
BlockHammer: Preventing RowHammer
at Low Cost by Blacklisting Rapidly-

Accessed DRAM Rows

Authors:A. Giray¸ŀƐƭƤƪœƤ1, MineshPatel1, JeremieS. Kim1, RoknoddinAzizi1, AtaberkOlgun1, Lois Oros1,
Hasan Hassan1, JisungPark1, Konstantinos Kanellopoulos1, Taha Shahroodi1, SaugataGhose2, OnurMutlu1

1ETH Zürich 2University of Illinois at UrbanaςChampaign

Presented by: Sofie Daniëls
1

First presented at: 27th IEEE International Symposium on High-Performance Computer Architecture, 2021

Problem:
ÅMemory density scalingof DRAM chips causes increasing vulnerability to

RowHammer, but Ƴƻǎǘ ǎƻƭǳǘƛƻƴǎ ŎŀƴΩǘ ǎŎŀƭŜ ŀŎŎƻǊŘƛƴƎƭȅ
ÅCurrent solutions often require knowledge ofor modification to DRAMinternals

Goal:
ÅFind scalableand efficientway to prevent RowHammer without modifying DRAM chip

Key idea:
ÅSelectively throttlememory accesses that can cause bit-flips

Mechanism:
ÅTrackingall row activations and throttling RowHammer unsafe row accesses
ÅIdentifyingand throttling potential attacker threads

Results:
ÅHardware complexity: scalable
ÅPerformance & energy consumption: efficient & scalable 2

Executive summary

Overview

BACKGROUND,
PROBLEM & GOAL

MECHANISMS &
IMPLEMENTATION

RESULTS

SUMMARY STRENGTHS &
WEAKNESSES

DISCUSSION

3

Background,
Problem & Goal

4

Recap: DRAM

5

DRAM & RowHammer

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

Problem: rapidly activating (opening) and precharging (closing)
DRAM row can cause bit-flips in nearby rows

6

DRAM & RowHammer

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

7

Victimrows

Victimrows

DRAM & RowHammer

Vhigh

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

8

Aggressorrow

DRAM & RowHammer

Vlow

9

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

10

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

11

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

12

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

13

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

14

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

15

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

16

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

17

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

18

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

19

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

20

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

21

Cause: memory densityscaling
Ҩ 5w!a cellsize

Ҩ cell-to-cellspacing

RowHammer:rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

22

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

23

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

24

Increased refresh rate

What: refresh (all!) DRAM rows more often to reduce probability of
successful bitflip

RowHammer (RH) is getting worse:cannot prevent RH without unacceptable
performance loss and power consumption increase

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

25

Increased refresh rate
Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

26

Increased refresh rate
Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

27

Increased refresh rate
Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

28

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

29

Reactive refresh

Requires proprietary knowledge on DRAM internals: need to know which rows are
adjacent to aggressor rows

Faulty rows/cells/columns Differences in access latency of fastest & slowest cell

Some are probabilistic methods: do not prevent RowHammer completely

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

What: observes activations and reacts by refreshing potential victim rows
e.g., TWiCe, PARA, ProHIT, MRLocΣ /!¢Σ /.¢Σ Χ

30

Wang, Minghua, et al. "DRAMDig: a knowledge-assisted tool to uncover DRAM address mapping."2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020.

Reactive refresh
Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

31

Reactive refresh
Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

32

Reactive refresh
Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

33

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

34

Physical isolation

What: separates physically sensitive data

e.g., by adding buffer rows in between (ZebRAM)

e.g., by separating memory rows of user and kernel mode (CATT)

RowHammer is getting worse:we need to provide greater isolation

wastes memory capacity

reduces fraction of cells we can protect from RH

Requires proprietary knowledge on DRAM internals: need to know which rows are
adjacent to aggressor rows

Faulty rows/cells/columns Differences in access latency of fastest & slowest cell

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

Already defeated!
PTHammerΣ ƻǇŎƻŘŜ ŦƭƛǇǇƛƴƎΣ Χ

35

Physical isolation

Buffer row

Buffer row

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

36Buffer row or guardrow or isolationrowƻǊ Χ

Physical isolation

Buffer rows

Buffer rows

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

37

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

38

Proactive throttling

Challenge: performance overhead

Will we delay every access?

Challenge: area overhead

How do you track the number of row activations?

What: limit repeated access to the same row

e.g., by setting a minimum access delay

e.g., by limiting number of accesses to a row within refresh window

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

39

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

Proactive throttling

CanI get access
to row X?

