
DrAcc: a DRAM based Accelerator for Accurate CNN Inference

Quan Deng
College of Computer

National University of Defense
Technology

dengquan12@nudt.edu.cn

Lei Jiang
Intelligent Systems Engineering

School of Informatics and Computing
Indiana University Bloomington

jiang60@ie.edu

Youtao Zhang
Computer Science Department
University of Pittsburgh
zhangyt@cs.pitt.edu

Minxuan Zhang
College of Computer

National University of Defense
Technology

mxzhang@nudt.edu.cn

Jun Yang
Electrical and Computer Engineering

Department
University of Pittsburgh

juy9@pitt.edu

ABSTRACT

Modern Convolutional Neural Networks (CNNs) are computation

and memory intensive. Thus it is crucial to develop hardware ac-

celerators to achieve high performance as well as power/energy-

efficiency on resource limited embedded systems. DRAM-based

CNN accelerators exhibit great potentials but face inference accu-

racy and area overhead challenges.

In this paper, we proposeDrAcc, a novel DRAM-based processing-

in-memory CNN accelerator. DrAcc achieves high inference accu-

racy by implementing a ternary weight network using in-DRAM

bit operation with simple enhancements. The data partition and

mapping strategies can be flexibly configured for the best trade-off

among performance, power and energy consumption, and DRAM

data reuse factors. Our experimental results show that DrAcc achieves

84.8 FPS (frame per second) at 2W and 2.9× power efficiency im-
provement over the process-near-memory design.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have made great progress

in recent years. The error rate of CNN based visual recognition

decreased from 28% in 2010 to 3% in 2016, surpassing human-level

performance at 5% [8]. CNNs are being integrated in modern embed-

ded systems to address image classification and pattern recognition

problems, e.g. automated driving systems. However, large CNNs

could have millions of parameters and require up to tens of billions

of operations for processing one image frame [5], exhibiting the

need for designing hardware CNN accelerator designs to improve

performance and power/energy consumption.

It is challenging to design CNN accelerators for resource lim-

ited embedded systems. FPGA-based accelerators [15] achieve good

power/energy efficiency but often have low throughput due to

limited memory bandwidth. ASIC based accelerators achieve high

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DAC ’18, June 24–29, 2018, San Francisco, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196029

performance with energy efficiency through highly optimized com-

putation engines, but need to use large on-chip buffers to store the

intermediate results [1, 3, 11]. They consume not only large dynamic

power/energy on moving data into and out of the computation en-

gines but also large static power/energy for the large buffers [4].

ReRAM based accelerators adopt a processing-in-memory (PIM)

strategy such that most computation operations are performed

inside the memory arrays, which eliminates expensive data move-

ments [19]. However, they demand large peripheral circuits such as

ADC, DAC and router. ReRAM based accelerators not only face the

endurance problem but also demand a special fabrication process

that introduces extra cost.

Recently, several DRAM-based CNN accelerators were proposed

to exploit bit operation capability inside DRAM cell arrays. They

exhibit great potential for high performance and low power/energy

consumption on embedded systems. These designs choose binary

weight neural networks (BWN) [2, 6, 16] that shrink 16-bit or 32-bit

values to two values (‘-1’ or ‘+1’). There are two choices: one is

to convert all values, i.e. weights, inputs, and intermediate results;

the other is to convert only the weights [2]. Most DRAM-based

CNN accelerators [9] adopt the first choice so that they eliminate

multiplication operations and use only XNOR operations in CNN

inference. This choice suffers from accuracy loss, e.g. about 11%

accuracy loss on ImageNet (top-5) [13]. In this paper, we follow

the second choice and adopt a ternary weight network [20] to

ensure inference accuracy. We further optimize it to achieve energy

efficiency on embedded systems.

The work most related to our design is DRISA[14]. While both

DRISA andDrAcc adopt DRAM-based processing-in-memory frame-

work, DRISA is a heavyweight design. Its 1T1C-NOR variant adds

one NOR gate and one latch to each bitline and a full-fledged shifter

to each subarray. DRISA demands high power and has large area

overhead — the area of a 4Gb 1T1C-NOR engine is close to that of

8Gb DRAM while its power consumption is more than 50W [14].

