Deep Compression: Compressing
Deep Neural Networks With Pruning,
Trained Quantization and Huffman
Coding

Song Han, Huizi Mao, William J. Dally

First presented at: International Conference on Learning
Representations (ICLR) 2016

Presented by: Hong Chul Nam
Seminar in Computer Architecture

Executive Summary

* Problem
* Large DNNs are hard to be fitted into a resource-restraint environment

* Current DNNs are mostly too large

* Goal
* Compress large DNNs into a smaller one such that memory fetching is minimized

e Key idea
* Adaptive pruning — use less weights
* Adaptive quantization — use less bits per weight
* Huffman encoding — use less bits per character sequence

* Results
* A much smaller network able to be fitted into the mobile platform

Background,
Problem &
Goal

Neural Network: Theory

* What is a nheural network?

Theor:

Let ¢ space
of coni aj;, b,
H’[€ R,

as an ¢

Source: Csdji et al., Approximation with Artificial Neural Networks, PSU 2001

Neural Network: Training Phase ()

Training a neural net at iteration 0

Neural Network

Loss Function Training Set

Source: http://tamaszilagyi.com/blog/2017/2017-11-11-animated_net/

Neural Network: Inference Phase (Il)

Possible Layers: CNN Layer

CNN kernel

Output Layer

Input Layer

Possible Layers: Dense Layer

. Input Node Output Node

Huffman Coding

* A widely-used lossless compression algorithm

* |dea:
* Shorter sequence for frequently appearing object
* Longer sequence for rarely appearing object
e Sequence length determined by appearing frequency

Huffman Coding Example (I)

Vocabulary

Source: https://www.programiz.com/dsa/huffman-coding

10

Huffman Coding Example (I1)

Vocabulary

Source: https://www.programiz.com/dsa/huffman-coding

11

Huffman Coding Example (I1)

Vocabulary * A C

Source: https://www.programiz.com/dsa/huffman-coding

12

Huffman Coding Example (V)

Vocabulary C *

Source: https://www.programiz.com/dsa/huffman-coding

13

Huffman Coding Example (V)

Frequency n

Vocabulary

Source : https://www.programiz.com/dsa/huffman-coding

14

Huffman Coding Example (V1)

Source: https://www.programiz.com/dsa/huffman-coding

15

Problem I: Large File Sizes (I)

+ Memory ban(

L

Al

S/ DID TRUMP BUILD HIS WALL? .

Source: https://www.politifact.com/truth-o-meter/promises/trumpometer/promise/1397/build-wall-and-make-mexico-pay-it/ 16

17

Problem Il: Energy Consumption

* Too many memory fetching for weights!

Energy consumption per operation
700

600

u
o
o

N
o
o

Energy (pJ)

SRAM cache access Float point product

Different Operations

B Energy Consumption for Different Operations

100 — 500 x

DRAM memory access

18

Goal

* Compress large deep neural networks such that access to DRAM for
fetching weights could be minimized

* Enable running the DNN directly on mobile devices

Goal

Computing Unit

20

Goal

Computing Unit

21

Implementation

Overview: Three-staged Compression

v Quantization: less bits per weight Huffman Encoding

Pruning: less number of weights i SRS A = S
t o EEEEeERE- -~
gk U5 SEN SES G W S S v WS We e e -~ \
s N || Cluster the Weights] . 4 A
I " | : ~ 5 : I N\ I
oo I
original | | Train Connectivity] : . e : [Encode Weights | + __
network | 4 T ! a::u"::cy /| |Generate Code Book }(,‘_\ ' accuracy : V s curacy
¢ ' O 1 I \. I l I
: Prune Connections \ ' 3 N2 : 27x:3 g ! - : E>
I |Quantize the Weigh ! A !
original :) <0 : o 'l |with Code Book . ﬁ ireduction 1 | Encode Index 1 35x-50x
size L ,reduction b\ T : I y : reduction
| |
: Train Weights | 'f : \ /
v L [| Retrain Code Book | o i i ’
A / VL !
~ ’ N 7/

__——eEmEmE—_—_————————— o

23

nnnnnnnnnnnnnnn

Pruning: ldea S

* A lot of neural networks are overparametrized

* Many weights are either zero or close to zero
* These zero-ish weights do not contribute much to the result

IF ALMOST ZERO, WHY NOT
SET THEM ZERO AT ALL?

