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Executive Summary

• Problem
• Large DNNs are hard to be fitted into a resource-restraint environment
• Current DNNs are mostly too large

• Goal
• Compress large DNNs into a smaller one such that memory fetching is minimized

• Key idea
• Adaptive pruning – use less weights 
• Adaptive quantization – use less bits per weight
• Huffman encoding – use less bits per character sequence

• Results
• A much smaller network able to be fitted into the mobile platform
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Background, 
Problem &
Goal
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Neural Network: Theory

• What is a neural network?

4Source: Csáji et al., Approximation with Artificial Neural Networks, PSU 2001



Neural Network: Training Phase (I)

5Source: http://tamaszilagyi.com/blog/2017/2017-11-11-animated_net/

Neural Network

Loss Function Training Set



Neural Network: Inference Phase (II)

6Source: https://medium.com/colaberry-labs/toy-neural-network-classifies-orientation-of-line-acf143b89c22



Possible Layers: CNN Layer
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CNN kernel

Output Layer



Possible Layers: Dense Layer
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Huffman Coding

• A widely-used lossless compression algorithm
• Idea:

• Shorter sequence for frequently appearing object
• Longer sequence for rarely appearing object
• Sequence length determined by appearing frequency

9



Huffman Coding Example (I)

Source: https://www.programiz.com/dsa/huffman-coding 10

Frequency

Vocabulary



Huffman Coding Example (II)

Source: https://www.programiz.com/dsa/huffman-coding 11
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Huffman Coding Example (III)

Source: https://www.programiz.com/dsa/huffman-coding 12
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Huffman Coding Example (IV)

Source: https://www.programiz.com/dsa/huffman-coding 13
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Huffman Coding Example (V)

Source: https://www.programiz.com/dsa/huffman-coding 14
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Huffman Coding Example (VI)

Source: https://www.programiz.com/dsa/huffman-coding 15



Problem I: Large File Sizes (I)

• Memory bandwidth is a scarce resource

16Source: https://www.politifact.com/truth-o-meter/promises/trumpometer/promise/1397/build-wall-and-make-mexico-pay-it/



Problem I: Large File Sizes (II)

• Large-size applications must go through much more scrutiny to 
appear in app store for download
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Problem II: Energy Consumption

• Too many memory fetching for weights!
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Goal

• Compress large deep neural networks such that access to DRAM for 
fetching weights could be minimized

• Enable running the DNN directly on mobile devices
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Goal
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Memory Computing Unit



Goal
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Memory Computing Unit



Implementation
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Overview: Three-staged Compression
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• A lot of neural networks are overparametrized
• Many weights are either zero or close to zero 
• These zero-ish weights do not contribute much to the result

Pruning: Idea

IF ALMOST ZERO, WHY NOT 
SET THEM ZERO AT ALL?
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Pruning: Implementation (I)

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix
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Pruning: Implementation (II)

• Train connectivity
• Train the original dense network

• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix
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Pruning: Implementation (III)

• Train connectivity
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• Prune Connections
• , , , with T = threshold

• Train Weights
• Retrain the network

• Storage in CSR format
• Compressed Sparse Row
• A storing format for sparse matrix
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Pruning: Implementation (III)

• Train connectivity
• Train the original dense network

• Prune Connections
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• Storage in CSR format
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STOP WHEN THE ACCURACY DECREASES TOO 
MUCH



Pruning: Implementation
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Quantization: Idea

High energy efficiency

Low precision

Low energy efficiency

High precision
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A MIDDLE GROUND



Quantization: Implementation

• K-means clustering on weights to find centroids
• Match all weights into the corresponding centroids 
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Quantization: Implementation (I)

• K-means clustering on weights to find centroids
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Quantization: Implementation (II)

• Use index on centroids/bins as the weight value
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Quantization: Implementation (III)

• Use index on centroids/bins as gradient value
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Quantization: Implementation (IV)

• Backpropagation to fine-tune the centroid
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Quantization: Implementation (III)

• Use index on centroids/bins as gradient value
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Quantization: Implementation (IV)

• Backpropagation to fine-tune the centroid
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Quantization: Implementation (III)

• Use index on centroids/bins as gradient value
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Quantization: Implementation (IV)

• Backpropagation to fine-tune the centroid
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STOP WHEN IT CONVERGES



Huffman Encoding

• Each weight is represented by the index of the centroid
• A fixed vocabulary (bins/centroids for weights) with indices
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LONG FOR SHORT! 
SHORT FOR LONG!



Distribution of weights/indices
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Sample Model

• AlexNet

47Source: ImageNet Classification with Deep Convolutional Neural Networks Krizhevsky et al.