In contrast, DrAcc is a lightweight design. DrAcc relies mostly on

cell operations; it places the indispensable yet less frequently used

shifter outside of the cell subarrays. DrAcc adds less than 2% area

overhead and consumes less than 2.5W power.

Our contributions are summarized as follows:

• We propose DrAcc, a DRAM-based CNN accelerator for embed-
ded systems. DrAcc implements ternary weight neural networks

[20] to achieve inference accuracy and energy efficiency. The

implementation exploits the in-DRAM bit operation together

with our simple enhancements.

• We propose flexible data partition and mapping strategies that
match the dynamic resource availability and performance de-

mands. DrAcc supports three modes and their mixes – the high

throughput mode, the single frame mode, and the low power

mode. They are specially designed to maximize system through-

put, minimize single frame processing time, and minimize power

consumption, respectively.

• Our experimental results show that DrAcc achieves 84.8 FPS

(frame per second) at 2W and a 2.9× power consumption im-
provement over the process-near-memory design.

2 BACKGROUND

2.1 Ternary Weight Neural Networks

CNNs are mainly composed of convolution layers and fully con-

nected layers. As shown in Figure 1, each convolution layer usually

has 3 steps, i.e. convolution, activation, pooling. Here X is the input

of one layer, and W is the weight matrix. Z is the convolution result,

which enters the activation function units in the next step.

���� ��� �		
���� �����

�	�

��	����
�	��

�����
����	��

���

��������� �������

�

�
�

 !�"�

Figure 1: A CNN consists of many layers.

The recently proposed binary weight neural networks (BWNs)

and ternary weight neural networks (TWNs) [2, 20] replace full

precision weights with binary weights (‘-1’ or ‘+1’) and ternary

weights (‘-1’, ‘0’ or ‘+1’), respectively. BWNs and TWNs achieve

similar inference accuracy as that of a full-precision weight CNN.

We choose TWN in this paper to exploit weight sparsity [20] for

energy savings.

By converting 16-bit or 32-bit values to 2-bit ternary values,

TWN achieves 8x or 16x memory space reduction. The conversion

adopts a threshold-based ternary function as shown in Equation 1.

Here, Δl is the minimum Euclidean distance between the full preci-

sion weight and the ternary weight. For normal distributions, δ l is

around 0.7E(|W |).

W t

l
=

⎧⎪⎪⎨
⎪⎪⎩
+1 wl > Δl

0 |wl | ≤ Δl

−1 wl < −Δl

(1)

Z = X ∗W ≈ X ∗ (αW t) = α(X#W t) (2)

Equation 2 shows the flow of TWN for each convolution course.

Here, X refers to the input data of each layer. Z refers to the output.
∗ refers to the inner product, while # refers to the inner product
without multiplications. α is the scaling factor, which is the mean
of the weights from one filter.

TWN computes inner products using accumulations only and

greatly reduces the number of multiplication operations. With the

only multiplication operation left in the final step of equation (2),

TWNs achieves 100× or more reduction over the traditional CNN in

AlexNet. TWNmakes it possible to design adder-based accelerators

rather than traditional multiplier-accumulator based accelerators.

2.2 DRAM

DRAM adopts a hierarchical design at the bank level. Each bank con-

tains multiple subarrays, global buffers and decoders. Each global

BL (bitline) connects several local BLs from different subarrays

in different rows. The hierarchical structure helps to decrease BL

length of BL and improve DRAM timing.

A DRAM cell consists of a capacitor and a transistor. The gate

and drain of the access transistor connect to the WL (wordline) and

the BL, respectively. It uses the voltage of charge in the capacitor

to represent binary data. Ideally, it represents logic ‘1’ when the

capacitor is charged, and logic ‘0’ when there is no charge.

���������	�
����
��������	�
����

�
��
��

���
�	

��
�
��

�

��
��
���

�	
�

�
�
��

�
�
�	

�
�
�
��

�

#�$�����

#�$�����

#�$�����

�%�����

�

&

�

�

�&�

���

Figure 2: The hierarchical structure of Ambit [18].

