
BlockHammer: Preventing RowHammer
at Low Cost by Blacklisting Rapidly-

Accessed DRAM Rows

Authors: A. Giray Yağlıkçı1, Minesh Patel1, Jeremie S. Kim1, Roknoddin Azizi1, Ataberk Olgun1, Lois Oros1,
Hasan Hassan1, Jisung Park1, Konstantinos Kanellopoulos1, Taha Shahroodi1, Saugata Ghose2, Onur Mutlu1

1ETH Zürich 2University of Illinois at Urbana–Champaign

Presented by: Sofie Daniëls
1

First presented at: 27th IEEE International Symposium on High-Performance Computer Architecture, 2021

Problem:
• Memory density scaling of DRAM chips causes increasing vulnerability to

RowHammer, but most solutions can’t scale accordingly
• Current solutions often require knowledge of or modification to DRAM internals

Goal:
• Find scalable and efficient way to prevent RowHammer without modifying DRAM chip

Key idea:
• Selectively throttle memory accesses that can cause bit-flips

Mechanism:
• Tracking all row activations and throttling RowHammer unsafe row accesses
• Identifying and throttling potential attacker threads

Results:
• Hardware complexity: scalable
• Performance & energy consumption: efficient & scalable 2

Executive summary

Overview

BACKGROUND,
PROBLEM & GOAL

MECHANISMS &
IMPLEMENTATION

RESULTS

SUMMARY STRENGTHS &
WEAKNESSES

DISCUSSION

3

Background,
Problem & Goal

4

Recap: DRAM

5

DRAM & RowHammer

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

Problem: rapidly activating (opening) and precharging (closing)
DRAM row can cause bit-flips in nearby rows

6

DRAM & RowHammer

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

7

Victim rows

Victim rows

DRAM & RowHammer

Vhigh

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

8

Aggressor row

DRAM & RowHammer

Vlow

9

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

10

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

11

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

12

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

13

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

14

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

15

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

16

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

17

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

18

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

19

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

20

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vlow

21

Cause: memory density scaling
↓ DRAM cell size

↓ cell-to-cell spacing

RowHammer: rapidly activating (opening) and precharging (closing) DRAM
row can cause bit-flips in nearby rows

DRAM & RowHammer

Vhigh

22

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

23

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

24

Increased refresh rate

What: refresh (all!) DRAM rows more often to reduce probability of
successful bitflip

RowHammer (RH) is getting worse: cannot prevent RH without unacceptable
performance loss and power consumption increase

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

25

Increased refresh rate
Increased

refresh
rate

Reactive
refresh

Physical
isolation

Proactive
throttling

26

Increased refresh rate
Increased

refresh
rate

Reactive
refresh

Physical
isolation

Proactive
throttling

27

Increased refresh rate
Increased

refresh
rate

Reactive
refresh

Physical
isolation

Proactive
throttling

28

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

29

Reactive refresh

Requires proprietary knowledge on DRAM internals: need to know which rows are
adjacent to aggressor rows

● Faulty rows/cells/columns ● Differences in access latency of fastest & slowest cell

Some are probabilistic methods: do not prevent RowHammer completely

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

What: observes activations and reacts by refreshing potential victim rows
e.g., TWiCe, PARA, ProHIT, MRLoc, CAT, CBT, …

30

Wang, Minghua, et al. "DRAMDig: a knowledge-assisted tool to uncover DRAM address mapping." 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020.

Reactive refresh
Increased

refresh
rate

Reactive
refresh

Physical
isolation

Proactive
throttling

31

Reactive refresh
Increased

refresh
rate

Reactive
refresh

Physical
isolation

Proactive
throttling

32

Reactive refresh
Increased

refresh
rate

Reactive
refresh

Physical
isolation

Proactive
throttling

33

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

34

Physical isolation

What: separates physically sensitive data

e.g., by adding buffer rows in between (ZebRAM)

e.g., by separating memory rows of user and kernel mode (CATT)

RowHammer is getting worse: we need to provide greater isolation

● wastes memory capacity

● reduces fraction of cells we can protect from RH

Requires proprietary knowledge on DRAM internals: need to know which rows are
adjacent to aggressor rows

● Faulty rows/cells/columns ● Differences in access latency of fastest & slowest cell

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

Already defeated!
PTHammer, opcode flipping, …

35

Physical isolation

Buffer row

Buffer row

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

36Buffer row or guard row or isolation row or …

Physical isolation

Buffer rows

Buffer rows

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

37

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

38

Proactive throttling

Challenge: performance overhead

Will we delay every access?

