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Problem:
ÅMemory density scalingof DRAM chips causes increasing vulnerability to 

RowHammer, but Ƴƻǎǘ ǎƻƭǳǘƛƻƴǎ ŎŀƴΩǘ ǎŎŀƭŜ ŀŎŎƻǊŘƛƴƎƭȅ
ÅCurrent solutions often require knowledge ofor modification to DRAMinternals

Goal:
ÅFind scalableand efficientway to prevent RowHammer without modifying DRAM chip

Key idea:
ÅSelectively throttlememory accesses that can cause bit-flips

Mechanism:
ÅTrackingall row activations and throttling RowHammer unsafe row accesses
ÅIdentifyingand throttling potential attacker threads

Results:
ÅHardware complexity: scalable
ÅPerformance & energy consumption: efficient & scalable 2
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Recap: DRAM
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DRAM & RowHammer

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

Problem: rapidly activating (opening) and precharging (closing) 
DRAM row can cause bit-flips in nearby rows
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DRAM & RowHammer
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Victimrows

Victimrows

DRAM & RowHammer

Vhigh

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM 
row can cause bit-flips in nearby rows
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Current solutions to RowHammer

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling
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Increased refresh rate

What: refresh (all!) DRAM rows more often to reduce probability of 
successful bitflip

RowHammer (RH) is getting worse:cannot prevent RH without unacceptable 
performance loss and power consumption increase

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling
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Reactive refresh

Requires proprietary knowledge on DRAM internals: need to know which rows are                    
adjacent to aggressor rows

Faulty rows/cells/columns           Differences in access latency of fastest & slowest cell

Some are probabilistic methods: do not prevent RowHammer completely

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling

What: observes activations and reacts by refreshing potential victim rows
e.g., TWiCe, PARA, ProHIT, MRLocΣ /!¢Σ /.¢Σ Χ
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Current solutions to RowHammer
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Physical isolation

What: separates physically sensitive data

e.g., by adding buffer rows in between (ZebRAM)

e.g., by separating memory rows of user and kernel mode (CATT)

RowHammer is getting worse:we need to provide greater isolation

wastes memory capacity

reduces fraction of cells we can protect from RH

Requires proprietary knowledge on DRAM internals: need to know which rows are 
adjacent to aggressor rows

Faulty rows/cells/columns           Differences in access latency of fastest & slowest cell

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling

Already defeated! 
PTHammerΣ ƻǇŎƻŘŜ ŦƭƛǇǇƛƴƎΣ Χ
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Physical isolation

Buffer row

Buffer row

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling

36Buffer row or guardrow or isolationrowƻǊ Χ



Physical isolation

Buffer rows

Buffer rows

Increased 
refresh 

rate

Reactive 
refresh

Physical 
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Proactive 
throttling
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Current solutions to RowHammer

Increased 
refresh 

rate

Reactive 
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Physical 
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Proactive 
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Proactive throttling

Challenge: performance overhead

Will we delay every access?

Challenge: area overhead

How do you track the number of row activations?

What: limit repeated access to the same row

e.g., by setting a minimum access delay

e.g., by limiting number of accesses to a row within refresh window

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling
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Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling

Proactive throttling

CanI get access 
to row X?

0:00:00:000

Countdown to next 
row activation

OK!
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Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling

Proactive throttling

CanI get access 
to row X?

0:00:00:005

Countdown to next 
row activation

OK!
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Current solutions to RowHammer

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling
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In search of a better solution

Efficient: low performance/area overhead

Scalable:we want things to work in the future

Implemented without knowledge of or modification to DRAM chip
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Key idea: selectively throttleRowHammer-like memory accesses by

Trackingactivation rates of all rows in an area-efficient way

Using tracking data to throttle RowHammer unsafe activations

Identifying and limiting row activation rates of potential attacker 
threads (minimizes performance degradation of benign threads)
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Mechanisms & 
Implementation
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BlockHammer =

RowBlocker AttackThrottler

+
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Memory 
Request

Scheduler

RowBlocker BL
(per DRAM bank)

&

RowBlocker HB
(per DRAM rank)
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RowBlocker BL
(per DRAM bank)
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RowBlocker BL

Goal 1:Track which rows have been activated and how many times

Goal 2: Blacklist when activation rate exceeds blacklisting threshold

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

How can we do this area-efficiently?
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Recap: Bloom filter

Question:does a set contain a certain element?