Pruning: Implementation ()

Training a neural net at iteration 0

* Train connectivity
* Train the original dense network

25

——

Train Connectivity

Pruning: Implementation (Il) e

Prune Connections j
T j .

Train Weights

—__

before pruning after pruning

* Prune Connections

S

AR pruning ___,

.. = W = 2. """ synapses
pruning
neurons

26

Pruning: Implementation (lll)

Training a neural net at iteration 0

* Train Weights
e Retrain the network

27

——

Train Connectivity

Pruning: Implementation (Il) e

Prune Connections j
T j .

Train Weights

—__

before pruning after pruning

* Prune Connections

S

AR pruning ___,

.. = W = 2. """ synapses
pruning
neurons

28

Pruning: Implementation (lll)

Training a neural net at iteration 0

* Train Weights
e Retrain the network

29

——

Train Connectivity

Pruning: Implementation (Il) e

Prune Connections j
T j .

Train Weights

—__

before pruning after pruning

* Prune Connections

S

AR pruning ___,

.. = W = 2. """ synapses
pruning
neurons

30

Pruning: Implementation (lll)

*Tran Weights
+ Retrn he networt

Training a neural net at iteration 0

* Train Weights

* Retrain the network .

——

Train Connectivity

Pruning: Implementation (Il) e

Prune Connections j
T j .

Train Weights

—__

before pruning after pruning

* Prune Connections

S

AR pruning ___,

.. = W = 2. """ synapses
pruning
neurons

32

Pruning: Implementation (lll)

Training a neural net at iteration 0

A,
)

DD

.’ 2

:

STOP WHEN THE ACCURACY DECREASES TOO
e Train WUCH T

e Retrain the network

T e

33

Pruning: Implementation

 Storage in CSR format
 Compressed Sparse Row
* A storing format for sparse matrix

Pointer

0

1

2

3

4

5

6

("

Train Connectivity

P —

Prune Connections

\.—U—.—J

Train Weights

2

nnnnnnnnn

" CSR
0 1 2 3 4
T R
8 2 : ' Index Pointers

= iy Al
1 : 5 : ; 0] 2| 3|]3|3|6]6
e —— - - ———
1 1 1 | 1 1
1 1 1 I 1 1
1 1 1 | 1 1
R S R A
1 I] I I] Indices
e
! : 7l (1St 2 DR IR28](E250] 2. 3141 3
———f———
IR S T S T
1 1]] [] Data
r-—=a=-=--T7t-- I |
' : : 9 : SN2 R50 | 7 1(12]9
Ui i)

Quantization: ldea

ﬂ

~

Cluster the Weights]

.

-~

Generate Code Book]

.

Quantize the Welgh
Lwlth Code Book

<

Retrain Code Book

STA
WARS

\S /

35

Quantization: Implementation

* K-means clustering on weights to find centroids

* Match all weights into the corresponding centroids

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids
lust 1 1 0 3 x| 1.50 1.48
cluster " O
: 0 3 1 0 1:| 0.00 -0.04
3 1 0:(-1.00 xlr [.0.97

gradient

0.01 | -0.02 "eége 0.02
-0.01| 0.01 | 0.04 | -0.02 0.04
.01 | -0.02 | -0.01 | 0.01 -0.03

Cluster the Weights

| |

Generate Code Book]

Quantize the Weight
wlth Coda Book
\Retrain Code Book

~

36

Quantization: Implementation (l)

* K-means clustering on weights to find centroids

weights
(32 bit float)

cluster index fine-tuned KMeans Iteration:

Generate Code Book]

.

