
Deep Compression: Compressing
Deep Neural Networks With Pruning,

Trained Quantization and Huffman
Coding

Song Han, Huizi Mao, William J. Dally
First presented at: International Conference on Learning

Representations (ICLR) 2016

1

Presented by: Hong Chul Nam
Seminar in Computer Architecture

Executive Summary

• Problem
• Large DNNs are hard to be fitted into a resource-restraint environment
• Current DNNs are mostly too large

• Goal
• Compress large DNNs into a smaller one such that memory fetching is minimized

• Key idea
• Adaptive pruning – use less weights
• Adaptive quantization – use less bits per weight
• Huffman encoding – use less bits per character sequence

• Results
• A much smaller network able to be fitted into the mobile platform

2

Background,
Problem &
Goal

3

Neural Network: Theory

• What is a neural network?

4Source: Csáji et al., Approximation with Artificial Neural Networks, PSU 2001

Neural Network: Training Phase (I)

5Source: http://tamaszilagyi.com/blog/2017/2017-11-11-animated_net/

Neural Network

Loss Function Training Set

Neural Network: Inference Phase (II)

6Source: https://medium.com/colaberry-labs/toy-neural-network-classifies-orientation-of-line-acf143b89c22

Possible Layers: CNN Layer

7

Input Layer

CNN kernel

Output Layer

Possible Layers: Dense Layer

8

Huffman Coding

• A widely-used lossless compression algorithm
• Idea:

• Shorter sequence for frequently appearing object
• Longer sequence for rarely appearing object
• Sequence length determined by appearing frequency

9

Huffman Coding Example (I)

Source: https://www.programiz.com/dsa/huffman-coding 10

Frequency

Vocabulary

Huffman Coding Example (II)

Source: https://www.programiz.com/dsa/huffman-coding 11

Frequency

Vocabulary

Huffman Coding Example (III)

Source: https://www.programiz.com/dsa/huffman-coding 12

Frequency

Vocabulary

Huffman Coding Example (IV)

Source: https://www.programiz.com/dsa/huffman-coding 13

Frequency

Vocabulary

Huffman Coding Example (V)

Source: https://www.programiz.com/dsa/huffman-coding 14

Frequency

Vocabulary

Huffman Coding Example (VI)

Source: https://www.programiz.com/dsa/huffman-coding 15

Problem I: Large File Sizes (I)

• Memory bandwidth is a scarce resource

16Source: https://www.politifact.com/truth-o-meter/promises/trumpometer/promise/1397/build-wall-and-make-mexico-pay-it/

Problem I: Large File Sizes (II)

• Large-size applications must go through much more scrutiny to
appear in app store for download

17

Problem II: Energy Consumption

• Too many memory fetching for weights!

18

0

100

200

300

400

500

600

700

SRAM cache access Float point product DRAM memory access

En
er

gy
 (p

J)

Different Operations

Energy consumption per operation

Energy Consumption for Different Operations

100 – 500 x

Goal

• Compress large deep neural networks such that access to DRAM for
fetching weights could be minimized

• Enable running the DNN directly on mobile devices

19

Goal

20

Memory Computing Unit

Goal

21

Memory Computing Unit

Implementation

22

Overview: Three-staged Compression

23

• A lot of neural networks are overparametrized
• Many weights are either zero or close to zero
• These zero-ish weights do not contribute much to the result

Pruning: Idea

IF ALMOST ZERO, WHY NOT
SET THEM ZERO AT ALL?

24

Pruning: Implementation (I)

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix

25

Pruning: Implementation (II)

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix

26

Pruning: Implementation (III)

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix

27

Pruning: Implementation (II)

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix

28

Pruning: Implementation (III)

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix

29

Pruning: Implementation (II)

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix

30

Pruning: Implementation (III)

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix

31

Pruning: Implementation (II)

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix

32

Pruning: Implementation (III)

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix

33

STOP WHEN THE ACCURACY DECREASES TOO
MUCH

Pruning: Implementation

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix

34

Quantization: Idea

High energy efficiency

Low precision

Low energy efficiency

High precision

35

A MIDDLE GROUND

Quantization: Implementation

• K-means clustering on weights to find centroids
• Match all weights into the corresponding centroids