Main components: hash functions + bit array

Operations: insert, test, clear

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s
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Recap: Bloomfilter

H
a

s
h

F
u

n
ct

io
n

s
Element {hi1, hi2Σ Χϒ

h1 h2 h3 h4 hn

Question:does a set contain a certain element?

RowBlocker BL
(per DRAM bank)

H
a

sh
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ct
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s

51



Recap: Bloomfilter
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Recap: Bloomfilter
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CountingBloomfilter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

Idea: Counting Bloom filter (CBF)
(tracks number of times an element is inserted into filter)

RowBlocker BL
(per DRAM bank)
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CountingBloomfilter
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CountingBloomfilter
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CountingBloomfilter

Idea: Counting Bloom filter (CBF)

(tracks number of times an element is inserted into filter)

ButBloom filter is gettingsaturated
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CountingBloomfilter
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UnifiedBloomfilter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

But we ŎŀƴΩǘ ǇǊŜǾŜƴǘ ŦŀƭǎŜ ƴŜƎŀǘƛǾŜǎ
(without compensating for it in terms of space)

Idea: Unified Bloom filter (UBF)
(tracks all elements inserted into filter during specific time window)

RowBlocker BL
(per DRAM bank)
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s
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UnifiedBloomfilter

ÅBoth insert all elements into filter

ÅOnly active filter responds to test queries

ÅActive filter clears array at end of specified time interval (= epoch)

ÅSwitch roles every epoch

Unified Bloom filter: active + passive Bloom filter

Guarantees no false negatives
when tested for elements inserted in the last two epochs

RowBlocker BL
(per DRAM bank)
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s
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UnifiedBloomfilter
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UnifiedBloomfilter
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UnifiedBloomfilter
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UnifiedBloomfilter
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Dual countingBloomfilter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold))

Idea: dual counting Bloom filter (D-CBF)
= unified Bloom filter + counting Bloom filter

both filters use different hash functions
hash functions of active filter are altered at end of epoch

RowBlocker BL
(per DRAM bank)
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Dual countingBloomfilter

H
a

sh
F

u
n

ct
io

n
s

Row
Address

{hi1, hi2Σ Χϒ

h1 h2 h3 h4      h5      Χ6   h7   h8   9  hm

a1 ama2 a3

{hj1, hj2Σ Χϒ

h1 h2 h3 h4      h5      Χ6   h7   h8   9  hm

b1 bmb2 b3

Filter A: passive

Filter B: active

Min {bj1, bj2Σ Χϒ > NBL

Χ

Blacklisted

bj2bj1

RowBlocker BL
(per DRAM bank)
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Memory 
Request

Scheduler

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

&

RowBlocker
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RowBlocker HB
(per DRAM rank)

RowID Timestamp Validbit

RowBlocker HistoryBuffer (HB)
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RowBlocker HB

Goal 1:Track which rows were activated recently

Goal 2: Test if current row is one of them

RowBlocker HB
(per DRAM rank)

RowID          Timestamp     Validbit
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RowBlocker HB

What: circular first-in-first-out (FIFO) queue
(stores record of rows activated in last tdelay time window)

Operations: insert, test, (update)  

RowBlocker HB
(per DRAM rank)

RowID          Timestamp     Validbit
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RowBlocker HB
RowBlocker HB

(per DRAM rank)

RowID          Timestamp     Validbit

Row ID: rank-unique ID for all rows

Timestamp: current time

Valid bit

RowID Timestamp              Validbit

Tailpointer 
(youngestentry)

Head pointer 
(oldestentry)
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Update
RowBlocker HB

(per DRAM rank)

RowID          Timestamp     Validbit

Row ID: rank-unique ID for all rows

Now - Timestamp >= tdelay

Valid bit: set to 0

RowID Timestamp              Validbit

Tailpointer 
(youngestentry)

Head pointer 
(oldestentry)
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RowBlocker: is this row activation RH-safe?