2 L2

Quantize the Weigh
Lwith Code Book

<z
Retrain Code Book

-

L &

Total Within Cluster Sum of Squares:

(2 bit uint) centroids centroids

0

1

3

250k

200k

100k

S0k

4 6 8 10
Kmeans Iterations

37

Quantization: Implementation (Il

Quantize the Weight
with Code Book
 Use index on centroids/bins as the weight value K:nemmcoaeaook ’

weights
(32 bit float)

/]\

Cluster the Weights

gradient

0.03

cluster index fine-tuned

(2 bit uint) centroids centroids
1.48 | 0. 3 0 1 »‘f. .
cluste 1 0 3 2| 1.50 1.48
0 |- E> 0 3 1 0 1| 0.00 -0.04
1.53 | 1.49 3] 0:(-1.00 xIr [.0.97

0.01 | -0.02 reduce | 0.02
0.02 -0.01| 0.01 | 0.04 | -0.02 0.04
-0.01|-0.02 | -0.01| 0.01 -0.03

38

Quantization: Implementation (ll1)

* Use index on centroids/bins as gradient value

weights
(32 bit float)

cluster index
(2 bit uint)

centroids

. 148 | 0.

}:. .
2] 1.50 1.48

fine-tuned
centroids

0 |- 3 1| 0.00
1.53 | 1.49 1 0:| -1.00 xIr
gradient
) o‘” _
group bY| 9,03 | 0.01 | -0.02 reduce | 0,02
=>4 o>
0.02 | -0.01| 0.01 | 0.04 | -0.02 0.04
-0.01|-0.02 | -0.01| 0.01 -0.03

-0.04

-0.97

K

Cluster the Weights]
<

Generate Code Book

L2

uantize the Weigh
\ ith Code Book

<

Retrain Code Book

~

J

39

™

Cluster the Weights]
3

Quantization: Implementation (IV)

* Backpropagation to fine-tune the centroid \mr.m D/

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

1(L; =k)

Z OL Wiy <~ OL

=Ir aCk 8W¢J aCk N i 8sz

40

Quantization: Implementation (ll1)

* Use index on centroids/bins as gradient value

weights
(32 bit float)

cluster index
(2 bit uint)

centroids

. 148 | 0.

}:. .
2] 1.50 1.48

fine-tuned
centroids

0 |- 3 1| 0.00
1.53 | 1.49 1 0:| -1.00 xIr
gradient
) o‘” _
group bY| 9,03 | 0.01 | -0.02 reduce | 0,02
=>4 o>
0.02 | -0.01| 0.01 | 0.04 | -0.02 0.04
-0.01|-0.02 | -0.01| 0.01 -0.03

-0.04

-0.97

K

Cluster the Weights]
<

Generate Code Book

L2

uantize the Weigh
\ ith Code Book

<

Retrain Code Book

~

J

41

™

Cluster the Weights]
3

Quantization: Implementation (IV)

* Backpropagation to fine-tune the centroid \mr.m D/

weights cluster index fine-tuned
(32 bit float) (2 bit uint) centroids centroids

1(L; =k)

Z OL Wiy <~ OL

=Ir aCk 8W¢J aCk N i 8sz

42

Quantization: Implementation (ll1)

* Use index on centroids/bins as gradient value

weights
(32 bit float)

cluster index
(2 bit uint)

centroids

. 148 | 0.

