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Problem:
• Memory density scaling of DRAM chips causes increasing vulnerability to 

RowHammer, but most solutions can’t scale accordingly
• Current solutions often require knowledge of or modification to DRAM internals

Goal:
• Find scalable and efficient way to prevent RowHammer without modifying DRAM chip

Key idea:
• Selectively throttle memory accesses that can cause bit-flips

Mechanism:
• Tracking all row activations and throttling RowHammer unsafe row accesses
• Identifying and throttling potential attacker threads

Results:
• Hardware complexity: scalable
• Performance & energy consumption: efficient & scalable 2
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Recap: DRAM
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DRAM & RowHammer

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

Problem: rapidly activating (opening) and precharging (closing) 
DRAM row can cause bit-flips in nearby rows
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Victim rows

Victim rows

DRAM & RowHammer

Vhigh

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM 
row can cause bit-flips in nearby rows
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DRAM & RowHammer
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Cause: memory density scaling
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Current solutions to RowHammer

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling
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Increased refresh rate

What: refresh (all!) DRAM rows more often to reduce probability of 
successful bitflip

RowHammer (RH) is getting worse: cannot prevent RH without unacceptable 
performance loss and power consumption increase

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling
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Reactive refresh

Requires proprietary knowledge on DRAM internals: need to know which rows are                    
adjacent to aggressor rows

● Faulty rows/cells/columns           ● Differences in access latency of fastest & slowest cell

Some are probabilistic methods: do not prevent RowHammer completely

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling

What: observes activations and reacts by refreshing potential victim rows
e.g., TWiCe, PARA, ProHIT, MRLoc, CAT, CBT, …
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Current solutions to RowHammer
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Physical isolation

What: separates physically sensitive data

e.g., by adding buffer rows in between (ZebRAM)

e.g., by separating memory rows of user and kernel mode (CATT)

RowHammer is getting worse: we need to provide greater isolation

● wastes memory capacity

● reduces fraction of cells we can protect from RH

Requires proprietary knowledge on DRAM internals: need to know which rows are 
adjacent to aggressor rows

● Faulty rows/cells/columns           ● Differences in access latency of fastest & slowest cell

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling

Already defeated! 
PTHammer, opcode flipping, …
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Physical isolation

Buffer row

Buffer row

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling

36Buffer row or guard row or isolation row or …



Physical isolation

Buffer rows

Buffer rows

Increased 
refresh 

rate

Reactive 
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Physical 
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Proactive 
throttling
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Current solutions to RowHammer
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Proactive throttling

Challenge: performance overhead

Will we delay every access?

Challenge: area overhead

How do you track the number of row activations?

What: limit repeated access to the same row

e.g., by setting a minimum access delay

e.g., by limiting number of accesses to a row within refresh window

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling

39



Increased 
refresh 

rate

Reactive 
refresh

Physical 
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Proactive 
throttling

Proactive throttling

Can I get access 
to row X?

0:00:00:000

Countdown to next 
row activation

OK!
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Proactive throttling

Can I get access 
to row X?

0:00:00:005

Countdown to next 
row activation

OK!
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Current solutions to RowHammer

Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling
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In search of a better solution

Efficient: low performance/area overhead

Scalable: we want things to work in the future

Implemented without knowledge of or modification to DRAM chip
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Key idea: selectively throttle RowHammer-like memory accesses by

Tracking activation rates of all rows in an area-efficient way

Using tracking data to throttle RowHammer unsafe activations

Identifying and limiting row activation rates of potential attacker 
threads (minimizes performance degradation of benign threads)
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Mechanisms & 
Implementation
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BlockHammer =

RowBlocker AttackThrottler

+
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Memory 
Request

Scheduler

RowBlocker BL
(per DRAM bank)

&

RowBlocker HB
(per DRAM rank)
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RowBlocker BL

Goal 1: Track which rows have been activated and how many times

Goal 2: Blacklist when activation rate exceeds blacklisting threshold

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

How can we do this area-efficiently?
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Recap: Bloom filter

Question: does a set contain a certain element?