0:00:00:000

Countdown to next
row activation

OK!

40

M
e

m
o

ry

C
o

n
tr

o
lle

r

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

Proactive throttling

CanI get access
to row X?

0:00:00:005

Countdown to next
row activation

OK!

41

M
e

m
o

ry

C
o

n
tr

o
lle

r

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

42

In search of a better solution

Efficient: low performance/area overhead

Scalable:we want things to work in the future

Implemented without knowledge of or modification to DRAM chip

43

Key idea: selectively throttleRowHammer-like memory accesses by

Trackingactivation rates of all rows in an area-efficient way

Using tracking data to throttle RowHammer unsafe activations

Identifying and limiting row activation rates of potential attacker
threads (minimizes performance degradation of benign threads)

44

Mechanisms &
Implementation

45

BlockHammer =

RowBlocker AttackThrottler

+

46

Memory
Request

Scheduler

RowBlocker BL
(per DRAM bank)

&

RowBlocker HB
(per DRAM rank)

47

RowBlocker

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n

ct
io

n
s

48

RowBlocker BL

RowBlocker BL

Goal 1:Track which rows have been activated and how many times

Goal 2: Blacklist when activation rate exceeds blacklisting threshold

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

How can we do this area-efficiently?

49

Recap: Bloom filter

Question:does a set contain a certain element?

Main components: hash functions + bit array

Operations: insert, test, clear

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

50

Recap: Bloomfilter

H
a

s
h

F
u

n
ct

io
n

s
Element {hi1, hi2Σ Χϒ

h1 h2 h3 h4 hn

Question:does a set contain a certain element?

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

51

Recap: Bloomfilter

H
a

s
h

F
u

n
ct

io
n

s
5 {h1, h4, h10}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 00 0 0 0 0 0 0

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Insert 5

52

Recap: Bloomfilter

H
a

s
h

F
u

n
ct

io
n

s
5 {h1, h4, h10}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 0 0 0 0 0

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Insert 5 Set = {5}

53

Recap: Bloomfilter

H
a

s
h

F
u

n
ct

io
n

s
7 {h1, h5, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 0 0 0 0 0

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Insert 7 Set = {5}

54

Recap: Bloomfilter

H
a

s
h

F
u

n
ct

io
n

s
7 {h1, h5, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 1 1 0 0 0

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Insert 7 Set = {5, 7}

55

Recap: Bloomfilter

H
a

s
h

F
u

n
ct

io
n

s
9 {h2, h6, h9}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Insert 9 Set = {5, 7}

56

Recap: Bloomfilter

H
a

s
h

F
u

n
ct

io
n

s
9 {h2, h6, h9}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Insert 9 Set = {5, 7, 9}

57

Recap: Bloomfilter

H
a

s
h

F
u

n
ct

io
n

s
9 {h2, h6, h9}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

1 1 1

1

AND

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Test 9 Set = {5, 7, 9}

58

Recap: Bloomfilter

H
a

s
h

F
u

n
ct

io
n

s
8 {h2, h4, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

1 11

1

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Test 8 Set = {5, 7, 9}

False Positive!!

59

AND

CountingBloomfilter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

Idea: Counting Bloom filter (CBF)
(tracks number of times an element is inserted into filter)

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

60

CountingBloomfilter

H
a

s
h

F
u

n
ct

io
n

s
5 {h1, h4, h10}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 0 0 0 0 0

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Insert 5 Set = {5}

61

CountingBloomfilter

H
a

s
h

F
u

n
ct

io
n

s
7 {h1, h5, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 1 10 0 1 1 0 0 0

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Insert 7 Set = {5, 7}

62

CountingBloomfilter

H
a

s
h

F
u

n
ct

io
n

s
9 {h2, h6, h9}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 1 11 0 1 2 0 0 1

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Insert 9 Set = {5, 7, 9}

63

CountingBloomfilter

H
a

s
h

F
u

n
ct

io
n

s
9 {h2, h6, h9}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 1 11 0 1 2 0 0 1

Min {hi1, hi2, hi3} > threshold

1 2 1

1

Here threshold= 0

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Test 9 Set = {5, 7, 9}

64

CountingBloomfilter

Idea: Counting Bloom filter (CBF)

(tracks number of times an element is inserted into filter)

ButBloom filter is gettingsaturated

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

65

CountingBloomfilter

H
a

s
h

F
u

n
ct

io
n

s
8 {h2, h4, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 1 11 0 1 2 0 0 1