}:. .
2] 1.50 1.48

fine-tuned
centroids

0 |- 3 1| 0.00
1.53 | 1.49 1 0:| -1.00 xIr
gradient
) o‘” _
group bY| 9,03 | 0.01 | -0.02 reduce | 0,02
=>4 o>
0.02 | -0.01| 0.01 | 0.04 | -0.02 0.04
-0.01|-0.02 | -0.01| 0.01 -0.03

-0.04

-0.97

K

Cluster the Weights]
<

Generate Code Book

L2

uantize the Weigh
\ ith Code Book

<

Retrain Code Book

~

J

43

Quantization: Implementation (IV)

* Backpropagation to fine-tune the centroid

wainhte aluetar indav

STOP WHEN IT CONVERGES

1.53 | 1.49 0:(-1.00 xir
gradient
9roup byl 9,03 | 0.01 | -0.02 reduce | 0.02
= 0.02 |-0.01| 0.01 | 0.04 | -0.02 = 0.04
-0.01-0.02 | -0.01 | 0.01 -0.03

-0.97

8C'A

/

Cluster the Weights

]\

Generate Code Book]

L oW, 9Cs

Quantize the Waight

with Code Book

3 <z
KRetrain Code Book|

L

OW

= k)

44

Huffman Encoding

* Each weight is represented by the index of the centroid

Encode Weights

Encode Index

\ e - /

N

* A fixed vocabulary (bins/centroids for weights) with indices

LONG FOR SHORT!
SHORT FOR LONG!

Count

Distribution of weights/indices

100000 220000
75000 165000
€

50000 §110000
25000 55000

0 0 i

1 3 6§ 7 9 11 13 15 17 19 21 283 25 27 29 31 1
Weight Index (32 Effective Weights)

3 8§ 7 9

11 13 156 17 19 21 23 25 27 29 31
Sparse Matrix Location Index (Max Diff is 32)
Figure 5: Distribution for weight (Left) and index (Right). The distribution is biased.

46

Sample Model

e AlexNet

224

Strid
of 4

P [— 3
. 18 sy 128

sl [T —31

» E”
s
Max' 128
pooling
a8

192 128 20ag \dense
13 13
.-'-:”
e 13 dense | |dense)
1000
192 192 128 Max L]
Max pooling #04% 2048
pooling

Source: ImageNet Classification with Deep Convolutional Neural Networks Krizhevsky et al.

47

Sample Model

Source: Very Deep Convolutional Networks for Large-scale Image Recognition

48

Results

Results (1): Compression Ratio

Pruning + Quantization £ Pruning Only Quantization Only ¢ SVD

0.5%
0.0%
-0.5%
-1.0%
-1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%
'4.59”0 E f] .
20/0 5°/° 80/0 1 1 O/O 1 40/0 1 70/0 200/6

Accuracy Loss

Model Size Ratio after Compression

* Pruning + Quantization reaches the maximum of 3% model size without
accuracy loss

50

Results (I1): Compression Ratio

Table 4: Compression statistics for AlexNet. P: pruning, Q: quantization, H:Huffman coding.

. o Weight Weight Index Index Compress Compress

Layer | #Weights X;;:lghts 2 bits bits bits bits rate rate
(P+Q) (P+Q+H) (P+Q) (P+Q+H) (P+Q) (P+Q+H)

convl | 35K 84 % 8 6.3 2 1.2 32.6% 20.53%
conv2 | 307K 38% 8 o b + 2.3 14.5% 9.43%
conv3 | 885K 35% 8 5.1 4 2.6 13.1% 8.44%
conv4 | 663K 37% 8 5.2 4 2.5 14.1% 9.11%
convd | 442K 37% 8 5.6 2 2 14.0% 9.43%
fc6 38M 9% 5 3.9 4 3.2 3.0% 2.39%
fc7 17M 9% 5 3.6 4 3.7 3.0% 2.46%
fc8 4M 25% 5 Rl 4 3.2 7.3% 5.85%
Total | 61M 11%0Ox) 54 A 4 3.2 3.7% (27x) 2.88% (35X%]

51

Results (I11): Compression Ratio

Table 5: Compression statistics for VGG-16. P: pruning, Q:quantization, H:Huffman coding.