2.2.1 Processing in DRAM. Seshadri et al. [17, 18] and Kim et

al. [12] proposed a series of low level architecture optimizations in

DRAM cell arrays, which expose the design opportunity of applying

processing-in-memory strategy to DRAM cell arrays.

Our design is built on top of Ambit [18], which leverages charge

sharing among different rows to conduct logic operations in com-

modity DRAM. Ambit uses three DRAM cells to compute AND and

OR logic results, as shown in Figure 2. The bit ‘C’ selects the logic

function while ‘A’ and ‘B’ are inputs and ‘R’ is the final result, as

shown in Equation 3.

R =

{
A & B when C = 0

A ‖ B when C = 1
(3)

Each logic operation requires three steps: charge sharing, restore

and precharge. We next elaborate the operation assume ABC=‘011’.

First, the wordlines of A, B and C are enabled while the local sense

amplifier is closed. This leads to charge sharing among the capaci-

tors of A, B and C through the local BL. The voltage goes to 2/3VDD ,

ignoring process variation, load in BL and other factors. Second,

the local sense amplifier is activated. A voltage, which is higher

than half VDD , drives the local sense amplifier to be ‘1’. All the

three DRAM cells are then restored to ‘1’. Finally, the local BL is

precharged.

Two of the additinal rows added in Ambit subarrays are to enable

NOT operation, i.e. their capacitor are connected with BL. It first
activates the WL to open a DRAM cell, and reads its data to the

local sense amplifier. It then closes the input DRAM cell, and opens

the special cell. BL writes the result back to the special cell.
All these operations are operated at the subarray level, where the

global BLs are not used. They can be translated to device commands

Activation and Precharge — ‘AAP’ refers to two activations back-to-

back followed by a precharge. ‘AP’ refers to one activation followed

by one precharge.

%
	
'
��
��
	
�
��

&
��

�
�
��
�
�
��

&
��
��

���
	
(

�(

��
�

���%

���%

)* �*)+ �+)� �� �,),

�- �* �+ ��
�,

#�

#� #�

#�#�#�

#�#�

.�/ .$/ .�/ .�/

�,!������,

�! ,���

&! ��,�

)! ,�,�

�! �,�,

�! ����,

#! �,�,,

��

��

��

���

���

��

��

��
�� ��

�� ��
#� #�

��

��

��

� �

Figure 3: The DRAM-based in-memory adder mplementation.

3 THE IN-DRAM ADDER DESIGN

Since TWNs rely heavily on accumulation operation, we next devise

a DRAM-based in-memory adder.

3.1 The Carry Look-ahead Adder (CLA)

In this paper, we choose to implement a carry look-ahead adder

with the following algorithm steps. A and B are the inputs, C is the
carry, and S is the final result. Ai indicates the i-th bit of A or B.
Gi=‘1’ indicates there is a carry to the higher bit. P i=‘1’ indicates

it needs to propagate the carry to higher place.

Gi = Ai&Bi

P i = Ai ⊕ Bi

Ci+1 = Gi ‖(P i&Ci)
Si = Ai ⊕ Bi ⊕ Ci

(4)

In our implementation, we exploit transmission gates to generate

carry bits in carry lookahead adder in DRAM. An equivalent circuit

is illustrated in the upper of Figure 3 (a). P controls the transmission

gate, while G connects the input and the control of a buffer. When

G=‘1’, the buffer is open; otherwise, the buffer is closed. When

P=‘1’, G is propagated from the right to the left. In the example,

we are to add two inputs A=‘0111’ and B=‘1101’. C0 is precharged
to ‘0’. According to Equation (4), we have G=‘0101’ and P=‘1010’.

After changing the open NMOSs with connected lines and the

closed NMOSs with disconnected lines, we get the bottom circuits

in Figure 3 (a). The final carry bit is generated to be ‘11110’. The

final result S is computed from ‘P XNOR C’, i.e. ‘10100’.

Figure 4: The AAP operations of CLA.

We enhance Ambit [18] to implement our proposed in-memory

CLA adder. Ambit adds eight extra rows for basic logic operations,

i.e., AND, OR and NOT. Two of the eight rows are introduced

to support NOT logic. The DRAM cells in those rows have extra

connections with BL, which are the same as T3s in Figure 3(c).