Challenge: area overhead

How do you track the number of row activations?

What: limit repeated access to the same row

e.g., by setting a minimum access delay

e.g., by limiting number of accesses to a row within refresh window

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

39

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

Proactive throttling

Can I get access
to row X?

0:00:00:000

Countdown to next
row activation

OK!

40

M
em

o
ry

C

o
n

tr
o

lle
r

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

Proactive throttling

Can I get access
to row X?

0:00:00:005

Countdown to next
row activation

OK!

41

M
em

o
ry

C

o
n

tr
o

lle
r

Current solutions to RowHammer

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

42

In search of a better solution

Efficient: low performance/area overhead

Scalable: we want things to work in the future

Implemented without knowledge of or modification to DRAM chip

43

Key idea: selectively throttle RowHammer-like memory accesses by

Tracking activation rates of all rows in an area-efficient way

Using tracking data to throttle RowHammer unsafe activations

Identifying and limiting row activation rates of potential attacker
threads (minimizes performance degradation of benign threads)

44

Mechanisms &
Implementation

45

BlockHammer =

RowBlocker AttackThrottler

+

46

Memory
Request

Scheduler

RowBlocker BL
(per DRAM bank)

&

RowBlocker HB
(per DRAM rank)

47

RowBlocker

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

48

RowBlocker BL

RowBlocker BL

Goal 1: Track which rows have been activated and how many times

Goal 2: Blacklist when activation rate exceeds blacklisting threshold

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

How can we do this area-efficiently?

49

Recap: Bloom filter

Question: does a set contain a certain element?

Main components: hash functions + bit array

Operations: insert, test, clear

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

50

Recap: Bloom filter

H
as

h
Fu

n
ct

io
n

s
Element {hi1, hi2, …}

h1 h2 h3 h4 hn

Question: does a set contain a certain element?

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

51

Recap: Bloom filter

H
as

h
Fu

n
ct

io
n

s
5 {h1, h4, h10}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 00 0 0 0 0 0 0

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Insert 5

52

Recap: Bloom filter

H
as

h
Fu

n
ct

io
n

s
5 {h1, h4, h10}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 0 0 0 0 0

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Insert 5 Set = {5}

53

Recap: Bloom filter

H
as

h
Fu

n
ct

io
n

s
7 {h1, h5, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 0 0 0 0 0

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Insert 7 Set = {5}

54

Recap: Bloom filter

H
as

h
Fu

n
ct

io
n

s
7 {h1, h5, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 1 1 0 0 0

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Insert 7 Set = {5, 7}

55

Recap: Bloom filter

H
as

h
Fu

n
ct

io
n

s
9 {h2, h6, h9}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Insert 9 Set = {5, 7}

56

Recap: Bloom filter

H
as

h
Fu

n
ct

io
n

s
9 {h2, h6, h9}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Insert 9 Set = {5, 7, 9}

57

Recap: Bloom filter

H
as

h
Fu

n
ct

io
n

s
9 {h2, h6, h9}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

1 1 1

1

AND

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Test 9 Set = {5, 7, 9}

58

Recap: Bloom filter

H
as

h
Fu

n
ct

io
n

s
8 {h2, h4, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

1 11

1

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Test 8 Set = {5, 7, 9}

False Positive!!

59

AND

Counting Bloom filter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

Idea: Counting Bloom filter (CBF)
(tracks number of times an element is inserted into filter)

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

60

Counting Bloom filter

H
as

h
Fu

n
ct

io
n

s
5 {h1, h4, h10}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 0 0 0 0 0

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Insert 5 Set = {5}

61

Counting Bloom filter

H
as

h
Fu

n
ct

io
n

s
7 {h1, h5, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 1 10 0 1 1 0 0 0

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Insert 7 Set = {5, 7}

62

Counting Bloom filter

H
as

h
Fu

n
ct

io
n

s
9 {h2, h6, h9}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 1 11 0 1 2 0 0 1

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Insert 9 Set = {5, 7, 9}

63

Counting Bloom filter

H
as

h
Fu

n
ct

io
n

s
9 {h2, h6, h9}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 1 11 0 1 2 0 0 1

Min {hi1, hi2, hi3} > threshold

1 2 1

1

Here threshold = 0

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Test 9 Set = {5, 7, 9}

64

Counting Bloom filter

Idea: Counting Bloom filter (CBF)

(tracks number of times an element is inserted into filter)

But Bloom filter is getting saturated

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

65

Counting Bloom filter

H
as

h
Fu

n
ct

io
n

s
8 {h2, h4, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 1 11 0 1 2 0 0 1