36

Quantization: Implementation (I)

• K-means clustering on weights to find centroids

37

Quantization: Implementation (II)

• Use index on centroids/bins as the weight value

38

Quantization: Implementation (III)

• Use index on centroids/bins as gradient value

39

Quantization: Implementation (IV)

• Backpropagation to fine-tune the centroid

40

Quantization: Implementation (III)

• Use index on centroids/bins as gradient value

41

Quantization: Implementation (IV)

• Backpropagation to fine-tune the centroid

42

Quantization: Implementation (III)

• Use index on centroids/bins as gradient value

43

Quantization: Implementation (IV)

• Backpropagation to fine-tune the centroid

44

STOP WHEN IT CONVERGES

Huffman Encoding

• Each weight is represented by the index of the centroid
• A fixed vocabulary (bins/centroids for weights) with indices

45

LONG FOR SHORT!
SHORT FOR LONG!

Distribution of weights/indices

46

Sample Model

• AlexNet

47Source: ImageNet Classification with Deep Convolutional Neural Networks Krizhevsky et al.

Sample Model

48Source: Very Deep Convolutional Networks for Large-scale Image Recognition

Results

49

Results (I): Compression Ratio

• Pruning + Quantization reaches the maximum of 3% model size without
accuracy loss

50

Results (II): Compression Ratio

• Most efficient in compressing dense connected layers
• 96% weights pruned in VGG-16

51

Results (III): Compression Ratio

52

Results (IV): Speedup

• 3x speedup on CPU, 4.2x on mobile GPU and 3.5x on GPU

53

Results (V): Energy Efficiency

• 7x less energy on CPU, 3.3x less energy on GPU and 4.2x less energy
on mobile GPU in average

54

Results (IV): Quantization Error

• Quantization error depends on the number of bits needed to
represent each centroid bin

• Critical to find the sweet spot or choose depending on the
requirement

55

Strengths &
Weaknesses

56

Strengths

• First paper to use Huffman encoding to code weight books and
indices

• First paper to use adaptive quantization
• First paper to implement the network-wise pruning (the method was

proposed in another paper from the same year from the same
author)

• Applicable to not only mobile platforms but also general platforms to
reduce the energy/space consumption

• Clear demonstration

57

Weaknesses

• Latency of computation is ignored -> CNN is essentially the bottleneck
• Performance methodology is biased
• Unstructured sparsity could hinder parallel computation
• The problem intentionally chose the neural network architecture

famous for being overparametrized and sparsifiable (AlexNet)
• One must first train a densely connected DNN to operate on this

network

58

Related Works &
Current Development

59

DNN Compression Is a HOT HOT Topic

• Parameter pruning and quantization
• Redundancy reduction

• Low-rank factorization
• Low-rank decomposition/approximation SVD

• Transferred/compact convolutional filters
• Structured convolutional filters

• Knowledge distillation
• Train a smaller network based on the larger network

Source: A Survey of Model Compression and Acceleration for Deep Neural Networks – Cheng et al. 60

• S. J. Hanson on Comparing biases for minimal network construction with
back-propagation introduced weight decay

• Srinivas and Babu et al. on Data-free parameter pruning for deep neural
networks introduced pruning on layers

• Han et al. on Learning both weights and connections for efficient neural
networks introduced pruning on the entire network

• Chen et al. on Compressing neural networks with the hashing trick
introduced pruning with hash function to group weights for parameter
sharing

• Lebedev et al. on Fast convnets using group-wise brain damage
introduced pruning while training by applying sparsity constraints

Pruning

61

Sparsification

Quantization

62

Approximation
• Gong et al. Compressing deep convolutional networks using vector

quantization and Wu et al. applied k-means
• Vanhoucke et al. applied 8-bit quantization
• Han et al. applied Huffman coding to the quantized the link weights
• Choi et al. applied Hessian weight to measure the importance of

weights
• BinaryConnect, BinaryNet and XNOR attempt to use only 1-bit

representation
• Hou et al., Lin et al. and Cai et al. attempt to adjust the loss of

precision due to binarization

Overparameterization of DNN

Source: Denil et al., Predicting Parameters in Deep Learning, NISP 2013 63

DNNs ARE UNNECESSARILY TOO LARGE

Lottery Ticket Hypothesis

Source: Frankle et al., The Loyalty Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, ICLR 2019 64