I Weigh Weight Index Index Compress Compress

Layer | #Weights g‘;'gh“ % bits bits bits bits rate rate
(P+Q) (P+Q+H) (P+Q) (P+Q+H) (P+Q) (P+Q+H)

convl_l | 2K 58% 8 6.8 5 1.7 40.0% 29.97%
convl2 | 37K 22% 8 6.5 > 2.6 9.8% 6.99%
conv2_l | 74K 34% 8 5.6 5 24 14.3% 8.91%
conv22 | 148K 36% 8 59 5 23 14.7% 9.31%
conv3_l | 295K 53% 8 4.8 o 1.8 21.7% 11.15%
conv3_2 | 590K 24% 8 4.6 5 29 9.7% 5.67%
conv3.3 | 590K 42% 8 4.6 5 2.2 17.0% 8.96%
convd_l | IM 32% 8 4.6 5 2.6 13.1% 7.29%
conv4d2 | 2M 27% 8 4.2 S 2.9 10.9% 5.93%
conv4d_3 | 2M 34% 8 4.4 5 2.5 14.0% 7.47%
convS_1 | 2M 35% 8 4.7 5 2.3 14.3% 8.00%
conv52 | 2M 29% 8 4.6 5 2.7 11.7% 6.52%
conv5.3 | 2M 36% 8 4.6 5 2.3 14.8% 7.79%
fco 103M 4% 5 3.6 5 3.5 1.6% 1.10%
fc7 17M 4% 5 A 5 4.3 1.5% 1.25%
fc8 4M 23% 3 4 S 3.4 7.1 % 3.24%
Total 138M 1.5%(13x) 6.4 4.1 S 3.1 3.2% (31x) 2.05% (49x)

52

Results (1V): Speedup

B CPU Dense (Basenline) M CPU Pruned ™ GPU Dense M GPU Pruned ® TK1 Dense M TK1 Pruned

-
x

100x 1
B EI ﬂ \I ﬂl
wB N B 1_xl 1. N & 1_x|§ I 1x I x OB i i &
018 '(1.0x 1.0x 1x Cl(

0.1x

Speedup
(normzlized to CPU)

AlexNet _Fc6 AlexNet_Fc7 AlexNet Fc8 VGGNet Fc6 VGGNet Fc7 VGGNet_Fc? Geo Mean

* 3x speedup on CPU, 4.2x on mobile GPU and 3.5x on GPU

53

Results (V): Energy Efficiency

B CPU Dense (Baseline) M CPU Pruned ™ GPU Dense M GPU Pruned B TK1 Dense M TK1 Pruned

100x

10x

1x

Energy Efficiency
(normzlized to CPU)

VGGNet_Fc8 Geo Mean

AlexNet_ Fc6 AlexNet Fc7 AlexNet Fc8 VGGNet Fc6 VGGNet Fc7

e 7x less energy on CPU, 3.3x less energy on GPU and 4.2x less energy
on mobile GPU in average

Results (IV): Quantization Error

#CONYV bits / #FC bits

Top-1 Error

Top-5 Error

Top-1 Error Top-5 Error

Increase Increase
32bits / 32bits 42.78% 19.73% - -
8 bits / 5 bits 42.78% 19.70% 0.00% -0.03%
8 bits / 4 bits 42.79% 19.73% 0.01% 0.00%
4 bits / 2 bits 44.77% 22.33% 1.99% 2.60%

* Quantization error depends on the number of bits needed to
represent each centroid bin

* Critical to find the sweet spot or choose depending on the

requirement

55

Strengths &
Weaknesses

Strengths

* First paper to use Huffman encoding to code weight books and
indices

* First paper to use adaptive quantization

* First paper to implement the network-wise pruning (the method was
proposed in another paper from the same year from the same
author)

* Applicable to not only mobile platforms but also general platforms to
reduce the energy/space consumption