Main components: hash functions + bit array

Operations: insert, test, clear

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s
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Recap: Bloom filter
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Counting Bloom filter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

Idea: Counting Bloom filter (CBF)
(tracks number of times an element is inserted into filter)
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Counting Bloom filter

Idea: Counting Bloom filter (CBF)

(tracks number of times an element is inserted into filter)

But Bloom filter is getting saturated

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

65



Counting Bloom filter
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Unified Bloom filter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

But we can’t prevent false negatives
(without compensating for it in terms of space)

Idea: Unified Bloom filter (UBF)
(tracks all elements inserted into filter during specific time window)

RowBlocker BL
(per DRAM bank)
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Unified Bloom filter

• Both insert all elements into filter

• Only active filter responds to test queries

• Active filter clears array at end of specified time interval (= epoch)

• Switch roles every epoch

Unified Bloom filter: active + passive Bloom filter

Guarantees no false negatives
when tested for elements inserted in the last two epochs

RowBlocker BL
(per DRAM bank)
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Unified Bloom filter
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Unified Bloom filter
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Unified Bloom filter
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Unified Bloom filter
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Dual counting Bloom filter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold))

Idea: dual counting Bloom filter (D-CBF)
= unified Bloom filter + counting Bloom filter

● both filters use different hash functions
● hash functions of active filter are altered at end of epoch

RowBlocker BL
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Dual counting Bloom filter
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Memory 
Request

Scheduler

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

&

RowBlocker
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RowBlocker HB
(per DRAM rank)

Row ID Timestamp Valid bit

RowBlocker History Buffer (HB)
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RowBlocker HB

Goal 1: Track which rows were activated recently

Goal 2: Test if current row is one of them

RowBlocker HB
(per DRAM rank)

Row ID          Timestamp     Valid bit
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RowBlocker HB

What: circular first-in-first-out (FIFO) queue
(stores record of rows activated in last tdelay time window)

Operations: insert, test, (update)  

RowBlocker HB
(per DRAM rank)

Row ID          Timestamp     Valid bit
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RowBlocker HB
RowBlocker HB

(per DRAM rank)

Row ID          Timestamp     Valid bit

Row ID: rank-unique ID for all rows

Timestamp: current time

Valid bit

Row ID Timestamp              Valid bit

Tail pointer 
(youngest entry)

Head pointer 
(oldest entry)
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Update
RowBlocker HB

(per DRAM rank)

Row ID          Timestamp     Valid bit

Row ID: rank-unique ID for all rows

Now - Timestamp >= tdelay

Valid bit: set to 0

Row ID Timestamp              Valid bit

Tail pointer 
(youngest entry)

Head pointer 
(oldest entry)
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RowBlocker: is this row activation RH-safe?

Memory 
Request

Scheduler
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(per DRAM bank)

RowBlocker HB
(per DRAM rank)
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RowBlocker: is this row activation RH-safe?

Memory 
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(per DRAM bank)
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(per DRAM rank)
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BlockHammer =

RowBlocker AttackThrottler

+
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AttackThrottler

Goal 1: identify potential 
attacker threads

Goal 2: limit their memory 
bandwidth usage
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AttackThrottler

Goal 1: identify potential 
attacker threads

Goal 2: limit their memory 
bandwidth usage
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1. Identifying (potential) attacker threads

How: RowHammer Likelihood Index (RHLI)

𝑅𝐻𝐿𝐼 =
# 𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡𝑒𝑑 𝑟𝑜𝑤 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑟𝑒𝑎𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠 𝑡𝑜 𝐷𝑅𝐴𝑀 𝑏𝑎𝑛𝑘

𝑚𝑎𝑥 # 𝑡𝑖𝑚𝑒𝑠 𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡𝑒𝑑 𝑟𝑜𝑤 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑖𝑛 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚

Quantifies similarity between a given thread’s memory access pattern    
and a real RowHammer attack
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RHLI = 0     
(benign 
threads)

More and more 
likely to induce 

bit-flip



1. Identifying (potential) attacker threads

• Thread activates blacklisted row in bank → increment both counters

• Only active counter is used to calculate RHLI

• RowBlocker clears active filter in bank → AttackThrottler clears all 
active counters in bank and switches roles

2 counters: active + passive counter

Calculates RHLI from rows blacklisted in last two epochs

Idea: 2 counters per <thread, bank> pair, used same 
time-interleaving mechanism of D-CBF
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AttackThrottler

Goal 1: identify potential 
attacker threads

Goal 2: limit their memory 
bandwidth usage
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2. Limiting memory bandwidth usage

How: by applying quota to thread’s total in-flight memory requests

𝑄𝑢𝑜𝑡𝑎 ~
1

𝑅𝐻𝐿𝐼

Lessens memory bandwidth usage of attacker threads → frees up 
memory bandwidth for benign threads

Thread keeps activating blacklisted row: 
RHLI increases → quota decreases

96

Thread reaches quota:
can’t make new memory request

(until ongoing request is completed)



AttackThrottler: 3rd goal?

Goal 1: identify potential 
attacker threads → RHLI

Goal 2: limit their memory 
bandwidth usage → quota
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3. Share info with the Operating System

What: Share <thread, DRAM bank> RHLI values with OS

Goal: mitigate RH attack at software level
e.g., by killing or descheduling attacker thread
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Results
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We compare BlockHammer with:

Baseline system: no RH mitigation

Three probabilistic mitigation mechanisms: PARA, ProHIT, MRLoc

Three deterministic mitigation mechanisms: CBT, TWiCe, Graphene
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Results

Hardware complexity analysis
→ scalable & low cost

Performance & energy consumption
→ scalable & efficient
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Results

Hardware complexity analysis
→ scalable & low cost

Performance & energy consumption
→ scalable & efficient
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1. Hardware complexity analysis

Area 
(mm2)

Area 
(%CPU)

Access 
Energy

Static 
Power
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• PARA, PRoHIT, MRLoc → extremely area-efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer < CBT

1. Hardware complexity analysis
Area 

(mm2)
Area 

(%CPU)

Access 
Energy

Static 
PowerRowHammer threshold 32K
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• PARA, PRoHIT, MRLoc → extremely area-efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer < CBT

• Graphene x28.5, TWiCE x34.5, CBT x19.7 ↔ BlockHammer x11.2

• New order: Graphene < BlockHammer << TWiCE << CBT
• BlockHammer is catching up!

1. Hardware complexity analysis
Area 

(mm2)
Area 

(%CPU)

Access 
Energy

Static 
PowerRowHammer threshold 32K

RowHammer threshold 1K
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1. Hardware complexity analysis

Conclusion 1: BlockHammer is more scalable than other 
RowHammer mitigation mechanisms

Conclusion 2: Graphene mostly 
better than BlockHammer…

for now at least…

● RowHammer will get worse → 
maybe < 1K? (currently at 9.6K)

● Graphene does not scale as well!
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Results

Hardware complexity analysis
→ scalable & low cost

Performance & energy consumption
→ scalable & efficient
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2. Performance & energy consumption

Single-core system 
performance

Eight-core system 
performance

Scalability

Without RH attack
With RH attack

Without RH attack
With RH attack
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2. Performance & energy consumption

BlockHammer has no performance or energy overhead for single-
core benign applications
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2. Performance & energy consumption

Single-core system 
performance

Eight-core system 
performance

Scalability

Without RH attack (8B)
With RH attack (7B, 1RH)

Without RH attack
With RH attack

110



2. Performance & energy consumption

BlockHammer has competitive performance and energy 
consumption when no attack is present 111

higher = better higher = better lower = better lower = better



2. Performance & energy consumption

BlockHammer has much higher performance of benign applications 
and lower DRAM energy consumption when attack is present112

higher = better higher = better lower = better lower = better



2. Performance & energy consumption

Single-core system 
performance

Eight-core system 
performance

Scalability

Without RH attack
With RH attack

Without RH attack
With RH attack
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2. Performance & energy consumption

