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Executive Summary
Motivation: High throughput and low latency True Random Number Generators (TRNGs) are a key 
component for encryption and randomized algorithms. Many commodity devices do not posses dedicated 
True Random Number Generator hardware but have DRAM.

Current Problem: Prior approach to TRNG designs based in DRAM either 1) exploit a fundamentally non-
deterministic entropy source or 2) are too slow for continuous high-throughput operations.

Goal: A novel approach to TRNGs that uses existing DRAM devices with 1) low implementation cost, 2) low 
latency and 3) high throughput

Key Idea: Exploit non-determinism in DRAM cells’ acNvaNon failures to generate true random numbers.

Evaluation: D-RaNGe was implemented and tested on 282 real LPDDR4 DRAM devices showing a remarkably 
high peak throughput (717.4 Mb/s) and very low latency (100ns). 
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Motivation
• Low latency, high throughput true random numbers (TRNs) are required for many 

applications
• Encryption algorithms and standard protocols (i.e. TLS,SSL,RSA,VPN keys) require TRN
• Other purposes include randomized algorithms, simulation and complex modelling

• A TRNG requires a physical process (e.g. radioactive decay, thermal noise, clock jitters) 

• Most devices lack the dedicated hardware for a high throughput TRNG

• DRAM is widely available in most modern devices

• A widely available TRNG would allow applications requiring True Random Numbers to 
run on most devices

5



Overview
Motivation

Goal

DRAM Background

D-RaNGe

Testing Environment

Results

Comparison to Prior Work

Summary and Conclusion

Strengths

Limitations

Discussion 6



Goal

The goal is to devise a TRNG in DRAM device that satisfies the six key properties of an 
effective TRNG:
1. Low implementation cost
2. Fully non-deterministic
3. Provide a continuous stream of random numbers with high throughput
4. Provide random numbers with low latency
5. Exhibit low system interference
6. Generate random values with low energy overhead
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D-RaNGe

• Observation: Reducing the time interval between the ACTIVATE and the READ (tRCD) 
command leads to random errors
• Idea: Sampling DRAM cells  that fail with a probability of 50% and high entropy to 

generate truly random data (RNG cells)
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D-RaNGe: Finding RNG Cells

• Goal: Finding DRAM cells that have a failure probability of 50% and high entropy
• Each cell in a DRAM bank is read 1M times with reduced tRCD parameter
• The NIST statistical suite for randomness is run on the resulting bitstreams
• The cells that pass the NIST tests are chosen as RNG cells
• RNG cell location in memory, operating temperature and tRCD value are stored in the 

memory controller
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D-RaNGe: Sampling RNG Cells 

• Reading an RNG cell with reduced tRCD results in random output
• Inducing bank conflicts maximizes the number of acBvaBon failures
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D-RaNGe: Sampling RNG Cells 

• Reading an RNG cell with reduced tRCD results in random output
• Inducing bank conflicts maximizes the number of activation failures
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D-RaNGe: Sampling RNG Cells 

• Reading an RNG cell with reduced tRCD results in random output
• Inducing bank conflicts maximizes the number of activation failures
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D-RaNGe: Sampling RNG Cells 

• Reading an RNG cell with reduced tRCD results in random output
• Inducing bank conflicts maximizes the number of acBvaBon failures
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D-RaNGe: Sampling RNG Cells 

• Reading an RNG cell with reduced tRCD results in random output
• Inducing bank conflicts maximizes the number of activation failures
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D-RaNGe: Sampling RNG Cells 

• Reading an RNG cell with reduced tRCD results in random output
• Inducing bank conflicts maximizes the number of activation failures
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D-RaNGe: System Integration

• D-RaNGe obtains exclusive access for target rows and cells adjacent to RNG cells

• Can be implemented without any hardware modificaCons in many exisCng architectures

• Implemented with firmware running exclusively in the memory controller

• Performance overhead can be reduced by maintaining a queue of already-harvested 

random data

• Could be integrated in exisCng architectures by adding a new ISA instrucCon (i.e. RDRAND 

from Intel)
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Testing Environment

• All tests were performed:
• on a total pf 282 2y-nm LPDDR4 DRAM chips from three major manufacturers
• in a thermally-controlled chamber with a reliable temperature range of 40°C to 55°C and an accuracy 

of 0.25°C 

• DRAM temperature was maintained at 15°C above ambient temperature using a separate 
heaKng source
• A separate infrastructure allowed precise control and tesKng with different Kming 

parameters
• DRAMPower and Ramulator were used to compute energy consumpKon
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Results: NIST Tests

• 4 RNG cells from each of 59 DRAM chips were sampled 1M @mes
• The entropy of each 1Mb bitstream was evaluated with the NIST test suite for 

randomness
• NIST test suite for randomness includes:

