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Executive Summary

Motivation: High throughput and low latency True Random Number Generators (TRNGs) are a key
component for encryption and randomized algorithms. Many commodity devices do not posses dedicated
True Random Number Generator hardware but have DRAM.

Current Problem: Prior approach to TRNG designs based in DRAM either 1) exploit a fundamentally non-
deterministic entropy source or 2) are too slow for continuous high-throughput operations.

Goal: A novel approach to TRNGs that uses existing DRAM devices with 1) low implementation cost, 2) low
latency and 3) high throughput

Key Idea: Exploit non-determinism in DRAM cells” activation failures to generate true random numbers.

Evaluation: D-RaNGe was implemented and tested on 282 real LPDDR4 DRAM devices showing a remarkably
high peak throughput (717.4 Mb/s) and very low latency (100ns).
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Motivation

* Low latency, high throughput true random numbers (TRNs) are required for many
applications
* Encryption algorithms and standard protocols (i.e. TLS,SSL,RSA,VPN keys) require TRN
e Other purposes include randomized algorithms, simulation and complex modelling

 ATRNG requires a physical process (e.g. radioactive decay, thermal noise, clock jitters)
* Most devices lack the dedicated hardware for a high throughput TRNG
* DRAM is widely available in most modern devices

* A widely available TRNG would allow applications requiring True Random Numbers to
run on most devices
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Goal

The goal is to devise a TRNG in DRAM device that satisfies the six key properties of an
effective TRNG:

Low implementation cost

Fully non-deterministic

Provide a continuous stream of random numbers with high throughput
Provide random numbers with low latency

Exhibit low system interference

on o ogm Y

Generate random values with low energy overhead
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DRAM Background
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D-RaNGe

* Observation: Reducing the time interval between the ACTIVATE and the READ (tgcp)
command leads to random errors

* |dea: Sampling DRAM cells that fail with a probability of 50% and high entropy to
generate truly random data (RNG cells)



D-RaNGe: Finding RNG Cells

* Goal: Finding DRAM cells that have a failure probability of 50% and high entropy
* Each cell in a DRAM bank is read 1M times with reduced tip parameter

* The NIST statistical suite for randomness is run on the resulting bitstreams

* The cells that pass the NIST tests are chosen as RNG cells

* RNG cell location in memory, operating temperature and ty, value are stored in the
memory controller



D-RaNGe: Sampling RNG Cells

* Reading an RNG cell with reduced t;; results in random output

* Inducing bank conflicts maximizes the number of activation failures
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D-RaNGe: Sampling RNG Cells

* Reading an RNG cell with reduced t;; results in random output

* Inducing bank conflicts maximizes the number of activation failures

S ACTIVATE.

wordline

|

local row
decoder

o-
Ore
Ore
Q
Ore
Ore
Ore
\d)




D-RaNGe: Sampling RNG Cells

* Reading an RNG cell with reduced t;; results in random output

* Inducing bank conflicts maximizes the number of activation failures
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D-RaNGe: Sampling RNG Cells
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D-RaNGe: Sampling RNG Cells

* Reading an RNG cell with reduced t;; results in random output

* Inducing bank conflicts maximizes the number of activation failures
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D-RaNGe: Sampling RNG Cells

* Reading an RNG cell with reduced t;; results in random output

* Inducing bank conflicts maximizes the number of activation failures
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D-RaNGe: System Integration

D-RaNGe obtains exclusive access for target rows and cells adjacent to RNG cells
* Can be implemented without any hardware modifications in many existing architectures
* Implemented with firmware running exclusively in the memory controller

* Performance overhead can be reduced by maintaining a queue of already-harvested
random data

e Could be integrated in existing architectures by adding a new ISA instruction (i.e. RDRAND
from Intel)
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Testing Environment

* All tests were performed:
* on a total pf 282 2y-nm LPDDR4 DRAM chips from three major manufacturers
* in a thermally-controlled chamber with a reliable temperature range of 40°C to 55°C and an accuracy
of 0.25°C

« DRAM temperature was maintained at 15°C above ambient temperature using a separate
heating source

* A separate infrastructure allowed precise control and testing with different timing
parameters

« DRAMPower and Ramulator were used to compute energy consumption
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Results: NIST Tests

* 4 RNG cells from each of 59 DRAM chips were sampled 1M times

* The entropy of each 1Mb bitstream was evaluated with the NIST test suite for
randomness

* NIST test suite for randomness includes:
* A frequency test across the whole bitstream