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Delete 8 Set = {5, 7, 9}

66

Counting Bloom filter

H
as

h
Fu

n
ct

io
n

s
8 {h2, h4, h6}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 0 10 0 1 1 0 0 1

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Delete 8 Set = {5, 7, 9}

67

Counting Bloom filter

H
as

h
Fu

n
ct

io
n

s
8 {h1, h4, h10}

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

2 0 10 0 1 1 0 0 1

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

Test 5 Set = {5, 7, 9}

68

Min {hi1, hi2, hi3} > threshold

0

Here threshold = 0

Unified Bloom filter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold)

But we can’t prevent false negatives
(without compensating for it in terms of space)

Idea: Unified Bloom filter (UBF)
(tracks all elements inserted into filter during specific time window)

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

69

Unified Bloom filter

• Both insert all elements into filter

• Only active filter responds to test queries

• Active filter clears array at end of specified time interval (= epoch)

• Switch roles every epoch

Unified Bloom filter: active + passive Bloom filter

Guarantees no false negatives
when tested for elements inserted in the last two epochs

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

70

Unified Bloom filter

H
as

h
Fu

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 00 0 0 0 0 0 0

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 00 0 0 0 0 0 0

Filter A

Filter B

Epoch 1 Epoch 2 Epoch 3

…
Filter A

Filter B

…

…

71

Unified Bloom filter

H
as

h
Fu

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 0 0 0 0 0

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 0 0 0 0 0

Filter A: active

Filter B: passive

Epoch 1 Epoch 2 Epoch 3

…
Filter A

Filter B

5 {h1, h4, h10}

…

…

Insert 5 Set = {5} SetA = {5} = SetB

72

Unified Bloom filter

H
as

h
Fu

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 1 1 0 0 0

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 1 1 0 0 0

Filter A: active

Filter B: passive

Epoch 1 Epoch 2 Epoch 3

…
Filter A

Filter B

7 {h1, h5, h6}

…

…

Insert 7 Set = {5, 7} SetA = {5, 7} = SetB

73

Unified Bloom filter

H
as

h
Fu

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 10 0 1 1 0 0 0

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 00 0 0 0 0 0 0

Filter A: active

Filter B: passive

Epoch 1 Epoch 2 Epoch 3

…
Filter A

Filter B

…

…

Clear A Set = {5, 7} SetA = { }, SetB = {5, 7}

74

Unified Bloom filter

H
as

h
Fu

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 01 0 0 1 0 0 1

Filter A: passive

Filter B: active

Epoch 1 Epoch 2 Epoch 3

…
Filter A

Filter B

9 {h2, h6, h9}

…

…

Insert 9 Set = {5, 7, 9} SetA = {9}, SetB = {5, 7, 9}

75

Unified Bloom filter

H
as

h
Fu

n
ct

io
n

s

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

1 1 11 0 1 1 0 0 1

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10

0 0 01 0 0 1 0 0 1

Filter A: passive

Filter B: active

Epoch 1 Epoch 2 Epoch 3

…
Filter A

Filter B

7 {h1, h5, h6}

1 1 1

1

…

…

Test 7 Set = {5, 7, 9} SetA = {9}, SetB = {5, 7, 9}

76

AND

Dual counting Bloom filter

Remember: we want to know how many times a row is activated
(and blacklist it if activation rate > threshold))

Idea: dual counting Bloom filter (D-CBF)
= unified Bloom filter + counting Bloom filter

● both filters use different hash functions
● hash functions of active filter are altered at end of epoch

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

77

Dual counting Bloom filter

H
as

h
Fu

n
ct

io
n

s

Row
Address

{hi1, hi2, …}

h1 h2 h3 h4 h5 …6 h7 h8 9 hm

a1 ama2 a3

{hj1, hj2, …}

h1 h2 h3 h4 h5 …6 h7 h8 9 hm

b1 bmb2 b3

Filter A: passive

Filter B: active

Min {bj1, bj2, …} > NBL

…

Blacklisted

bj2bj1

RowBlocker BL
(per DRAM bank)

H
as

h
Fu

n
ct

io
n

s

78

Memory
Request

Scheduler

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

&

RowBlocker

79

RowBlocker HB
(per DRAM rank)

Row ID Timestamp Valid bit

RowBlocker History Buffer (HB)

80

RowBlocker HB

Goal 1: Track which rows were activated recently

Goal 2: Test if current row is one of them

RowBlocker HB
(per DRAM rank)