BlockHammer has negligible performance and energy consumption 
overheads and still does if RH worsens (when no attack is present)114

higher = better higher = better lower = better lower = better



2. Performance & energy consumption

BlockHammer has significantly better performance and lower 
energy consumption as RH worsens (when attack is present)115

higher = better higher = better lower = better lower = better



2. Performance & energy consumption

Conclusion 1: When the system is not under attack, 
BlockHammer is competitive with the other state-of-the-art 

mechanisms, also at the lowest RH thresholds

Conclusion 2: In the presence of a RH attack, BlockHammer has 
significantly better performance and lower energy consumption than 

all other state-of-the-art mechanisms, even at lower RH thresholds
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Summary
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Summary & Conclusion
Problem:

• Memory density scaling of DRAM chips causes increasing vulnerability to RowHammer, but most 
solutions can’t scale accordingly

• Current solutions often require knowledge of or modification to DRAM internals

Goal:
• Find a scalable and efficient way to prevent RowHammer, without knowledge of or modification to 

DRAM internals

Mechanisms:
• RowBlocker: tracking all row activations efficiently (by using Bloom filters) and throttling

RowHammer unsafe row accesses

• AttackThrottler: identifying (RHLI) and throttling (quota) potential attacker threads

Results:
• Hardware complexity: most scalable solution (Graphene currently more efficient but not as scalable)

• Performance & energy:      No RowHammer attack: competitive, even at lower RH thresholds

RowHammer attack: significantly better than all other solutions
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Strengths & 
Weaknesses
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Strengths

• BlockHammer still scales well when DRAM chips are getting more 
vulnerable to RowHammer

• Implementation requires no knowledge of or modifications to DRAM 
internals (completely implemented in memory controller)

• Makes distinction between benign applications and potential attacks

• Introduces many new concepts and even more possible improvements

• Innovative idea → groundwork for new type of RowHammer mitigation: 
proactive throttling
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Weaknesses

• Completely implemented in memory controller → cannot be 
implemented in already manufactured processor chips

• Some empirically-determined parameters (e.g., Bloom filter size)
• Partially determines false positive rate → room for improvement!

• Evaluation is simulated on DDR4-based memory subsystem → what about 
LPDDR4?

• Results probably similar

• And hardware designers will redo it anyway…
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Discussion
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Discussion
• Should we always aim for deterministic solutions or are probabilistic 

methods not that bad?

• Can we lower BlockHammer’s hardware complexity by adopting a 
probabilistic approach? What would you change in BlockHammer to 
achieve that?
• Remember:

BlockHammer = RowBlocker (D-CBF + HB) + AttackThrottler (RHLI + quota)

• Is it a good idea to modify BlockHammer into a probabilistic 
mitigation mechanism? Why (not)?

• Are there other ways to reduce BlockHammer’s hardware 
complexity?
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Discussion
• Once we can quickly reverse-engineer DRAM address mappings, will 

BlockHammer still be the best approach?

• What would be the ideal RowHammer mitigation mechanism and 
why?
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Increased 
refresh 

rate

Reactive 
refresh

Physical 
isolation

Proactive 
throttling

Discussion
• Do you think we can combine (parts of) BlockHammer with other 

mitigation mechanisms? What would be the (dis)advantages?
• Remember:

BlockHammer = RowBlocker (D-CBF + HB) + AttackThrottler (RHLI + quota)

• Do you have any other ideas to improve BlockHammer?

125

= victim row refresh
- challenge: finding victim rows
- some probabilistic methods

← BlockHammer
using buffer/isolation rows =
- challenge: finding victim rows
- RH gets worse → need more 

isolation

refreshing all DRAM rows =
- high performance loss

& energy consumption



Discussion
• What can we do with the RHLI at the software level?