* Clear demonstration

Weaknesses

 Latency of computation is ignored -> CNN is essentially the bottleneck
* Performance methodology is biased
e Unstructured sparsity could hinder parallel computation

* The problem intentionally chose the neural network architecture
famous for being overparametrized and sparsifiable (AlexNet)

* One must first train a densely connected DNN to operate on this
network

Related Works &
Current Development

DNN Compression Is a HOT HOT Topic & fx

* Parameter pruning and quantization
* Redundancy reduction

* Low-rank factorization
* Low-rank decomposition/approximation SVD

* Transferred/compact convolutional filters
e Structured convolutional filters

* Knowledge distillation
* Train a smaller network based on the larger network

Pruning

 S. J. Hanson on Comparing b
back-propagation introduce

* Srinivas and Babu et al. on D
networks introduced prunin

* Han et al. on Learning both
networks introduced prunin

* Chen et al. on Comp
introduced pruning wit
sharing

* Lebedev et al. on Fast convn
introduced pruning while traini

on

| network construction with
ter pruning for deep neural

ections for efficient neural
twork

e hashing trick
ights for parameter

wise brain damage
Ing sparsity constraints

61

Quantization
ion

nal networks using vector
ns

A

* Gong et al. Compressing d
qguantization and Wu et al.

* Vanhoucke et al. applied 8
* Han et al. applied Huffman

* Choi et al. applied Hessian
weights

* BinaryConnect, Binar
representation

 Hou et al., Lin et al. and Ca
precision due to binarization

uantized the link weights
ure the importance of

use only 1-bit

to adjust the loss of

62

Overparameterization of DNN

Source: Denil et al.,

Predicting Parameters in Deep Learning

Misha Denill Babak Shakibi® Laurent Dinh?

AfMnsn? Asssnlin Dasen end Alandna da Dealéanl.2

DNNs ARE UN'_NEC SSARILY TOO LARGE

4Facebook InL USA
{misha.denil,nando.de.freitas}@cs.ox.ac.uk
laurent .dinh@umontreal.ca
ranzato@fb.com

Abstract

We demonstrate that there is significant redundancy in the parameterization of
several deep learning models. Given only a few weight values for each feature it
is possible to accurately predict the remaining values. Moreover, we show that not
only can the parameter values be predicted, but many of them need not be learned
at all. We train several different architectures by learning only a small number of
weights and predicting the rest. In the best case we are able to predict more than
95% of the weights of a network without any drop in accuracy.

Predicting Parameters in Deep Learning, NISP 2013

63

Lottery Ticket Hypothesis

THE LOTTERY TICKET HYPOTHESIS:
FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle Michael Carbin
MIT CSAIL MIT CSAIL
jfrankle@ecsail.mit.edu mcarbin@csail.mit.edu

EXISTENCE OF SPARSE SUBNETS MAY BE GUARANTEED

INeural network pruning ecnniques can reauce me paramerer counts or rained net-
works by over 90%, decreasing storage requirements and improving computational
performance of inference without compromising accuracy. However, contemporary
experience is that the sparse architectures produced by pruning are difficult to train
from the start, which would similarly improve training performance.

We find that a standard pruning technique naturally uncovers subnetworks whose
initializations made them capable of training effectively. Based on these results, we
articulate the lottery ticket hypothesis: dense, randomly-initialized, feed-forward
networks contain subnetworks (winning tickets) that—when trained in isolation—
reach test accuracy comparable to the original network in a similar number of
iterations. The winning tickets we find have won the initialization lottery: their
connections have initial weights that make training particularly effective.

We present an algorithm to identify winning tickets and a series of experiments
that support the lottery ticket hypothesis and the importance of these fortuitous
initializations. We consistently find winning tickets that are less than 10-20% of
the size of several fully-connected and convolutional feed-forward architectures
for MNIST and CIFAR10. Above this size, the winning tickets that we find learn
faster than the original network and reach higher test accuracy.