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Delete 8 Set = {5, 7, 9}

66

CountingBloomfilter

H
a

s
h

F
u

n
ct

io
n

s
8 {h2, h4, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 0 10 0 1 1 0 0 1

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Delete 8 Set = {5, 7, 9}

67

CountingBloomfilter

H
a

s
h

F
u

n
ct

io
n

s
8 {h1, h4, h10}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 0 10 0 1 1 0 0 1

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

Test 5 Set = {5, 7, 9}

68

Min {hi1, hi2, hi3} > threshold

0

Here threshold= 0

UnifiedBloomfilter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

But we ŎŀƴΩǘ ǇǊŜǾŜƴǘ ŦŀƭǎŜ ƴŜƎŀǘƛǾŜǎ
(without compensating for it in terms of space)

Idea: Unified Bloom filter (UBF)
(tracks all elements inserted into filter during specific time window)

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

69

UnifiedBloomfilter

ÅBoth insert all elements into filter

ÅOnly active filter responds to test queries

ÅActive filter clears array at end of specified time interval (= epoch)

ÅSwitch roles every epoch

Unified Bloom filter: active + passive Bloom filter

Guarantees no false negatives
when tested for elements inserted in the last two epochs

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

70

UnifiedBloomfilter

H
a

s
h

F
u

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 00 0 0 0 0 0 0

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 00 0 0 0 0 0 0

Filter A

Filter B

Epoch1 Epoch2 Epoch3

Χ
Filter A

Filter B

Χ

Χ

71

UnifiedBloomfilter

H
a

s
h

F
u

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 0 0 0 0 0

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 0 0 0 0 0

Filter A: active

Filter B: passive

Epoch1 Epoch2 Epoch3

Χ
Filter A

Filter B

5 {h1, h4, h10}

Χ

Χ

Insert 5 Set = {5} SetA = {5} = SetB

72

UnifiedBloomfilter

H
a

s
h

F
u

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 1 1 0 0 0

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 1 1 0 0 0

Filter A: active

Filter B: passive

Epoch1 Epoch2 Epoch3

Χ
Filter A

Filter B

7 {h1, h5, h6}

Χ

Χ

Insert 7 Set = {5, 7} SetA = {5, 7} = SetB

73

UnifiedBloomfilter

H
a

s
h

F
u

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 1 1 0 0 0

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 00 0 0 0 0 0 0

Filter A: active

Filter B: passive

Epoch1 Epoch2 Epoch3

Χ
Filter A

Filter B

Χ

Χ

Clear A Set = {5, 7} SetA = { }, SetB = {5, 7}

74

UnifiedBloomfilter

H
a

s
h

F
u

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 01 0 0 1 0 0 1

Filter A: passive

Filter B: active

Epoch1 Epoch2 Epoch3

Χ
Filter A

Filter B

9 {h2, h6, h9}

Χ

Χ

Insert 9 Set = {5, 7, 9} SetA = {9}, SetB = {5, 7, 9}

75

UnifiedBloomfilter

H
a

s
h

F
u

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 01 0 0 1 0 0 1

Filter A: passive

Filter B: active

Epoch1 Epoch2 Epoch3

Χ
Filter A

Filter B

7 {h1, h5, h6}

1 1 1

1

Χ

Χ

Test 7 Set = {5, 7, 9} SetA = {9}, SetB = {5, 7, 9}

76

AND

Dual countingBloomfilter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold))

Idea: dual counting Bloom filter (D-CBF)
= unified Bloom filter + counting Bloom filter

both filters use different hash functions
hash functions of active filter are altered at end of epoch

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

77

Dual countingBloomfilter

H
a

sh
F

u
n

ct
io

n
s

Row
Address

{hi1, hi2Σ Χϒ

h1 h2 h3 h4 h5 Χ6 h7 h8 9 hm

a1 ama2 a3

{hj1, hj2Σ Χϒ

h1 h2 h3 h4 h5 Χ6 h7 h8 9 hm

b1 bmb2 b3

Filter A: passive

Filter B: active

Min {bj1, bj2Σ Χϒ > NBL

Χ

Blacklisted

bj2bj1

RowBlocker BL
(per DRAM bank)

H
a

sh
F

u
n
ct

io
n

s

78

Memory
Request

Scheduler

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

&

RowBlocker

79

RowBlocker HB
(per DRAM rank)

RowID Timestamp Validbit

RowBlocker HistoryBuffer (HB)

80

RowBlocker HB

Goal 1:Track which rows were activated recently

Goal 2: Test if current row is one of them

RowBlocker HB
(per DRAM rank)