• E.g. killing or descheduling a thread

• What problems would you encounter?
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Backup Slides
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Insert
RowBlocker HB

(per DRAM rank)

Row ID          Timestamp     Valid bit

Row ID: rank-unique ID for all rows

Timestamp: current time

Valid bit: set to 1

Row ID Timestamp              Valid bit

Tail pointer 
(youngest entry)

Head pointer 
(oldest entry)
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Test: row recently activated?
RowBlocker HB

(per DRAM rank)

Row ID          Timestamp     Valid bit

Row ID == to be accessed row

Timestamp

Valid bit == 1

Row ID Timestamp              Valid bit

Tail pointer 
(youngest entry)

Head pointer 
(oldest entry)
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Test: row recently activated?
RowBlocker HB

(per DRAM rank)

Row ID          Timestamp     Valid bit

Row ID == to be accessed row

Timestamp

Valid bit == 1

Row ID Timestamp              Valid bit

Tail pointer 
(youngest entry)

Store row addresses 
in CAM

Head pointer 
(oldest entry)
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• Compare BlockHammer with
• (Baseline system: no RH mitigation)

• 3 probabilistic mitigation mechanisms (errors still possible)
• PARA

• ProHIT

• MRLoc

• 3 deterministic mitigation mechanisms (usually area overhead)
• CBT

• TWiCe

• Graphene

Comparison

131



PARA: definition

• = Probabilistic Adjacent Row Activation

• Row gets activated → adjacent rows get activated (= refreshed) with 
probability p
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PARA: mechanism

• Remember: Reactive refresh

Vhigh
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PARA: mechanism

• Remember: Reactive refresh

Vlow
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PARA: mechanism

• Remember: Reactive refresh

Vhigh
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PARA: mechanism

• Remember: Reactive refresh

REFRESH
with probability p

REFRESH
with probability p
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PARA: mechanism

• Remember: Reactive refresh

REFRESH
with probability p

REFRESH
with probability p
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PARA: mechanism

• Remember: Reactive refresh

REFRESH
with probability p

REFRESH
with probability p
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PARA: weaknesses

• Cannot prevent bit-flips with 100% certainty (probabilistic!)

• Performance → vulnerable to applications with mix of few frequently 
activated rows and many randomly activated ones (often the case in 
memory-intensive programs) → solution: ProHIT

• Knowledge on in-DRAM mapping needed
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ProHIT: definition

• Based on PARA

• Selects victim rows by considering the access patterns of applications 
(on top of probabilistic selection) → done by Probabilistic History 
Table

• Key operations: row activation →
• Probabilistic table promotion (from cold to hot)

• Probabilistic promotion (from hot to hotter, i.e. higher priority)

• Probabilistic insertion (into highest priority cold table slot)

• Probabilistic eviction (one of the cold entries is evicted)
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ProHIT: mechanism

Activate row K

Row E

Row D

Row G

Row F

Row C

Row B

Row H

Row A

Lowest priority

Highest priorityH
o

t tab
le

C
o

ld
 tab

le
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ProHIT: mechanism

Activate row K

Row E

Row D

Row G

Row F

Row C

Row B

Row H

Row A
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ProHIT: mechanism

Activate row K

Row E

Row D

Row G

Row F

Row C

Row B

Row H

Row A

‘Randomly’ select cold 
row to be evicted 
(influenced by priority)
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Activate row K

Row J

Row D

Row F

Row E

Row C

Row B

Row H

Row A

ProHIT: mechanism
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Activate row I

Row J

Row D

Row F

Row E

Row C

Row B

Row H

Row A

ProHIT: mechanism
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Activate row I

Row J

Row D

Row F

Row E

Row C

Row B

Row H

Row A

ProHIT: mechanism
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Activate row I

Row J

Row D

Row F

Row E

Row C

Row B

Row H

Row A
Promote to ‘random’ 
hot entry (with 
probability based on 
priority)

ProHIT: mechanism
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Activate row I

Row D

Row C

Row F

Row E

Row J

Row B

Row H

Row A
Promote to ‘random’ 
hot entry (with 
probability based on 
priority)

ProHIT: mechanism
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After specific 
time interval

Row D

Row C

Row F

Row E

Row J

Row B

Row H

Row A

ProHIT: mechanism
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Row D

Row C

Row F

Row E

Row J

Row B

Row H

ProHIT: mechanism
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• Still cannot prevent bit-flips with 100% certainty (probabilistic!)

