous, more realistic
 - Applications & network intensity
 - Matlab, heavy
 - Milc, medium (=physical benchmark)
 - H264ref, low (=video encoder benchmark)
 - 2006 CPU Benchmark
 - Parallel applications?

Example Set Up: 4x4 8 Cores Homogeneous

Example Set Up: 4x4 16 Cores

Example Set Up: 8x8 16 Cores

■ 16 Cores and 64 L2 Caches

Energy consumption

- Homogeneous
- Matlab
- Perfect L2 Caches
- DO, MIN-AD & ROMM with Buffers
- Increase in linkenergy & routerenergy
- Decrease in bufferenergy

Speedup

Homogeneous

 $WeightedSpeedup = \sum_{i} IPC_{i}^{shared}/IPC_{i}^{alone}$

- Matlab
- Perfect L2 Caches
- DO, MIN-AD & ROMM with Buffers
- IPC alone with buffers = IPC alone without buffers
- Increase in sparse network & decrease in dense network

Section Overview

- What are on-chip networks?
- What the authors propose
- What would be the benefits
- Sample experimental evaluation
- Summary of results & key takeaways
- Strengths/weaknesses of the paper
- Improvements
- Questions & Discussion

Key Results

- Area reduction by 60.4% because of routing buffers
- Area of links increased by 18.75%
- Lower saturation throughput
- Config 1 (sparse) & Config 2 (dense)

Network Config 1	Perfect L2		Realistic L2	
	Average	Worst-Case	Average	Worst-Case
Δ Network Energy	-39.4%	-28.1%	-46.4%	-41.0%
Δ System Performance	-0.5%	-3.2%	-0.15%	-0.55%

Network Config 2	Perfect L2		Realistic L2	
	Average	Worst-Case	Average	Worst-Case
Δ Network Energy	-32.8%	-14.0%	-42.5%	-33.7%
Δ System Performance	-3.57%	-17.1%	-0.65%	-1.53%

Takeaways

- Bufferless routing can be usefull
- A network is not like every other network

Further Research

Congestion Controll

 "On-chip networks from a networking perspective: congestion and scalability in many-core interconnects" by George Nychis, Chris Fallin, Thomas Moscibroda & Onur Mutlu, published in ACM SIGCOMM Computer Communication in 2012

Router

 "CHIPPER: A low-complexity bufferless deflection router" by Chris Fallin, Chris Craik & Onur Mutlu, published in: 2011 IEEE 17th International Symposium on High Performance Computer Architecture

Section Overview

- What are on-chip networks?
- What the authors propose
- What would be the benefits
- Sample experimental evaluation
- Summary of results & key takeaways
- Strengths/weaknesses of the paper
- Improvements
- Questions & Discussion

Strengths

- Conclusions are clear
- Different benchmarks
- Intuitive idea
- Algorithms are well explained step by step
- Good base for further research up to this day

Weakness

- Knowledge prerequisite
- Experimental evaluation is confusing
 - What?
 - Why?
 - How?
 - Results are clear however
- Parallel applications
 - Divide & Conquer: Sum over list
 - All cores sum up their parts of the list
 - Send result all to the same cache bank ⇒ Congestion
- No acknowledgement of further directions of expansion

Section Overview

- What are on-chip networks?
- What the authors propose
- What would be the benefits
- Sample experimental evaluation
- Summary of results & key takeaways
- Strengths/weaknesses of the paper
- Improvements
- Questions & Discussion

Improvements

- Worm length?
 - All flits follow one Head flit
 - If deflected, all flits follow
- Network type?
 - Mesh
 - Torus
 - Something completey different
 - Higher Area, higher connectivity
 - Saturation throughput

Worm Sluggishness

 What if a long young worm arrives at the same time as two shorter and older worms

Worm Bless with more Truncation

 What if a long young worm arrives at the same time as two shorter and older worms

Network Type

Questions & Discussion

Discussion: Original Worm Algorithm

What if a long young worm arrives at the same time as two shorter and older worms

Discussion: Worm Bless with more Truncation

 What if a long young worm arrives at the same time as two shorter and older worms

Discussion: Better Worm Algorithm

- Larger worm, less headflits, Sluggish
- Smaller worm, more headflits, less Sluggish
- Why not both?
- Split at the right moment
 - Possible, since Information in Head-flits is saved in the Node
 - Does not change anything if no split occurs

Discussion: To Split or not To Split

- What should this be?
 - Another Node

Discussion: Worm Length

- What are the consequences on latency, power, throughput etc...
- Long Worms in Network with
 - High Contention
 - Low Contention
- Short Worms in Network with
 - High Contention
 - Low Contention

Discussion: Network Type

Discussion: Network Type

- Two Router per Element
- One Router per Element

A Case for Bufferless Routing in On-Chip Networks

Thomas Moscibroda Microsoft Research Paper by

ISCA 2009

Austin, Texas

Was presented to you by Bastian Amrhein

Onur Mutlu Carnegie Mellon University