DrAcc makes the following enhancements: (1) DrAcc changes the

wire connection of one special row so that it can be used for carry

shift instead of not-logic. We name the special row as SHF. (2) An

extra path to T2 is added in the NOT row, i.e. T1 and T4 in Figure

3 (c). (3) DrAcc slightly changes the peripheral circuit. It adds one

transistor to deliver the propagation signal, i.e. T2 in Figure 3(c);

It adds two transistors in SA to provide an extra enable port for

SA,i.e. T5 and T6 in Figure 3(d). Considering the hardware overhead,

change (1) is minimal, i.e, the overhead of SHF and DRAM cell are

similar; change (2) increases 3 more transistor per column in DRAM;

change (3) is made in the peripheral circuits and thus is less critical.

We name the specific rows for processing-in-DRAM as reserved

rows. DrAcc adds less than 2% area overhead to the cell subarray,

which is comparable to 1% area overhead of Ambit [18].

Figure 4 illustrates the DRAM command details of one accumu-

lation operation. ‘RN’ refers to the N -th row in the reserved rows;
‘Shift’ refers to the SHF row, while ‘Not’ refers to the NOT row.

AAP(A,B8) means the wordlines of A in the Addr. table on the left

of Figure 4 is first open, then the wordlines of B8. Among the 13

commands, the first four copy the corresponding operands into the

reserved rows to prevent the original data from being destroyed.

Then it exploits charge-sharing to generate ‘G’ and ‘P’. ‘C’ is gener-

ated through the propagation. After shifting ‘C’, an XOR operation

is performed over ‘P’ and ‘C’ to generate the final result ‘S’.

There are three steps in the propagation operation. (1) We enable

NCTR and PCTR to activate SAs, read G out, and then deactivate

NCTR and PCTR. SA remains being activated only when G is ’1’

and deactivated otherwise. (2) we activate PC and open gate T1. P

is delivered to the gate of T2. (3) we close T1 and reactivate NCTR

and PCTR to restore Carry to the corresponding row.

3.2 The Benefits of In-memory DRAM Adder

3.2.1 Benefit 1: it mitigates data movement and improves perfor-

mance and computation efficiency. A major challenge to implement

in-DRAM adder is the data movement between data block and logic

block. For a processing-near-memory design, each operation needs

to read out all operands from the memory and then write the result

back to the memory. Since most operands are reusable, a lot of these

movement operations are unnecessary.

DrAcc adder leverages the temporary data during accumulation

to mitigate data movement. It copies data from one row to multi

rows as the inputs of different logic operations, which avoids re-

dundant copy of the same data. DrAcc needs 11 AAP and 2 AP

commands to finish one 16-bit or 32-bit add. As a comparison,

DRISA 1T1C-NOR design needs 21 AP commands. Given AAP and

AP have about the same latency [18], DrAcc is about 1.5x faster.

3.2.2 Benefit 2: DrAcc adder decouples the voltage drop and the

length of transmission line. DrAcc implements a transmission line

based carry-look-ahead (CLA) adder. Such a design is less popu-

lar as a stand-alone implementation, due to its long latency and

voltage drop along the transmission line. DrAcc leverages the local

sense amplifier to drive adjacent bits. Together with the sources of

transmission lines, DrAcc accomplishes add within short latency.

Figure 5 shows the H-SPICE simulation results for a 16-bit propa-

gation operation. We have G, P , Cin being ‘0000 0000 0000 0010’,

‘1111 1111 1111 1100’, and ‘0’, respectively. As shown in the figure,

the final ‘C’ is ‘1111 1111 1111 1110’, showing no voltage drop in

the operation. The average latency for one column propagation is

0.25ns. Therefore, it takes up to 4ns for processing 16-bit data.

*0,,��,,1 20,,��,,1 10,,��,,1

,0,

,03

�
	

��
4�
.�
/

����

Figure 5: The H-SPICE simulation result of propagation.