Source: Frankle et al., The Loyalty Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, ICLR 2019

Robustness

* DNNs are often vulnerable to intentionally perturbed data

“gibbon”

09.3% confidence
Panda or Gibbon? That is a big question!

Source: https://openai.com/blog/adversarial-example-research/

65

Robustness and Generalization

Robustness and Generalization

Huan Xu HUAN.XU@QMAIL.UTEXAS.EDU
Department of Electrical and Computer Engineering
the University of Teras at Austin, TX, USA

ROBUST MODELS ARE MORE GENERALIZABLE

LUCICIOEV by 1O WL LIV WLl V) L ULIeevevy y

Editor: n/a

Abstract

We derive generalization bounds for learning algorithms based on their robustness: the
property that if a testing sample is “similar” to a training sample, then the testing error is
close to the training error. This provides a novel approach, different from the complexity
or stability arguments, to study generalization of learning algorithms. We further show
that a weak notion of robustness is both sufficient and necessary for generalizability, which

implies that robustness is a fundamental property for learning algorithms to work.

Source: Xu et al., Robustness and Generalization, ArXiv 2010

66

Robustness-Redundancy Hypothesis

ROBUSTNESS AND/OR REDUNDANCY EMERGE IN
OVERPARAMETRIZED DEEP NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

MODEL SIZE DOES NOT GUARANTEE ROBUSTNESS

Deep neural networks (DNNs) perform well on a variety of tasks despite the fact

HOWEVER, THEY SEEM TO INCREASE ALONGSIDE EACH OTHER

HCLWUIRD LU LC WISK dl HdlU dlUu avululny UVCHHLULE (Alvia ©L dl., LuUio, Luou
et al., 2018). In this paper, we provide new empirical evidence that supports this
hypothesis, identifying two independent mechanisms that emerge when the net-
work’s width is increased: robustness (having units that can be removed without
affecting accuracy) and redundancy (having units with similar activity). In a series
of experiments with AlexNet, ResNet and Inception networks in the CIFAR-10
and ImageNet datasets, and also using shallow networks with synthetic data, we
show that DNNs consistently increase either their robustness, their redundancy, or
both at greater widths for a comprehensive set of hyperparameters. These results
suggest that networks in the deep learning regime adjust their effective capacity by
developing either robustness or redundancy.

Source: Anonymous, Robustness and/or Redundancy Emerge in Overparametrized Deep Neural Networks, ArXiv 2020 67

Accuracy of Pruned DNN over Adversarial
Attacks

2 1 T 35

- 3

2 208 5

3 18 £ g 25

3 806 g 2

a 1 5 o

£ 2 g 15

H S04 os N

™~ 0 & — &l

NO0S & - .
02 Benign 05

ROBUSTNESS DROPS ONCE PRUNING IS DONE TOO MUCH

1

15

re— 5
Fos 3 808 LK
a w10 g L
8 [+ 8 Qa
206 M : 806 L m
§ < % £ ,
8 2 =
S04 z 5 =04 z
1 —FGS i 2 —FGS o~
a " a 1
02 ks 02 Benign
0 0
0 02 04 086 08 1 0 0.2 04 0.6 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Percent of zerc weights Percent of zero weights Percent of zero weights Percent of zero weights

(e)) (g) (h)

Figure 2: The robustness of nonlinear DNNs with varying weight sparsity. (a)-(b): LeNet-300-100,
(c)-(d): LeNet-5, (e)-(f): the VGG-like network, (g)-(h): ResNet-32.