Memory 
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)
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RowBlocker: is this row activationRH-safe?

Memory 
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)
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RowBlocker: is this row activationRH-safe?

Memory 
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)
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RowBlocker: is this row activationRH-safe?

Memory 
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)
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RowBlocker: is this row activationRH-safe?

Memory 
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)
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BlockHammer =

RowBlocker AttackThrottler

+
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AttackThrottler

Goal 1: identify potential 
attacker threads

Goal 2:limit their memory 
bandwidth usage
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AttackThrottler

Goal 1: identify potential 
attacker threads

Goal 2:limit their memory 
bandwidth usage
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1. Identifying (potential) attacker threads

How: RowHammer Likelihood Index (RHLI)

ὙὌὒὍ
ΠὦὰὥὧὯὰὭίὸὩὨὶέύὥὧὸὭὺὥὸὭέὲίὸὬὶὩὥὨὴὩὶὪέὶάίὸέὈὙὃὓὦὥὲὯ

άὥὼΠὸὭάὩίὦὰὥὧὯὰὭίὸὩὨὶέύὧὥὲὦὩὥὧὸὭὺὥὸὩὨὭὲὴὶέὸὩὧὸὩὨίώίὸὩά

Quantifies similarity ōŜǘǿŜŜƴ ŀ ƎƛǾŜƴ ǘƘǊŜŀŘΩǎ memoryaccess pattern    
and a real RowHammer attack
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RHLI = 0     
(benign 
threads)

More and more 
likely to induce 

bit-flip



1. Identifying (potential) attacker threads

Å¢ƘǊŜŀŘ ŀŎǘƛǾŀǘŜǎ ōƭŀŎƪƭƛǎǘŜŘ Ǌƻǿ ƛƴ ōŀƴƪ Ҧ ƛƴŎǊŜƳŜƴǘ ōƻǘƘ ŎƻǳƴǘŜǊǎ

ÅOnly active counter is used to calculate RHLI

Åwƻǿ.ƭƻŎƪŜǊ ŎƭŜŀǊǎ ŀŎǘƛǾŜ ŦƛƭǘŜǊ ƛƴ ōŀƴƪ Ҧ !ǘǘŀŎƪ¢ƘǊƻǘǘƭŜǊ ŎƭŜŀǊǎ ŀƭƭ 
active counters in bank and switches roles

2 counters: active + passive counter

Calculates RHLI from rows blacklisted in last two epochs

Idea: 2 counters per <thread, bank> pair, used same 
time-interleaving mechanism of D-CBF
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AttackThrottler

Goal 1: identify potential 
attacker threads

Goal 2:limit their memory 
bandwidth usage
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2. Limiting memory bandwidth usage

How: ōȅ ŀǇǇƭȅƛƴƎ ǉǳƻǘŀ ǘƻ ǘƘǊŜŀŘΩǎ ǘƻǘŀƭ ƛƴ-flight memory requests

ὗόέὸὥͯ
ρ

ὙὌὒὍ

[ŜǎǎŜƴǎ ƳŜƳƻǊȅ ōŀƴŘǿƛŘǘƘ ǳǎŀƎŜ ƻŦ ŀǘǘŀŎƪŜǊ ǘƘǊŜŀŘǎ Ҧ ŦǊŜŜǎ ǳǇ 
memory bandwidth for benign threads

Thread keeps activating blacklisted row: 
wI[L ƛƴŎǊŜŀǎŜǎ Ҧ quota decreases
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Threadreaches quota:
ŎŀƴΩǘ ƳŀƪŜ ƴŜǿ ƳŜƳƻǊȅ ǊŜǉǳŜǎǘ

(until ongoing request is completed)



AttackThrottler: 3rd goal?