4 THE DRACC ARCHITECTURE
4.1 An Overview
While adopting ternary weights eliminates most multiplication

operations, we still need to perform a few, i.e. multiplying α in
Equation (2). Since the DRAM-based PIM subarrays do not have

multiplier functional unit, we decompose multiplication to shift

and add operations, and perform shift operations using the logic

layer. The shift operation is then deferred after pooling, which is

referred to as post-conv in Figure 6. The rest of convolutional layer

is untouched, referred to as pre-conv. The split is viable because

multiplying α is a linear operation such that the computation result
stays unchanged. Since pooling reduces the size, the split reduces

the total number of shift operations.

�

Figure 6: The workflow of DrAcc layer processing.

To summarize, CNN layer processing is implemented in four

steps in DrAcc: pre-conv, activation, max pooling, and post-conv.

The first three steps are implemented in the DRAM layer while the

last step uses the logic layer.

4.2 The DrAcc Hardware Implementation

Figure 7 illustrates the hardware enhancements to enable DrACC:

(1) we enhance the computation rows in the each DRAM subarray;

(2) we enhance the memory controller to enable PIM processing;

(3) we integrate a flag buffer for holding PIM instructions and their

operand row addresses; (4) we integrate a shifter in the logic layer

to support decomposed multiplication operations.

In the pre-conv step, the controller adds the shifted results from

the post-conv step of its preceding layer, and then interprets the PIM

instructions in the flag buffer. Depending on the ternary weights,

either accumulations or subtractions are performed. In the activa-

tion step, there are two candidate functions — Rectified Linear Unit

(ReLU) or Sigmoid. ReLU chooses the maximum between 0 and the

input while Sigmoid uses a complicated non-linear function [10].

We implement ReLU in DrAcc, which sends 0 if the sign bit is ‘1’,

indicating a negative value. In max pooling step, we downsam-

ple the inputs by selecting the maximum data in every filter. The

subtraction operation is processed in-memory. In post-conv step,

the controller first determines the scaling factor and then send the

scaling factor as well as the pooling results to the shifter in the

logic layer. The results are sent back to the DRAM layer, which are

then summed up at the beginning of the next layer.

Parallel optimization. DrAcc operates at the page level such

that it demands massive concurrent computation to maximize re-

source utilization. Adopting the TWN algorithm helps to orches-

trate the shift and accumulation operations. For further parallelism

improvement, we reorder the input data and place the data with

the same weight (but from different threads) in the same row. We

keep their correlation to ensure correctness.

�%��������

�	4��������

��(��	���	

�� 5
�4 &�66��

#7�6���
�	�� �����

#7�6�

Figure 7: The hardware enhancements for DrAcc.

5 THE DIFFERENTWORK MODES IN DRACC

Since DrAcc exploits DRAM subarrays for both data movement and

computation, maximizing the performance of one often hurts the

performance of the other. In this section, we elaborate how to adopt

data partition to balance the resource allocation and to tradeoff

among accelerator throughput, single task performance, and power

consumption.

5.1 Data Partition Choices

For each layer, there is a three-dimensional input matrix and multi-

ple weight vectors. We differentiate two directions for the matrix —

the Y axis direction, and the XZ plane. We next discuss three data

partition choices.

• YP-partition. We partition both the input matrix and the weights
along the Y direction, i.e. one thread is split to multiple sub-

threads with each handling a portion of data along the Y direction.

Each input data block corresponds to multiple pruned weight

vectors. The number of pruned weight vectors is the same with

the original size of weight vectors. YP-partition allocates more

hardware resources to speed up thread computation. Given the

sub-threads are to compute different columns, we need to conduct

extra effort, e.g., data movements, to compute the final results.

• XZP-partition. We partition the input matrix along the XZ di-
rection and let each partition form an independent thread. One

thread in the XZ partition computes the final result. In each CNN

layer, the stride of a kernel, which is the step in the weight ma-

trix, is smaller than the dimension size of the weight matrix. Two

adjacent threads share data in the initial input matrix. When

adopting XZP-partition, we need to copy the overlapped data

multiple times to ensure thread independence. The additional

data movement tends to degrade the throughput.

• WP-partition. We copy multiple input data samples with different
weight vectors. A set of weight vectors with entire input data

forms a thread. WP-partition avoids the data overlap issue in

YP- and XZP- partitions. To mitigate weight inconsistence in

one row (i.e., some are adds, some are subtractions, while others

are no-ops), we use weight grouping to improve parallelism. For

WP-partition, each thread needs the entire input, which increases

the data movement overhead.