• But at least we have better performance!

• Knowledge on in-DRAM mapping still needed

ProHIT: weaknesses
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MRLoc: definition

• Based on PARA

• Mitigating Row-hammering based on memory Locality

• Optimizes refresh probability based on memory locality
• If a certain row has been accessed recently, a higher probability is assigned to 

its corresponding victim rows

• Victim rows are stored in queue
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MRLoc: mechanism

From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.
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From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.

MRLoc: mechanism
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From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.

MRLoc: mechanism
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• Cannot prevent bit-flips with 100% certainty (probabilistic!)

• Even worse performance now …

• Knowledge on in-DRAM mapping needed

MRLoc: weaknesses
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Comparison

• Compare BlockHammer with
• (Baseline system: no RH mitigation)

• 3 probabilistic mitigation mechanisms
• PARA

• ProHIT

• MRLoc

• 3 deterministic mitigation mechanisms
• CBT

• TWiCe

• Graphene
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CBT: definition

• = Counter-Based Tree

• Tree of counters that count row activations in disjoint memory 
regions
• Whenever parent node reaches certain threshold, memory region is halved 

(one half for each child) 

• Predefined threshold for each level

• Leaf node reaches threshold: counter reset + refresh of respective memory 
region
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CBT: mechanism
0 Threshold = 2

[1, 32]
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0

Activate row 1

Threshold = 2

[1, 32]CBT: mechanism
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1

Activate row 1

Threshold = 2

[1, 32]CBT: mechanism
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1

Activate row 4

Threshold = 2

[1, 32]CBT: mechanism
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2

Activate row 4

Threshold = 2

[1, 32]CBT: mechanism
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2 Threshold = 2

[1, 32]

2 Threshold = 5

[1, 16]

2

[17, 32]

CBT: mechanism
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2 Threshold = 2

[1, 32]

2 Threshold = 5

[1, 16]

2

[17, 32]
Activate row 4

CBT: mechanism
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2 Threshold = 2

[1, 32]

3 Threshold = 5

[1, 16]

2

[17, 32]
Activate row 4

CBT: mechanism
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2 Threshold = 2

[1, 32]

5 Threshold = 5

[1, 16]

2

[17, 32]
And so on …

7 Threshold = 7

[1, 8]

5

[9, 16]

CBT: mechanism
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2 Threshold = 2

[1, 32]

5 Threshold = 5

[1, 16]

2

[17, 32]

Reset & Refresh!!
0 Threshold = 7

[1, 8]

5

[9, 16]

CBT: mechanism
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0 Threshold = 2

[1, 32]

At end of refresh period 
(e.g. 64 ms)

CBT: mechanism
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CBT: weaknesses

• Area vs. performance trade-off
• More levels means smaller memory region size and thus more correct 

refreshes (better performance), but at higher area cost

• Assumes rows are contiguous but might not be the case → DRAM 
remaps addresses internally
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TWiCe: definition

• = Time Window Counter based row refresh

• Maximum number of DRAM ACTs over tREFW is bounded

• Counter table:      Valid bit | Row address | Activation count | Life
• Counter table + counter logic

• Activation count: records number of activations to the target row address

• Valid bit: is entry valid?

• Life: # consecutive pruning intervals for which entry stays valid in the table

171



TWiCe: mechanism

• Row activation
• Not in table → allocate entry

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.172



• Row activation
• Not in table → allocate entry

• In table → increment activation count

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.