• A frequency test across the whole bitstream
• A frequency test for blocks of the bitstream
• Runs test

• All sampled RNG cells passed all tests
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Results: RNG Cell Distribution

• The throughput of D-RaNGe depends on

1. The density of RNG cells per DRAM word

2. The bandwidth at which DRAM words can be accessed while inducing acBvaBon failures

Source: https://people.inf.ethz.ch/omutlu/pub/drange-dram-latency-based-true-random-number-generator_hpca19.pdf 
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Results: Key Properties of a TRNG

• Low implementation cost:
• To induce activation failure, timing parameters must be modifiable below manufacturer-specified 

values
• Some processors already allow software to change memory controller registers
• Most processor only need minimal software changes to expose an interface for changing memory 

controller registers
• A few minimal hardware changes would have to be implemented for all other chips

• Fully non-deterministic:
• The NIST test suite suggests that the RNG cells are a fully non-deterministic entropy source
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Results: Key Properties of a TRNG

• High throughput of random data:
• Throughput is linearly correlated with the number of banks utilized
• A minimum throughput of 40 Mb/s of random numbers can be sustained regardless of manufacturer 

when using all 8 banks in a single channel
• A maximum throughput of A: 179.4, B: 134.5, C: 179.4 Mb/s was observed
• Average throughput across all manufacturers: 108.9 Mb/s
• Maximum throughput achieved (in a device with 4 DRAM channels): 717.4 Mb/s
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Results: Key Properties of a TRNG

• Low Latency:
• D-RaNGe latency is directly related to DRAM access latency
• Maximum latency for 64 bits of random data: 960 ns
• Minimum latency for 64 bits of random data: 220 ns
• Empirical minimum latency for 64 bits of random data: 100ns

• Low system interference:
• D-RaNGe is highly flexible in terms of system interference versus high throughput
• The overhead of acquiring exclusive access rights to DRAM rows results in 0.018% storage overhead 

cost
• Maximum average throughput with no significant impact of system performance: 83.1 Mb/s

• Low energy consumption:
• Cost of generating a random data: 4.4 nJ/bit
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Comparison to Prior Works: DRAM Command 
Scheduling
• Idea: Use latency of DRAM accesses as source of randomness
• Problem: DRAM access latency is not fully non-deterministic
• Maximum throughput: 3.4 Mb/s
• D-RaNGe outperforms this approach by 211x in terms of throughput
• Latency for 64 bits of random data: 18µs
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Comparison to Prior Works: DRAM Data 

Retention

• Idea: Exploit DRAM cell leakage by increasing the refresh interval

• Data RetenAon Errors are non-determinisAc

• Latency: 40s

• Throughput: 0.05 Mb/s

• Energy consumpAon: 6.8 mJ/bit

41



Comparison to Prior Works: DRAM startup values

• Idea: Sample start-up values of DRAM cells
• Non-determinis?c entropy source
• Not capable of con?nuous throughput
• Latency and power consump?on are very hard to es?mate
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Summary and Conclusion

Mo#va#on: High throughput and low latency True Random Number Generators are a key component for 
encryp>on and randomized algorithms. Many commodity devices do not posses dedicated TRNG hardware 
but have DRAM.

Current Problem: Prior approach to TRNG designs based in DRAM either 1) exploit a fundamentally non-
deterministic entropy source or 2) are too slow for continuous high-throughput operations.

Goal: A novel approach to TRNGs that uses existing DRAM devices with 1) low implementation cost, 2) low 
latency and 3) high throughput

Key Idea: Exploit non-determinism in DRAM cells’ activation failures to generate true random numbers.

Evaluation: D-RaNGe was implemented and tested on 282 real LPDDR4 DRAM devices showing a remarkably 
high peak throughput (717.4 Mb/s) and very low latency (100ns). 
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Strengths

• No extra hardware is required to implement D-RaNGe in most cases
• D-RaNGe can be scaled according to application requirements
• No postprocessing is required as RNG cells return unbiased output
• RNG cells maintain high entropy and activation failure probability across system reboots
• Shifts the current computing paradigm towards a data centric architecture 
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Limitations

• The effect of long term ageing on RNG cells was not analyzed
• D-RaNGe was only tested in a narrow range of operating temperatures 
• Effects of different voltages on RNG cells were not considered
• Memory channels could become a bottleneck for memory intensive applications
• Each DRAM device has to be profiled individually 
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Do you see some other limitations with D-RaNGe? 
How can we improve it?
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Could we exploit some other widely available 
hardware to host a TRNG? What would the 

advantages and disadvantages be?

51



What does it take for D-RaNGe to be 
commercially available? What must happen for

D-RaNGe to become a standard service on every 
computer?

52