5.2 Working Mode Optimization
An embedded system may face different requirements when being

deployed in different environments. We next elaborate how DrAcc

can adjust its working mode to meet such requirements.

• High ThroughputMode. This mode keeps the DRAM-based adder
busy and avoids data transfer latency, i.e. decreasing the data

movement and improving the data reuse rate. For this purpose,

restricting data partition helps to improve the system throughput,

which is achieved with increased computing latency of each layer.

• Low Power Mode. This mode decreases the number of active

pages to avoid partial computation. This is because the minimum

computing unit in DrAcc is a DRAM page — all bits participate in

computing even if there is only one operation. We first compare

the power of the compute and the data movement. If the data

transfer power is higher, XZP, WP and YP partitions can be

applied to fulfill the partial active pages. Otherwise, we search

for the best configuration. The order is decided by the power

overhead of each partition.

• High Speed Mode. XZP, WP and YP partitions may be applied
to increase the number of parallel threads. We achieve the best

speedup when this number is large or we reach the resource

limitation.

By mixing the above three modes, DrAcc can flexibly adjust its

acceleration configuration to match the application’s demand.

6 EVALUATION
We use Design Compiler and H-spice for the hardware simula-

tion, and CACTI to simulate the DRAM structure. The neural net-

work benchmarks are Mnist, Cifar10, Alexnet, VGG16 and VGG19.

The baselines are DRAM_L, Neurocube, Eyeriss and ShiDianNao.

DRAM_L is to simulate Drisa in our design flow. It adds basic logics

in each DRAM subarray and uses the CSA algorithm for accumula-

tion. Table 1 presents the configuration details.

Table 1: The Configuration of DrAcc

DRAM Architecture Wide IO2 DRAM Tech. 25nm

Bank Size 32 Channel Size 8

Memory Capacity 8 Gb Subarray Size 512x512

6.1 Performance Evaluation

Table 2 and 3 compare the performance betweenDrAcc andDRAM_L

under two working modes. We compared both system throughputs

(i.e., frame per second FPS) and the processing latency of a sin-

gle frame (in ms). From the tables, DrAcc outperforms DRAM_L

for both modes. The difference is small for deep neural network

when adopting the high speed mode. That is because large neural

networks, such as VGG19, have a large number of parallel threads

that demand data movements. It is the limited data bandwidth that

manifests the most critical performance bottleneck.

Table 2: Performance in High Throughput Mode

DrAcc(FPS) DRAM_L(FPS) DrAcc(s) DRAM_L(s)

MNIST 7697.4 4948.6 4.25 6.62

Cifar10 6008.4 3887 5.44 8.42

Alexnet 84.8 53.8 386.4 608.6

VGG16 4.8 3.08 6772.3 10627

VGG19 4.05 2.5 8074.5 12676

Table 3: Performance in High Speed Mode

DrAcc(FPS) DRAM_L(FPS) DrAcc(ms) DRAM_L(ms)

MNIST 142.8 121.4 7.0 8.239

Cifar10 120.5 104.2 8.3 9.69

Alexnet 3.63 3.55 275 281

VGG16 0.3 0.3 3282 3283

VGG19 0.25 0.25 3933 3933

In DrAcc, when allocating more hardware resources to accelerate

one single frame, we shall have a large number of extra data move-

ments or computing operations. There is a correlation between

system throughput and single frame latency. For Alexnet in DrAcc,

the highest throughput is 84.8 FPS, while its corresponding latency

to process a single frame is 386.4s. When pushing the highest speed

for a single frame to 275ms, we see a great degradation in through-

put — the corresponding throughput is only 3.63 FPS. Therefore, it

is important to choose an appropriate working mode to meet the

application requirements. We leave the search of the best working

mode as our future work.

6.2 Area Overhead

DrAcc is built on Ambit[18], of which the overhead is less than

1%. We change a wire connection in the DRAM cell layout and

add two transistors per column. To support CLA adder, we have

a simple modification of the subarray level SA, which adds four

more transistors in each SA. The area of the enhanced SA in DrAcc

is 36% larger than that of Ambit. Given SA occupies less than 15%

DRAM die area, the overall area overhead of DrACC is around 2%

over the commodity DRAM.