TWiCe: mechanism
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• Activation count reaches threshold → refresh victim rows & set valid 
bit to 0

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.

TWiCe: mechanism
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• After each pruning interval
• All entries with activation count < thPI x life → removed (NOT refreshed)

• Activation count ≥ thPI x life → increment life

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.

TWiCe: mechanism
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• Relatively large area overhead as RH gets worse! (in comparison to BH 
and Graphene)

• Needs to identify victim rows → requires knowledge of DRAM 
internals!

TWiCe: weaknesses
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Graphene: definition

• Misra-Gries algorithm
• Solves frequent elements problem

• Find all elements in a (finite!) stream that occur more than a given fraction of 
the time

• Here: elements = memory requests
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Graphene: mechanism

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020

• Activate row
• Row in table → increase count
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• Activate row
• Row not in table AND spillover count < count of all entries → increment 

spillover count

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020

Graphene: mechanism
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• Activate row
• Row not in table AND spillover count >= count of some entry X → replace 

entry X with new row + increment count of that row

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020

Graphene: mechanism
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• Count == (multiple of) threshold → refresh victim rows

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020

Graphene: mechanism

181



• Needs to identify victim rows → requires knowledge of DRAM 
internals

Currently one of the best solutions (has good performance and low 
area overhead)

Graphene: weaknesses
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1. Hardware complexity analysis
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1. Hardware complexity analysis

Area 
(mm2)

Area 
(%CPU)

Access 
Energy

Static 
Power
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1. Hardware complexity analysis
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• PARA, PRoHIT, MRLoc → extremely area-efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer < CBT → still relatively area-efficient

1. Hardware complexity analysis
Area 

(mm2)
Area 

(%CPU)

Access 
Energy

Static 
PowerRowHammer threshold 32K
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• PARA, PRoHIT, MRLoc → extremely area-efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer < CBT → still relatively area-efficient

• Graphene x28.5, TWiCE x34.5, CBT x19.7 ↔ BlockHammer x11.2

• New order: Graphene < BlockHammer << TWiCE << CBT
• BlockHammer is catching up!

1. Hardware complexity analysis
Area 

(mm2)
Area 

(%CPU)

Access 
Energy

Static 
PowerRowHammer threshold 32K

RowHammer threshold 1K
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1. Hardware complexity analysis

Area 
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(%CPU)
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Energy

Static 
Power
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• PARA, PRoHIT, MRLoc → extremely area-efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer < CBT → still relatively area-efficient

• Graphene x23, TWiCE x35, CBT x20 ↔ BlockHammer x10.7

• New order: Graphene < BlockHammer << TWiCE << CBT
• BlockHammer is catching up!

1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

Area 
(mm2)

Area 
(%CPU)

Access 
Energy

Static 
Power
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1. Hardware complexity analysis

Area 
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Area 
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Energy

Static 
Power
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• PRoHIT, MRLoc → extremely efficient (because probabilistic)

• TWiCe < CBT << BlockHammer << Graphene → still relatively efficient

• Graphene x22.6, TWiCE x15.6, CBT x14 ↔ BlockHammer x4.9

• New order: BlockHammer <<< TWiCE, CBT << Graphene
• BlockHammer is most efficient!

1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

Area 
(mm2)

Area 
(%CPU)

Access 
Energy

Static 
Power
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1. Hardware complexity analysis

Area 
(mm2)

Area 
(%CPU)

Access 
Energy

Static 
Power
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• PRoHIT, MRLoc → extremely efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer << CBT → still relatively efficient

• Graphene x30.2, TWiCE x29.7, CBT x15.1 ↔ BlockHammer x9.9

• New order: Graphene << BlockHammer <<< TWiCE << CBT
• BlockHammer is catching up!

1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

Area 
(mm2)

Area 
(%CPU)

Access 
Energy

Static 
Power
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2. Performance & energy consumption

• Setup: DDR4 memory
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