Row ID Timestamp Valid bit

81

RowBlocker HB

What: circular first-in-first-out (FIFO) queue
(stores record of rows activated in last tdelay time window)

Operations: insert, test, (update)

RowBlocker HB
(per DRAM rank)

Row ID Timestamp Valid bit

82

RowBlocker HB
RowBlocker HB

(per DRAM rank)

Row ID Timestamp Valid bit

Row ID: rank-unique ID for all rows

Timestamp: current time

Valid bit

Row ID Timestamp Valid bit

Tail pointer
(youngest entry)

Head pointer
(oldest entry)

83

Update
RowBlocker HB

(per DRAM rank)

Row ID Timestamp Valid bit

Row ID: rank-unique ID for all rows

Now - Timestamp >= tdelay

Valid bit: set to 0

Row ID Timestamp Valid bit

Tail pointer
(youngest entry)

Head pointer
(oldest entry)

84

RowBlocker: is this row activation RH-safe?

Memory
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

85

RowBlocker: is this row activation RH-safe?

Memory
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

86

RowBlocker: is this row activation RH-safe?

Memory
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

87

RowBlocker: is this row activation RH-safe?

Memory
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

88

RowBlocker: is this row activation RH-safe?

Memory
Request

Scheduler

&

RowBlocker BL
(per DRAM bank)

RowBlocker HB
(per DRAM rank)

89

BlockHammer =

RowBlocker AttackThrottler

+

90

AttackThrottler

Goal 1: identify potential
attacker threads

Goal 2: limit their memory
bandwidth usage

91

AttackThrottler

Goal 1: identify potential
attacker threads

Goal 2: limit their memory
bandwidth usage

92

1. Identifying (potential) attacker threads

How: RowHammer Likelihood Index (RHLI)

𝑅𝐻𝐿𝐼 =
𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡𝑒𝑑 𝑟𝑜𝑤 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑡ℎ𝑟𝑒𝑎𝑑 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑠 𝑡𝑜 𝐷𝑅𝐴𝑀 𝑏𝑎𝑛𝑘

𝑚𝑎𝑥 # 𝑡𝑖𝑚𝑒𝑠 𝑏𝑙𝑎𝑐𝑘𝑙𝑖𝑠𝑡𝑒𝑑 𝑟𝑜𝑤 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝑖𝑛 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑠𝑦𝑠𝑡𝑒𝑚

Quantifies similarity between a given thread’s memory access pattern
and a real RowHammer attack

93

RHLI = 0
(benign
threads)

More and more
likely to induce

bit-flip

1. Identifying (potential) attacker threads

• Thread activates blacklisted row in bank → increment both counters

• Only active counter is used to calculate RHLI

• RowBlocker clears active filter in bank → AttackThrottler clears all
active counters in bank and switches roles

2 counters: active + passive counter

Calculates RHLI from rows blacklisted in last two epochs

Idea: 2 counters per <thread, bank> pair, used same
time-interleaving mechanism of D-CBF

94

AttackThrottler

Goal 1: identify potential
attacker threads

Goal 2: limit their memory
bandwidth usage

95

2. Limiting memory bandwidth usage

How: by applying quota to thread’s total in-flight memory requests

𝑄𝑢𝑜𝑡𝑎 ~
1

𝑅𝐻𝐿𝐼

Lessens memory bandwidth usage of attacker threads → frees up
memory bandwidth for benign threads

Thread keeps activating blacklisted row:
RHLI increases → quota decreases

96

Thread reaches quota:
can’t make new memory request

(until ongoing request is completed)

AttackThrottler: 3rd goal?

Goal 1: identify potential
attacker threads → RHLI

Goal 2: limit their memory
bandwidth usage → quota

97

3. Share info with the Operating System

What: Share <thread, DRAM bank> RHLI values with OS

Goal: mitigate RH attack at software level
e.g., by killing or descheduling attacker thread

98

Results

99

We compare BlockHammer with:

Baseline system: no RH mitigation

Three probabilistic mitigation mechanisms: PARA, ProHIT, MRLoc

Three deterministic mitigation mechanisms: CBT, TWiCe, Graphene

100

Results

Hardware complexity analysis
→ scalable & low cost

Performance & energy consumption
→ scalable & efficient

101

Results

Hardware complexity analysis
→ scalable & low cost

Performance & energy consumption
→ scalable & efficient

102

1. Hardware complexity analysis

Area
(mm2)

Area
(%CPU)

Access
Energy

Static
Power

103

• PARA, PRoHIT, MRLoc → extremely area-efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer < CBT

1. Hardware complexity analysis
Area

(mm2)
Area

(%CPU)

Access
Energy

Static
PowerRowHammer threshold 32K

104

• PARA, PRoHIT, MRLoc → extremely area-efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer < CBT

• Graphene x28.5, TWiCE x34.5, CBT x19.7 ↔ BlockHammer x11.2

• New order: Graphene < BlockHammer << TWiCE << CBT
• BlockHammer is catching up!