At the logic layer, DrAcc has a 5Kb weight buffer and 5K shifters.

The shifter is implemented similarly as that in DRISA[14]. The total

area is 0.01mm2, which is negligible in DRAM.

6.3 Power and Area Efficiency

Figure 8(a) compares the power efficiency of different designs. The

results are normalized to that of Neurocube. DrAcc achieves high

power efficiency for small or large image recognitions. It achieves

the best efficiency except for VGG 19 and VGG 16 where Eyeriss is

slightly better. Note, Eyersiss is not a standalone accelerator. The

power of additional hardware for enabling Eyersiss is not evaluated.

On average, the power efficiency of DrAcc is 3.8× that of Neuocube
and 2.9× that of DRAM_L.
Figure 8 (b) compares the area efficiency of different schemes.

The area efficiency of DrAcc is low, which is only higher than

DRAM_L. This is because DrAcc is an in-memory accelerator. We

adopt a conservative parallelism at the bank level, which limits

the number of working pages. As a standalone accelerator, DrAcc

���#� ��6���, �
�8��� �))�2 �))�1
,

+

-

2

�
�
	
�(
�

�9
��
��
	
'
��
��
66
��
��
�
��
.5
�
#
:�
/

������� ��%��;�� �����	��$��

����������� ������<<� �#7�������	

(a) Power Efficiency

���#� ��6���, �
�8��� �))�2 �))�1
���

���

���

���

���

���

���

�

�
	
�(
�

�9
��
��
��
��
�
66
��
��
�
��
.5
�
#
:(
(
+
/ ������� ��%��;�� �����	��$��

������������� ������<<� �#7�������	

(b) Area Efficiency

Figure 8: The efficiency analysis.

� � ! �� �� � ��! ��� ���

�

���

���

���

 ��

�

�

��
"
#�
$�
%&
'

()

���*+�",#-� ���"��*�.*#"� ����$

(a) Timing break down of YP

� ��� �� ���

�/��!�

�/��!�

�/��0�

�/��0�

�)�	�� ��1���-1)�"

()

)�
	
�
�%2

'

��

 �

��

!�

��
1�
��

-1
)�

"�%
�)

�'

(d) Throughput and power of YP

� � ��
�

���

 ��

���

!��

����

�

�

��
"
#�
$�
%*

&'

34)

���*+�",#-� ���"��*�.*#"� ����$

(b) Timing break down of XZP
� � ��

�/0�

�/0

�/0�

�/0!
��)�	�� ��1���-1)�"

34)

)�
	
�
�%2

'

�

�
��
1�
��

-1
)�

"�%
�)

�'

(e) Throughput and power of XZP

� � ! �� �� � ��!

�

���

 ��

���

!��

�

�

��
"
#�
$�
%&
'

2)

���"��*�.*#"� ���*+�",#-� ����$

(c) Timing break down of WP
� � ! �� �� � ��!

�/��

�/��

�/��

�/�� �)�	�� ��1���-1)�"

2)

)�
	
�
�%2

'

�

��

 �

��

!�

�

��
1�
��

-1
)�

"�%
�)

�'

(f) Throughput and power of WP

Figure 9: The partition analysis.

avoids the memory constraint. Furthermore, the add operations

in DrAcc only need local operations like activation and precharge.

Therefore, DrAcc is compatible to more aggressive designs that

exploit subarray level parallelism. Potentially, DrAcc can achieve

16× speedup, which is 2.5× of the best in Figure 8 (b).

6.4 Programmability of DrAcc

Figure 9 evaluates the programmability of DrAcc. By choosing dif-

ferent data paratition and working modes, DrAcc can be optimized

for high throughput, low latency, or low power. We explore the

design space in this evaluation. The x axis represents the partition

number. Figure 9 (a) shows that YP helps to decrease the computing

latency. There is a steady tail for delay because YP introduces addi-

tional computing operations. When the saved time is comparable

to that to perform extra computation, there is no overall further

improvement.