Goal 1: identify potential 
ŀǘǘŀŎƪŜǊ ǘƘǊŜŀŘǎ Ҧ wI[L

Goal 2:limit their memory 
ōŀƴŘǿƛŘǘƘ ǳǎŀƎŜ Ҧ ǉǳƻǘŀ
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3. Share info with the Operating System

What: Share <thread, DRAM bank> RHLI values with OS

Goal: mitigate RH attack at software level
e.g., by killing or deschedulingattacker thread
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Results

99



We compare BlockHammer with:

Baseline system: no RH mitigation

Three probabilistic mitigation mechanisms: PARA, ProHIT, MRLoc

Three deterministic mitigation mechanisms: CBT, TWiCe, Graphene
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Results

Hardware complexity analysis
Ҧ ǎŎŀƭŀōƭŜ ϧ ƭƻǿ Ŏƻǎǘ

Performance & energy consumption
Ҧ ǎŎŀƭŀōƭŜ ϧ ŜŦŦƛŎƛŜƴǘ
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Hardware complexity analysis
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Performance & energy consumption
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1. Hardware complexity analysis

Area 
(mm2)

Area 
(%CPU)

Access 
Energy

Static 
Power
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ÅPARA, PRoHIT, MRLocҦ ŜȄǘǊŜƳŜƭȅ ŀǊŜŀ-efficient (because probabilistic)

ÅGraphene << TWiCe, BlockHammer < CBT

1. Hardware complexity analysis
Area 

(mm2)
Area 

(%CPU)

Access 
Energy

Static 
PowerRowHammer threshold 32K
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ÅPARA, PRoHIT, MRLocҦ ŜȄǘǊŜƳŜƭȅ ŀǊŜŀ-efficient (because probabilistic)

ÅGraphene << TWiCe, BlockHammer < CBT

ÅGraphene x28.5, TWiCEx34.5, CBT x19.7 ҭ BlockHammer x11.2

ÅNew order: Graphene < BlockHammer << TWiCE<< CBT
ÅBlockHammer is catching up!

1. Hardware complexity analysis
Area 

(mm2)
Area 

(%CPU)

Access 
Energy

Static 
PowerRowHammer threshold 32K

RowHammer threshold 1K
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1. Hardware complexity analysis

Conclusion 1: BlockHammer is more scalablethan other 
RowHammer mitigation mechanisms

Conclusion 2: Graphene mostly 
ōŜǘǘŜǊ ǘƘŀƴ .ƭƻŎƪIŀƳƳŜǊΧ

ŦƻǊ ƴƻǿ ŀǘ ƭŜŀǎǘΧ

wƻǿIŀƳƳŜǊ ǿƛƭƭ ƎŜǘ ǿƻǊǎŜ Ҧ 
maybe < 1K? (currently at 9.6K)

Graphene does not scale as well!
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Results

Hardware complexity analysis
Ҧ ǎŎŀƭŀōƭŜ ϧ ƭƻǿ Ŏƻǎǘ

Performance & energy consumption
Ҧ ǎŎŀƭŀōƭŜ ϧ ŜŦŦƛŎƛŜƴǘ
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2. Performance & energy consumption

Single-core system 
performance

Eight-core system 
performance

Scalability

Without RH attack
With RH attack

Without RH attack
With RH attack
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2. Performance & energy consumption

BlockHammer has no performance or energy overhead for single-
core benign applications
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2. Performance & energy consumption

Single-core system 
performance

Eight-core system 
performance

Scalability

Without RH attack (8B)
With RH attack (7B, 1RH)

Without RH attack
With RH attack
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2. Performance & energy consumption

BlockHammer has competitive performance and energy 
consumption when no attack is present 111

higher = better higher = better lower = better lower = better



2. Performance & energy consumption

BlockHammer has much higher performance of benign applications 
and lower DRAM energy consumption when attack is present112

higher = better higher = better lower = better lower = better



2. Performance & energy consumption

Single-core system 
performance

Eight-core system 
performance

Scalability

Without RH attack
With RH attack

Without RH attack
With RH attack
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2. Performance & energy consumption

BlockHammer has negligible performance and energy consumption 
overheads and still does if RH worsens (when no attack is present)114

higher = better higher = better lower = better lower = better