1. Hardware complexity analysis
Area

(mm2)
Area

(%CPU)

Access
Energy

Static
PowerRowHammer threshold 32K

RowHammer threshold 1K

105

1. Hardware complexity analysis

Conclusion 1: BlockHammer is more scalable than other
RowHammer mitigation mechanisms

Conclusion 2: Graphene mostly
better than BlockHammer…

for now at least…

● RowHammer will get worse →
maybe < 1K? (currently at 9.6K)

● Graphene does not scale as well!

106

Results

Hardware complexity analysis
→ scalable & low cost

Performance & energy consumption
→ scalable & efficient

107

2. Performance & energy consumption

Single-core system
performance

Eight-core system
performance

Scalability

Without RH attack
With RH attack

Without RH attack
With RH attack

108

2. Performance & energy consumption

BlockHammer has no performance or energy overhead for single-
core benign applications

109

2. Performance & energy consumption

Single-core system
performance

Eight-core system
performance

Scalability

Without RH attack (8B)
With RH attack (7B, 1RH)

Without RH attack
With RH attack

110

2. Performance & energy consumption

BlockHammer has competitive performance and energy
consumption when no attack is present 111

higher = better higher = better lower = better lower = better

2. Performance & energy consumption

BlockHammer has much higher performance of benign applications
and lower DRAM energy consumption when attack is present112

higher = better higher = better lower = better lower = better

2. Performance & energy consumption

Single-core system
performance

Eight-core system
performance

Scalability

Without RH attack
With RH attack

Without RH attack
With RH attack

113

2. Performance & energy consumption

BlockHammer has negligible performance and energy consumption
overheads and still does if RH worsens (when no attack is present)114

higher = better higher = better lower = better lower = better

2. Performance & energy consumption

BlockHammer has significantly better performance and lower
energy consumption as RH worsens (when attack is present)115

higher = better higher = better lower = better lower = better

2. Performance & energy consumption

Conclusion 1: When the system is not under attack,
BlockHammer is competitive with the other state-of-the-art

mechanisms, also at the lowest RH thresholds

Conclusion 2: In the presence of a RH attack, BlockHammer has
significantly better performance and lower energy consumption than

all other state-of-the-art mechanisms, even at lower RH thresholds

116

Summary

117

Summary & Conclusion
Problem:

• Memory density scaling of DRAM chips causes increasing vulnerability to RowHammer, but most
solutions can’t scale accordingly

• Current solutions often require knowledge of or modification to DRAM internals

Goal:
• Find a scalable and efficient way to prevent RowHammer, without knowledge of or modification to

DRAM internals

Mechanisms:
• RowBlocker: tracking all row activations efficiently (by using Bloom filters) and throttling

RowHammer unsafe row accesses

• AttackThrottler: identifying (RHLI) and throttling (quota) potential attacker threads

Results:
• Hardware complexity: most scalable solution (Graphene currently more efficient but not as scalable)

• Performance & energy: No RowHammer attack: competitive, even at lower RH thresholds

RowHammer attack: significantly better than all other solutions

118

Strengths &
Weaknesses

119

Strengths

• BlockHammer still scales well when DRAM chips are getting more
vulnerable to RowHammer

• Implementation requires no knowledge of or modifications to DRAM
internals (completely implemented in memory controller)

• Makes distinction between benign applications and potential attacks

• Introduces many new concepts and even more possible improvements

• Innovative idea → groundwork for new type of RowHammer mitigation:
proactive throttling

120

Weaknesses

• Completely implemented in memory controller → cannot be
implemented in already manufactured processor chips

• Some empirically-determined parameters (e.g., Bloom filter size)
• Partially determines false positive rate → room for improvement!

• Evaluation is simulated on DDR4-based memory subsystem → what about
LPDDR4?

• Results probably similar

• And hardware designers will redo it anyway…
121

Discussion

122

Discussion
• Should we always aim for deterministic solutions or are probabilistic

methods not that bad?