EXISTENCE OF SPARSE SUBNETS MAY BE GUARANTEED

Robustness

• DNNs are often vulnerable to intentionally perturbed data

65Source: https://openai.com/blog/adversarial-example-research/

Panda or Gibbon? That is a big question!

Robustness and Generalization

66

ROBUST MODELS ARE MORE GENERALIZABLE

Source: Xu et al., Robustness and Generalization, ArXiv 2010

Robustness-Redundancy Hypothesis

67

MODEL SIZE DOES NOT GUARANTEE ROBUSTNESS

HOWEVER, THEY SEEM TO INCREASE ALONGSIDE EACH OTHER

Source: Anonymous, Robustness and/or Redundancy Emerge in Overparametrized Deep Neural Networks, ArXiv 2020

Accuracy of Pruned DNN over Adversarial
Attacks

68

ROBUSTNESS DROPS ONCE PRUNING IS DONE TOO MUCH

Source: Yiwen et al., Sparse DNNs with Improved Adversarial Robustness, NISP 2018

Discussion

69

AlexNet Dimension

Source: Lecture Slide from Deep Learning for Autonomous Driving 70

Discussion (I): End-to-End Performance

• Latency/throughput is not mentioned by the paper
• Critical for real-time processing as was targeted by the paper

• Speedup is actually… not true… (in my opinion)
• Only densely connected layers are measured to have a significant speedup
• Overheads are mostly in CNN layers
• The overall throughput does not increase if the bottleneck layer is not

boosted much (and so is latency)
• How do you think that it would be fairer methodology to measure the

speedup? What would you expect really from throughput by using this
approach? What kind of benchmarks would make sense?

71

Discussion (II): Scalability/Applicability

• This is not fundamentally solving the issue of memory wall
• File sizes would eventually increase with current trend of increasing

large/deep neural networks (e.g., GPT3)
• Same memory wall would still occur since larger models are coming in
• A lot of larger networks are becoming less sparse -> fundamental

assumption in pruning
• Quantization has fundamentally inevitable information loss
• Would near-data processing be a better candidate for scalability?

72

Discussion (III): Unstructured Sparsity and
Overheads
• Pruning makes DNN unstructuredly sparse
• Existing accelerators become inefficient because it must still perform

lots of unnecessary operations on zero points in the sparse matrix
• Any remedy for it?
• Furthermore, pruning has proven to be a very expensive operation

• (both from literature review and first-hand experience)
• Any idea if we could create a hardware accelerator to boost it?

73

Discussion (IV): Quantization

• Quantization often uses fixed bits for each value
• High precision requires more bits per value

• How could one improve the precision while using minimal bits per
value?

• How can one enable a hardware optimization to reduce the access
time for quantized values?

74

Discussion (V): Tradeoff between Robustness
and Compactness
• As shown earlier, pruning could harm the robustness after a threshold
• A metrics to compensate for both accuracy loss and robustness loss is

urgently needed
• Under what metrics should one prune the network?

• Accuracy loss over the original data?
• Accuracy loss over the adversarial data?
• Both?

75

Discussions (VI): Overparameterization

• More evidences are showing that overparameterization has
mysterious relationships with generalization

• Even more with current interpretation of double gradient descent
phenomenon occurring in a largely overparametrized models

• Trade-off between generalization and compactness must be made
• How would you think of doing it?

76

Discussions (I): Sparsification

• Current solutions are only able to sparsify a neural network after it
has been densely trained

• Can you think of any solution to directly prune a network without
having to train the dense one first?

77

Backup Slides

Source: 78

EIE Accelerator

Source: 79

EIE HW Architecture

Source: 80

Adversarial Training + Pruning

Source: 81

Lagrangian Multiplier

Source: 82