Figure 9 (b) evaluates the impact of XZP partition. The single

frame processing latency can be reduced into several hundreds of

milliseconds, as a comparison of several hundreds of seconds in

Figure 9(a)(c). The minimal delay appears when the data movement

and the computation can be fully overlapped. Figure 9 (c) evaluates

the impact withWP partition. The computing latency is steady with

different WP partitions. The latency of data movement increases

with increasing partition numbers.

Figure 9(d)(e)(f) show that there is a tradeoff between the power

and the throughput. A higher throughput often leads to a lower

power consumption. Another observation is that a high through-

put cannot guarantee low latency. The latter is often achieved by

allocating more resources, which tends to decrease throughput.

7 CONCLUSION

In this paper, we propose DrAcc, a DRAM-based accelerator for

accuracy inference. A CLA adder is implemented in DRAM with a

light modification. A data partition strategies is provided to balance

system performance, single frame performance and power con-

sumption. We achieve 84.8 FPS for Alexnet with 2W and average

2.9× power efficiency over the process-near-memory design.

8 ACKNOWLEDGMENTS

This work is supported in part by US National Science Foundation

#1617071. The authors thank the anonymous reviewers for their

constructive comments.

REFERENCES
[1] Y. Chen, et al. Eyeriss: An energy-efficient reconfigurable accelerator for deep

convolutional neural networks. In IEEE Journal of Solid-State Circuits, 2017.
[2] M. Courbariaux, et al. Binaryconnect: Training deep neural networks with binary

weights during propagations. In Advances in Neural Information Processing
Systems, pages 3123–3131, 2015.

[3] Z. Du, et al. Shidiannao: Shifting vision processing closer to the sensor. In ISCA,
2015.

[4] M. Gao, et al. Tetris: Scalable and efficient neural network acceleration with 3d
memory. In ASPLOS, 2017.

[5] V. Gokhale, et al. A 240 g-ops/s mobile coprocessor for deep neural networks. In
CVPR Workshops, pages 682–687, 2014.

[6] M. Gupta, et al. Binary neural networks. In Static and Dynamic Neural Networks:
From Fundamentals to Advanced Theory, pages 507–577.

[7] K. He, et al. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In arXiv:1510.00149, 2015.

[8] K. He, et al. Deep residual learning for image recognition. In CVPR, 2016.
[9] L. Jiang, et al. XNOR-POP: A processing-in-memory architecture for binary

Convolutional Neural Networks in Wide-IO2 DRAMs. In ISLPED, 2017.
[10] R. Jozefowicz, et al. An empirical exploration of recurrent network architectures.

In ICML, 2015.
[11] D. Kim, et al. Neurocube: A programmable digital neuromorphic architecture

with high-density 3d memory. In ISCA, 2016.
[12] Y. Kim, et al. A case for exploiting subarray-level parallelism (salp) in dram. ISCA,

2012.
[13] F. Li, et al. Ternary weight networks. arXiv preprint arXiv:1605.04711, 2016.
[14] S. Li, et al. Drisa: A dram-based reconfigurable in-situ accelerator. In MICRO,

2017.
[15] Y. Li, et al. A 7.663-TOPS 8.2-W Energy-efficient FPGA Accelerator for Binary

Convolutional Neural Networks. In FPGA, 2017.
[16] M. Rastegari, et al. Xnor-net: Imagenet classification using binary convolutional

neural networks. In ECCV, 2016.
[17] V. Seshadri, et al. Rowclone: Fast and energy-efficient in-dram bulk data copy

and initialization. In MICRO, 2013.
[18] V. Seshadri, et al. Ambit: In-memory accelerator for bulk bitwise operations

using commodity dram technology. In MICRO, 2017.
[19] A. Shafiee, et al. ISAAC: A convolutional neural network accelerator with in-situ

analog arithmetic in crossbars. In IEEE Press, 2016.
[20] C. Zhu, et al. Trained ternary quantization. arXiv preprint arXiv:1612.01064, 2016.
[21] Z, Liu, et al. Throughput-Optimized FPGA Accelerator for Deep Convolutional

Neural Networks. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 2017.

[22] Q, Lan, et al. High Performance Implementation of 3D Convolutional Neural
Networks on a GPU. Computational intelligence and neuroscience, 2017.