• Can we lower BlockHammer’s hardware complexity by adopting a
probabilistic approach? What would you change in BlockHammer to
achieve that?
• Remember:

BlockHammer = RowBlocker (D-CBF + HB) + AttackThrottler (RHLI + quota)

• Is it a good idea to modify BlockHammer into a probabilistic
mitigation mechanism? Why (not)?

• Are there other ways to reduce BlockHammer’s hardware
complexity?

123

Discussion
• Once we can quickly reverse-engineer DRAM address mappings, will

BlockHammer still be the best approach?

• What would be the ideal RowHammer mitigation mechanism and
why?

124

Increased
refresh

rate

Reactive
refresh

Physical
isolation

Proactive
throttling

Discussion
• Do you think we can combine (parts of) BlockHammer with other

mitigation mechanisms? What would be the (dis)advantages?
• Remember:

BlockHammer = RowBlocker (D-CBF + HB) + AttackThrottler (RHLI + quota)

• Do you have any other ideas to improve BlockHammer?

125

= victim row refresh
- challenge: finding victim rows
- some probabilistic methods

← BlockHammer
using buffer/isolation rows =
- challenge: finding victim rows
- RH gets worse → need more

isolation

refreshing all DRAM rows =
- high performance loss

& energy consumption

Discussion
• What can we do with the RHLI at the software level?

• E.g. killing or descheduling a thread

• What problems would you encounter?

126

Backup Slides

127

Insert
RowBlocker HB

(per DRAM rank)

Row ID Timestamp Valid bit

Row ID: rank-unique ID for all rows

Timestamp: current time

Valid bit: set to 1

Row ID Timestamp Valid bit

Tail pointer
(youngest entry)

Head pointer
(oldest entry)

128

Test: row recently activated?
RowBlocker HB

(per DRAM rank)

Row ID Timestamp Valid bit

Row ID == to be accessed row

Timestamp

Valid bit == 1

Row ID Timestamp Valid bit

Tail pointer
(youngest entry)

Head pointer
(oldest entry)

129

Test: row recently activated?
RowBlocker HB

(per DRAM rank)

Row ID Timestamp Valid bit

Row ID == to be accessed row

Timestamp

Valid bit == 1

Row ID Timestamp Valid bit

Tail pointer
(youngest entry)

Store row addresses
in CAM

Head pointer
(oldest entry)

130

• Compare BlockHammer with
• (Baseline system: no RH mitigation)

• 3 probabilistic mitigation mechanisms (errors still possible)
• PARA

• ProHIT

• MRLoc

• 3 deterministic mitigation mechanisms (usually area overhead)
• CBT

• TWiCe

• Graphene

Comparison

131

PARA: definition

• = Probabilistic Adjacent Row Activation

• Row gets activated → adjacent rows get activated (= refreshed) with
probability p

132

PARA: mechanism

• Remember: Reactive refresh

Vhigh

133

PARA: mechanism

• Remember: Reactive refresh

Vlow

134

PARA: mechanism

• Remember: Reactive refresh

Vhigh

135

PARA: mechanism

• Remember: Reactive refresh

REFRESH
with probability p

REFRESH
with probability p

136

PARA: mechanism

• Remember: Reactive refresh

REFRESH
with probability p

REFRESH
with probability p

137

PARA: mechanism

• Remember: Reactive refresh

REFRESH
with probability p

REFRESH
with probability p

138

PARA: weaknesses

• Cannot prevent bit-flips with 100% certainty (probabilistic!)

• Performance → vulnerable to applications with mix of few frequently
activated rows and many randomly activated ones (often the case in
memory-intensive programs) → solution: ProHIT

• Knowledge on in-DRAM mapping needed

139

ProHIT: definition

• Based on PARA

• Selects victim rows by considering the access patterns of applications
(on top of probabilistic selection) → done by Probabilistic History
Table

• Key operations: row activation →
• Probabilistic table promotion (from cold to hot)

• Probabilistic promotion (from hot to hotter, i.e. higher priority)

• Probabilistic insertion (into highest priority cold table slot)

• Probabilistic eviction (one of the cold entries is evicted)

140

ProHIT: mechanism

Activate row K

Row E

Row D

Row G

Row F

Row C

Row B

Row H

Row A

Lowest priority

Highest priorityH
o

t tab
le

C
o

ld
 tab

le

141

ProHIT: mechanism

Activate row K

Row E

Row D

Row G

Row F

Row C

Row B

Row H

Row A

142

ProHIT: mechanism

Activate row K

Row E

Row D

Row G

Row F

Row C

Row B

Row H

Row A

‘Randomly’ select cold
row to be evicted
(influenced by priority)