RowID Timestamp Validbit

81

RowBlocker HB

What: circular first-in-first-out (FIFO) queue
(stores record of rows activated in last tdelay time window)

Operations: insert, test, (update)

RowBlocker HB
(per DRAM rank)

RowID Timestamp Validbit

82

RowBlocker HB
RowBlocker HB

(per DRAM rank)

RowID Timestamp Validbit

Row ID: rank-unique ID for all rows

Timestamp: current time

Valid bit

RowID Timestamp Validbit

Tailpointer
(youngestentry)

Head pointer
(oldestentry)

83

Update
RowBlocker HB

(per DRAM rank)

RowID Timestamp Validbit

Row ID: rank-unique ID for all rows

Now - Timestamp >= tdelay

Valid bit: set to 0

RowID Timestamp Validbit

Tailpointer
(youngestentry)

Head pointer
(oldestentry)

84

RowBlocker: is this row activation RH-safe?

Memory
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

85

RowBlocker: is this row activationRH-safe?

Memory
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

86

RowBlocker: is this row activationRH-safe?

Memory
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

87

RowBlocker: is this row activationRH-safe?

Memory
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

88

RowBlocker: is this row activationRH-safe?

Memory
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

89

BlockHammer =

RowBlocker AttackThrottler

+

90

AttackThrottler

Goal 1: identify potential
attacker threads

Goal 2:limit their memory
bandwidth usage

91

AttackThrottler

Goal 1: identify potential
attacker threads

Goal 2:limit their memory
bandwidth usage

92

1. Identifying (potential) attacker threads

How: RowHammer Likelihood Index (RHLI)

ὙὌὒὍ
ΠὦὰὥὧὯὰὭίὸὩὨὶέύὥὧὸὭὺὥὸὭέὲίὸὬὶὩὥὨὴὩὶὪέὶάίὸέὈὙὃὓὦὥὲὯ

άὥὼΠὸὭάὩίὦὰὥὧὯὰὭίὸὩὨὶέύὧὥὲὦὩὥὧὸὭὺὥὸὩὨὭὲὴὶέὸὩὧὸὩὨίώίὸὩά

Quantifies similarity ōŜǘǿŜŜƴ ŀ ƎƛǾŜƴ ǘƘǊŜŀŘΩǎ memoryaccess pattern
and a real RowHammer attack

93

RHLI = 0
(benign
threads)

More and more
likely to induce

bit-flip

1. Identifying (potential) attacker threads

Å¢ƘǊŜŀŘ ŀŎǘƛǾŀǘŜǎ ōƭŀŎƪƭƛǎǘŜŘ Ǌƻǿ ƛƴ ōŀƴƪ Ҧ ƛƴŎǊŜƳŜƴǘ ōƻǘƘ ŎƻǳƴǘŜǊǎ

ÅOnly active counter is used to calculate RHLI

Åwƻǿ.ƭƻŎƪŜǊ ŎƭŜŀǊǎ ŀŎǘƛǾŜ ŦƛƭǘŜǊ ƛƴ ōŀƴƪ Ҧ !ǘǘŀŎƪ¢ƘǊƻǘǘƭŜǊ ŎƭŜŀǊǎ ŀƭƭ
active counters in bank and switches roles

2 counters: active + passive counter

Calculates RHLI from rows blacklisted in last two epochs

Idea: 2 counters per <thread, bank> pair, used same
time-interleaving mechanism of D-CBF

94

AttackThrottler

Goal 1: identify potential
attacker threads

Goal 2:limit their memory
bandwidth usage

95

2. Limiting memory bandwidth usage

How: ōȅ ŀǇǇƭȅƛƴƎ ǉǳƻǘŀ ǘƻ ǘƘǊŜŀŘΩǎ ǘƻǘŀƭ ƛƴ-flight memory requests

ὗόέὸὥͯ
ρ

ὙὌὒὍ

[ŜǎǎŜƴǎ ƳŜƳƻǊȅ ōŀƴŘǿƛŘǘƘ ǳǎŀƎŜ ƻŦ ŀǘǘŀŎƪŜǊ ǘƘǊŜŀŘǎ Ҧ ŦǊŜŜǎ ǳǇ
memory bandwidth for benign threads

Thread keeps activating blacklisted row:
wI[L ƛƴŎǊŜŀǎŜǎ Ҧ quota decreases

96

Threadreaches quota:
ŎŀƴΩǘ ƳŀƪŜ ƴŜǿ ƳŜƳƻǊȅ ǊŜǉǳŜǎǘ

(until ongoing request is completed)

AttackThrottler: 3rd goal?