Source: Yiwen et al., Sparse DNNs with Improved Adversarial Robustness, NISP 2018

68

Discussion

AlexNet Dimension

#(parameters)
4 FULL CONNECT
16M FULL 4096/ReLU|
a7m |

442K

1.3M
884K

Source: Lecture Slide from Deep Learning for Autonomous Driving

FULL 4096/RelLU

#(flop)
4Mtiop

16M
| 37M

74M
224M

70

Discussion (l): End-to-End Performance

* Latency/throughput is not mentioned by the paper
* Critical for real-time processing as was targeted by the paper

e Speedup is actually... not true... (in my opinion)
* Only densely connected layers are measured to have a significant speedup
* Overheads are mostly in CNN layers

* The overall throughput does not increase if the bottleneck layer is not
boosted much (and so is latency)

* How do you think that it would be fairer methodology to measure the
speedup? What would you expect really from throughput by using this
approach? What kind of benchmarks would make sense?

Discussion (I1): Scalability/Applicability

* This is not fundamentally solving the issue of memory wall

* File sizes would eventually increase with current trend of increasing
large/deep neural networks (e.g., GPT3)

* Same memory wall would still occur since larger models are coming in

* A lot of larger networks are becoming less sparse -> fundamental
assumption in pruning

e Quantization has fundamentally inevitable information loss
* Would near-data processing be a better candidate for scalability?

Discussion (lI1): Unstructured Sparsity and
Overheads

* Pruning makes DNN unstructuredly sparse

* Existing accelerators become inefficient because it must still perform
lots of unnecessary operations on zero points in the sparse matrix

* Any remedy for it?

* Furthermore, pruning has proven to be a very expensive operation

e (both from literature review and first-hand experience)
* Any idea if we could create a hardware accelerator to boost it?

Discussion (1V): Quantization

* Quantization often uses fixed bits for each value
* High precision requires more bits per value

* How could one improve the precision while using minimal bits per
value?

* How can one enable a hardware optimization to reduce the access
time for quantized values?

Discussion (V): Tradeoff between Robustness
and Compactness

* As shown earlier, pruning could harm the robustness after a threshold

* A metrics to compensate for both accuracy loss and robustness loss is
urgently needed

* Under what metrics should one prune the network?

e Accuracy loss over the original data?
* Accuracy loss over the adversarial data?

e Both?

Discussions (VI): Overparameterization

* More evidences are showing that overparameterization has
mysterious relationships with generalization

* Even more with current interpretation of double gradient descent
phenomenon occurring in a largely overparametrized models

* Trade-off between generalization and compactness must be made
* How would you think of doing it?

Discussions (l): Sparsification

* Current solutions are only able to sparsify a neural network after it
has been densely trained

* Can you think of any solution to directly prune a network without
having to train the dense one first?

Backup Slides

EIE Accelerator

@(0 WMNae 0 a G0 er)
PE1

PE2
PE3

(£) becomes

bi=ReLU | > S[Lla,

JEX,NY

Figure 2. Matrix W and vectors a and b are interleaved over 4 PEs.
Elements of the same color are stored in the same PE.

Figure 3. Memory layout for the relative indexed, indirect weighted and

interleaved CSC format, corresponding to PEg in Figure 2.

Source: 79

EIE HW Architecture

Source:

= Arithmetic Unit

Pointer Read Sparse Matrix Access ":’r‘.:“: Act R/W
(a) (b)
Figure 4. (a) The architecture of Leading Non-zero Detection Node. (b) The architecture of Processing Element.

80

Adversarial Training + Pruning

Source:

i Etr yop |max L(0, x + 0,
min - B y)~p llﬁn&g{ (0, + y}}

a;

st Bi=2 t=1.0.N:

0 if @, € S;
gi(0;) = { .

+0o¢ otherwise

Wit e e L(6, 3, i(Zi),
min (z,) D[niﬁ T+ ?;} Zr,rfz _

81

Lagrangian Multiplier

ﬁ({ﬂ,} {Z.r']'- {ui'}) = E{:r:.'y]"v'D [%}EE{L{BT + 6.' y):|

N N N

P 2

+) gi(z) +) _ui (B —z)+5) 116 — =3,
i=1 i=1 4=1

82