143

Activate row K

Row J

Row D

Row F

Row E

Row C

Row B

Row H

Row A

ProHIT: mechanism

144

Activate row I

Row J

Row D

Row F

Row E

Row C

Row B

Row H

Row A

ProHIT: mechanism

145

Activate row I

Row J

Row D

Row F

Row E

Row C

Row B

Row H

Row A

ProHIT: mechanism

146

Activate row I

Row J

Row D

Row F

Row E

Row C

Row B

Row H

Row A
Promote to ‘random’
hot entry (with
probability based on
priority)

ProHIT: mechanism

147

Activate row I

Row D

Row C

Row F

Row E

Row J

Row B

Row H

Row A
Promote to ‘random’
hot entry (with
probability based on
priority)

ProHIT: mechanism

148

After specific
time interval

Row D

Row C

Row F

Row E

Row J

Row B

Row H

Row A

ProHIT: mechanism

149

Row D

Row C

Row F

Row E

Row J

Row B

Row H

ProHIT: mechanism

150

• Still cannot prevent bit-flips with 100% certainty (probabilistic!)

• But at least we have better performance!

• Knowledge on in-DRAM mapping still needed

ProHIT: weaknesses

151

MRLoc: definition

• Based on PARA

• Mitigating Row-hammering based on memory Locality

• Optimizes refresh probability based on memory locality
• If a certain row has been accessed recently, a higher probability is assigned to

its corresponding victim rows

• Victim rows are stored in queue

152

MRLoc: mechanism

From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.
153

From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.

MRLoc: mechanism

154

From J. M. You and J.-S. Yang, “MRLoc: Mitigating Row-Hammering Based on Memory Locality,” in DAC, 2019.

MRLoc: mechanism

155

• Cannot prevent bit-flips with 100% certainty (probabilistic!)

• Even worse performance now …

• Knowledge on in-DRAM mapping needed

MRLoc: weaknesses

156

Comparison

• Compare BlockHammer with
• (Baseline system: no RH mitigation)

• 3 probabilistic mitigation mechanisms
• PARA

• ProHIT

• MRLoc

• 3 deterministic mitigation mechanisms
• CBT

• TWiCe

• Graphene

157

CBT: definition

• = Counter-Based Tree

• Tree of counters that count row activations in disjoint memory
regions
• Whenever parent node reaches certain threshold, memory region is halved

(one half for each child)

• Predefined threshold for each level

• Leaf node reaches threshold: counter reset + refresh of respective memory
region

158

CBT: mechanism
0 Threshold = 2

[1, 32]

159

0

Activate row 1

Threshold = 2

[1, 32]CBT: mechanism

160

1

Activate row 1

Threshold = 2

[1, 32]CBT: mechanism

161

1

Activate row 4

Threshold = 2

[1, 32]CBT: mechanism

162

2

Activate row 4

Threshold = 2

[1, 32]CBT: mechanism

163

2 Threshold = 2

[1, 32]

2 Threshold = 5

[1, 16]

2

[17, 32]

CBT: mechanism

164

2 Threshold = 2

[1, 32]

2 Threshold = 5

[1, 16]

2

[17, 32]
Activate row 4

CBT: mechanism

165

2 Threshold = 2

[1, 32]

3 Threshold = 5

[1, 16]

2

[17, 32]
Activate row 4

CBT: mechanism

166

2 Threshold = 2

[1, 32]

5 Threshold = 5

[1, 16]

2

[17, 32]
And so on …

7 Threshold = 7

[1, 8]

5

[9, 16]

CBT: mechanism

167

2 Threshold = 2

[1, 32]

5 Threshold = 5

[1, 16]

2

[17, 32]

Reset & Refresh!!
0 Threshold = 7

[1, 8]

5

[9, 16]

CBT: mechanism

168

0 Threshold = 2

[1, 32]

At end of refresh period
(e.g. 64 ms)

CBT: mechanism

169

CBT: weaknesses

• Area vs. performance trade-off
• More levels means smaller memory region size and thus more correct

refreshes (better performance), but at higher area cost

• Assumes rows are contiguous but might not be the case → DRAM
remaps addresses internally

170

TWiCe: definition

• = Time Window Counter based row refresh

• Maximum number of DRAM ACTs over tREFW is bounded

• Counter table: Valid bit | Row address | Activation count | Life
• Counter table + counter logic

• Activation count: records number of activations to the target row address

• Valid bit: is entry valid?