Goal 1: identify potential
ŀǘǘŀŎƪŜǊ ǘƘǊŜŀŘǎ Ҧ wI[L

Goal 2:limit their memory
ōŀƴŘǿƛŘǘƘ ǳǎŀƎŜ Ҧ ǉǳƻǘŀ

97

3. Share info with the Operating System

What: Share <thread, DRAM bank> RHLI values with OS

Goal: mitigate RH attack at software level
e.g., by killing or deschedulingattacker thread

98

Results

99

We compare BlockHammer with:

Baseline system: no RH mitigation

Three probabilistic mitigation mechanisms: PARA, ProHIT, MRLoc

Three deterministic mitigation mechanisms: CBT, TWiCe, Graphene

100

Results

Hardware complexity analysis
Ҧ ǎŎŀƭŀōƭŜ ϧ ƭƻǿ Ŏƻǎǘ

Performance & energy consumption
Ҧ ǎŎŀƭŀōƭŜ ϧ ŜŦŦƛŎƛŜƴǘ

101

Results

Hardware complexity analysis
Ҧ ǎŎŀƭŀōƭŜ ϧ ƭƻǿ Ŏƻǎǘ

Performance & energy consumption
Ҧ ǎŎŀƭŀōƭŜ ϧ ŜŦŦƛŎƛŜƴǘ

102

1. Hardware complexity analysis

Area
(mm2)

Area
(%CPU)

Access
Energy

Static
Power

103

ÅPARA, PRoHIT, MRLocҦ ŜȄǘǊŜƳŜƭȅ ŀǊŜŀ-efficient (because probabilistic)

ÅGraphene << TWiCe, BlockHammer < CBT

1. Hardware complexity analysis
Area

(mm2)
Area

(%CPU)

Access
Energy

Static
PowerRowHammer threshold 32K

104

ÅPARA, PRoHIT, MRLocҦ ŜȄǘǊŜƳŜƭȅ ŀǊŜŀ-efficient (because probabilistic)

ÅGraphene << TWiCe, BlockHammer < CBT

ÅGraphene x28.5, TWiCEx34.5, CBT x19.7 ҭ BlockHammer x11.2

ÅNew order: Graphene < BlockHammer << TWiCE<< CBT
ÅBlockHammer is catching up!

1. Hardware complexity analysis
Area

(mm2)
Area

(%CPU)

Access
Energy

Static
PowerRowHammer threshold 32K

RowHammer threshold 1K

105

1. Hardware complexity analysis

Conclusion 1: BlockHammer is more scalablethan other
RowHammer mitigation mechanisms

Conclusion 2: Graphene mostly
ōŜǘǘŜǊ ǘƘŀƴ .ƭƻŎƪIŀƳƳŜǊΧ

ŦƻǊ ƴƻǿ ŀǘ ƭŜŀǎǘΧ

wƻǿIŀƳƳŜǊ ǿƛƭƭ ƎŜǘ ǿƻǊǎŜ Ҧ
maybe < 1K? (currently at 9.6K)

Graphene does not scale as well!

106

Results

Hardware complexity analysis
Ҧ ǎŎŀƭŀōƭŜ ϧ ƭƻǿ Ŏƻǎǘ

Performance & energy consumption
Ҧ ǎŎŀƭŀōƭŜ ϧ ŜŦŦƛŎƛŜƴǘ

107

2. Performance & energy consumption

Single-core system
performance

Eight-core system
performance

Scalability

Without RH attack
With RH attack

Without RH attack
With RH attack

108

2. Performance & energy consumption

BlockHammer has no performance or energy overhead for single-
core benign applications

109

2. Performance & energy consumption

Single-core system
performance

Eight-core system
performance

Scalability

Without RH attack (8B)
With RH attack (7B, 1RH)

Without RH attack
With RH attack

110

2. Performance & energy consumption

BlockHammer has competitive performance and energy
consumption when no attack is present 111

higher = better higher = better lower = better lower = better

2. Performance & energy consumption

BlockHammer has much higher performance of benign applications
and lower DRAM energy consumption when attack is present112

higher = better higher = better lower = better lower = better

2. Performance & energy consumption

Single-core system
performance

Eight-core system
performance

Scalability

Without RH attack
With RH attack

Without RH attack
With RH attack

113

2. Performance & energy consumption

BlockHammer has negligible performance and energy consumption
overheads and still does if RH worsens (when no attack is present)114

higher = better higher = better lower = better lower = better