* A frequency test for blocks of the bitstream
* Runs test

e All sampled RNG cells passed all tests



Results: RNG Cell Distribution

* The throughput of D-RaNGe depends on
1. The density of RNG cells per DRAM word
2. The bandwidth at which DRAM words can be accessed while inducing activation failures
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Source: https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpcal9.pdf



Results: Key Properties of a TRNG

* Low implementation cost:

* To induce activation failure, timing parameters must be modifiable below manufacturer-specified
values

e Some processors already allow software to change memory controller registers

* Most processor only need minimal software changes to expose an interface for changing memory
controller registers

* A few minimal hardware changes would have to be implemented for all other chips

* Fully non-deterministic:
* The NIST test suite suggests that the RNG cells are a fully non-deterministic entropy source



Results: Key Properties of a TRNG

* High throughput of random data:
* Throughput is linearly correlated with the number of banks utilized

* A minimum throughput of 40 Mb/s of random numbers can be sustained regardless of manufacturer
when using all 8 banks in a single channel

e A maximum throughput of A: 179.4, B: 134.5, C: 179.4 Mb/s was observed
* Average throughput across all manufacturers: 108.9 Mb/s
* Maximum throughput achieved (in a device with 4 DRAM channels): 717.4 Mb/s



Results: Key Properties of a TRNG

* Low Latency:
* D-RaNGe latency is directly related to DRAM access latency
* Maximum latency for 64 bits of random data: 960 ns
* Minimum latency for 64 bits of random data: 220 ns
e Empirical minimum latency for 64 bits of random data: 100ns

* Low system interference:

* D-RaNGe is highly flexible in terms of system interference versus high throughput

* The overhead of acquiring exclusive access rights to DRAM rows results in 0.018% storage overhead
cost

* Maximum average throughput with no significant impact of system performance: 83.1 Mb/s

* Low energy consumption:
* Cost of generating a random data: 4.4 nJ/bit



Overview

Motivation

Goal

DRAM Background
D-RaNGe

Testing Environment
Results

Comparison to Prior Work
Summary and Conclusion
Strengths

Limitations

Discussion




Comparison to Prior Works: DRAM Command
Scheduling

* |dea: Use latency of DRAM accesses as source of randomness

* Problem: DRAM access latency is not fully non-deterministic

e Maximum throughput: 3.4 Mb/s

* D-RaNGe outperforms this approach by 211x in terms of throughput
e Latency for 64 bits of random data: 18us



Comparison to Prior Works: DRAM Data
Retention

 |dea: Exploit DRAM cell leakage by increasing the refresh interval
e Data Retention Errors are non-deterministic

* Latency: 40s

* Throughput: 0.05 Mb/s

* Energy consumption: 6.8 mJ/bit



Comparison to Prior Works: DRAM startup values

* |dea: Sample start-up values of DRAM cells

* Non-deterministic entropy source

Not capable of continuous throughput

e Latency and power consumption are very hard to estimate
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Summary and Conclusion

Motivation: High throughput and low latency True Random Number Generators are a key component for
encryption and randomized algorithms. Many commodity devices do not posses dedicated TRNG hardware
but have DRAM.

Current Problem: Prior approach to TRNG designs based in DRAM either 1) exploit a fundamentally non-
deterministic entropy source or 2) are too slow for continuous high-throughput operations.

Goal: A novel approach to TRNGs that uses existing DRAM devices with 1) low implementation cost, 2) low
latency and 3) high throughput

Key Idea: Exploit non-determinism in DRAM cells’ activation failures to generate true random numbers.

Evaluation: D-RaNGe was implemented and tested on 282 real LPDDR4 DRAM devices showing a remarkably
high peak throughput (717.4 Mb/s) and very low latency (100ns).
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Strengths

* No extra hardware is required to implement D-RaNGe in most cases

D-RaNGe can be scaled according to application requirements

* No postprocessing is required as RNG cells return unbiased output

RNG cells maintain high entropy and activation failure probability across system reboots

Shifts the current computing paradigm towards a data centric architecture
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Limitations

The effect of long term ageing on RNG cells was not analyzed

D-RaNGe was only tested in a narrow range of operating temperatures

Effects of different voltages on RNG cells were not considered

Memory channels could become a bottleneck for memory intensive applications
Each DRAM device has to be profiled individually
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Do you see some other limitations with D-RaNGe?
How can we improve it?



Could we exploit some other widely available
hardware to host a TRNG? What would the
advantages and disadvantages be?



What does it take for D-RaNGe to be
commercially available? What must happen for
D-RaNGe to become a standard service on every

computer?