• Life: # consecutive pruning intervals for which entry stays valid in the table

171

TWiCe: mechanism

• Row activation
• Not in table → allocate entry

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.172

• Row activation
• Not in table → allocate entry

• In table → increment activation count

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.

TWiCe: mechanism

173

• Activation count reaches threshold → refresh victim rows & set valid
bit to 0

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.

TWiCe: mechanism

174

• After each pruning interval
• All entries with activation count < thPI x life → removed (NOT refreshed)

• Activation count ≥ thPI x life → increment life

From E. Lee et al., “TWiCe: Preventing Row-Hammering by Exploiting Time Window Counters,” in ISCA, 2019.

TWiCe: mechanism

175

• Relatively large area overhead as RH gets worse! (in comparison to BH
and Graphene)

• Needs to identify victim rows → requires knowledge of DRAM
internals!

TWiCe: weaknesses

176

Graphene: definition

• Misra-Gries algorithm
• Solves frequent elements problem

• Find all elements in a (finite!) stream that occur more than a given fraction of
the time

• Here: elements = memory requests

177

Graphene: mechanism

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020

• Activate row
• Row in table → increase count

178

• Activate row
• Row not in table AND spillover count < count of all entries → increment

spillover count

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020

Graphene: mechanism

179

• Activate row
• Row not in table AND spillover count >= count of some entry X → replace

entry X with new row + increment count of that row

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020

Graphene: mechanism

180

• Count == (multiple of) threshold → refresh victim rows

From Y. Park et al., “Graphene: Strong yet Lightweight Row Hammer Protection,” in MICRO, 2020

Graphene: mechanism

181

• Needs to identify victim rows → requires knowledge of DRAM
internals

Currently one of the best solutions (has good performance and low
area overhead)

Graphene: weaknesses

182

1. Hardware complexity analysis

183

1. Hardware complexity analysis

Area
(mm2)

Area
(%CPU)

Access
Energy

Static
Power

184

1. Hardware complexity analysis

Area
(mm2)

Area
(%CPU)

Access
Energy

Static
Power

185

• PARA, PRoHIT, MRLoc → extremely area-efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer < CBT → still relatively area-efficient

1. Hardware complexity analysis
Area

(mm2)
Area

(%CPU)

Access
Energy

Static
PowerRowHammer threshold 32K

186

• PARA, PRoHIT, MRLoc → extremely area-efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer < CBT → still relatively area-efficient

• Graphene x28.5, TWiCE x34.5, CBT x19.7 ↔ BlockHammer x11.2

• New order: Graphene < BlockHammer << TWiCE << CBT
• BlockHammer is catching up!

1. Hardware complexity analysis
Area

(mm2)
Area

(%CPU)

Access
Energy

Static
PowerRowHammer threshold 32K

RowHammer threshold 1K

187

1. Hardware complexity analysis

Area
(mm2)

Area
(%CPU)

Access
Energy

Static
Power

188

• PARA, PRoHIT, MRLoc → extremely area-efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer < CBT → still relatively area-efficient

• Graphene x23, TWiCE x35, CBT x20 ↔ BlockHammer x10.7

• New order: Graphene < BlockHammer << TWiCE << CBT
• BlockHammer is catching up!

1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

Area
(mm2)

Area
(%CPU)

Access
Energy

Static
Power

189

1. Hardware complexity analysis

Area
(mm2)

Area
(%CPU)

Access
Energy

Static
Power

190

• PRoHIT, MRLoc → extremely efficient (because probabilistic)

• TWiCe < CBT << BlockHammer << Graphene → still relatively efficient

• Graphene x22.6, TWiCE x15.6, CBT x14 ↔ BlockHammer x4.9

• New order: BlockHammer <<< TWiCE, CBT << Graphene
• BlockHammer is most efficient!

1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

Area
(mm2)

Area
(%CPU)

Access
Energy

Static
Power

191

1. Hardware complexity analysis

Area
(mm2)

Area
(%CPU)

Access
Energy

Static
Power

192

• PRoHIT, MRLoc → extremely efficient (because probabilistic)

• Graphene << TWiCe, BlockHammer << CBT → still relatively efficient

• Graphene x30.2, TWiCE x29.7, CBT x15.1 ↔ BlockHammer x9.9

• New order: Graphene << BlockHammer <<< TWiCE << CBT
• BlockHammer is catching up!

1. Hardware complexity analysis

RowHammer threshold 32K

RowHammer threshold 1K

Area
(mm2)

Area
(%CPU)

Access
Energy

Static
Power

193

2. Performance & energy consumption

• Setup: DDR4 memory

194