Sample Model

48Source: Very Deep Convolutional Networks for Large-scale Image Recognition



Results
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Results (I): Compression Ratio

• Pruning + Quantization reaches the maximum of 3% model size without 
accuracy loss 
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Results (II): Compression Ratio

• Most efficient in compressing dense connected layers
• 96% weights pruned in VGG-16
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Results (III): Compression Ratio 
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Results (IV): Speedup

• 3x speedup on CPU, 4.2x on mobile GPU and 3.5x on GPU
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Results (V): Energy Efficiency

• 7x less energy on CPU, 3.3x less energy on GPU and 4.2x less energy 
on mobile GPU in average
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Results (IV): Quantization Error

• Quantization error depends on the number of bits needed to 
represent each centroid bin

• Critical to find the sweet spot or choose depending on the 
requirement
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Strengths &
Weaknesses
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Strengths

• First paper to use Huffman encoding to code weight books and 
indices

• First paper to use adaptive quantization
• First paper to implement the network-wise pruning (the method was 

proposed in another paper from the same year from the same 
author)

• Applicable to not only mobile platforms but also general platforms to 
reduce the energy/space consumption

• Clear demonstration
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Weaknesses

• Latency of computation is ignored -> CNN is essentially the bottleneck
• Performance methodology is biased
• Unstructured sparsity could hinder parallel computation
• The problem intentionally chose the neural network architecture 

famous for being overparametrized and sparsifiable (AlexNet)
• One must first train a densely connected DNN to operate on this 

network
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Related Works &
Current Development
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DNN Compression Is a HOT HOT Topic

• Parameter pruning and quantization
• Redundancy reduction

• Low-rank factorization
• Low-rank decomposition/approximation SVD

• Transferred/compact convolutional filters
• Structured convolutional filters

• Knowledge distillation
• Train a smaller network based on the larger network

Source: A Survey of Model Compression and Acceleration for Deep Neural Networks – Cheng et al. 60



• S. J. Hanson on Comparing biases for minimal network construction with 
back-propagation introduced weight decay 

• Srinivas and Babu et al. on Data-free parameter pruning for deep neural 
networks introduced pruning on layers

• Han et al. on Learning both weights and connections for efficient neural 
networks introduced pruning on the entire network

• Chen et al. on Compressing neural networks with the hashing trick  
introduced pruning with hash function to group weights for parameter 
sharing

• Lebedev et al. on Fast convnets using group-wise brain damage
introduced pruning while training by applying sparsity constraints

Pruning
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Sparsification



Quantization 
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Approximation
• Gong et al. Compressing deep convolutional networks using vector 

quantization and Wu et al. applied k-means
• Vanhoucke et al. applied 8-bit quantization 
• Han et al. applied Huffman coding to the quantized the link weights
• Choi et al. applied Hessian weight to measure the importance of 

weights
• BinaryConnect, BinaryNet and XNOR attempt to use only 1-bit 

representation
• Hou et al., Lin et al. and Cai et al. attempt to adjust the loss of 

precision due to binarization



Overparameterization of DNN

Source: Denil et al., Predicting Parameters in Deep Learning, NISP 2013 63

DNNs ARE UNNECESSARILY TOO LARGE



Lottery Ticket Hypothesis

Source: Frankle et al., The Loyalty Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, ICLR 2019 64

EXISTENCE OF SPARSE SUBNETS MAY BE GUARANTEED



Robustness

• DNNs are often vulnerable to intentionally perturbed data

65Source: https://openai.com/blog/adversarial-example-research/

Panda or Gibbon? That is a big question!



Robustness and Generalization
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ROBUST MODELS ARE MORE GENERALIZABLE

Source: Xu et al., Robustness and Generalization, ArXiv 2010                         



Robustness-Redundancy Hypothesis 
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MODEL SIZE DOES NOT GUARANTEE ROBUSTNESS

HOWEVER, THEY SEEM TO INCREASE ALONGSIDE EACH OTHER

Source: Anonymous, Robustness and/or Redundancy Emerge in Overparametrized Deep Neural Networks, ArXiv 2020



Accuracy of Pruned DNN over Adversarial 
Attacks
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ROBUSTNESS DROPS ONCE PRUNING IS DONE TOO MUCH

Source: Yiwen et al., Sparse DNNs with Improved Adversarial Robustness, NISP 2018



Discussion

69



AlexNet Dimension

Source: Lecture Slide from Deep Learning for Autonomous Driving 70



Discussion (I): End-to-End Performance

• Latency/throughput is not mentioned by the paper 
• Critical for real-time processing as was targeted by the paper

• Speedup is actually… not true… (in my opinion)
• Only densely connected layers are measured to have a significant speedup
• Overheads are mostly in CNN layers
• The overall throughput does not increase if the bottleneck layer is not 

boosted much (and so is latency)
• How do you think that it would be fairer methodology to measure the 

speedup? What would you expect really from throughput by using this 
approach? What kind of benchmarks would make sense?
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Discussion (II): Scalability/Applicability

• This is not fundamentally solving the issue of memory wall
• File sizes would eventually increase with current trend of increasing 

large/deep neural networks (e.g., GPT3)
• Same memory wall would still occur since larger models are coming in
• A lot of larger networks are becoming less sparse -> fundamental 

assumption in pruning
• Quantization has fundamentally inevitable information loss
• Would near-data processing be a better candidate for scalability?
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Discussion (III): Unstructured Sparsity and 
Overheads
• Pruning makes DNN unstructuredly sparse
• Existing accelerators become inefficient because it must still perform 

lots of unnecessary operations on zero points in the sparse matrix
• Any remedy for it?
• Furthermore, pruning has proven to be a very expensive operation

• (both from literature review and first-hand experience)
• Any idea if we could create a hardware accelerator to boost it?
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Discussion (IV): Quantization 

• Quantization often uses fixed bits for each value
• High precision requires more bits per value

• How could one improve the precision while using minimal bits per 
value?

• How can one enable a hardware optimization to reduce the access 
time for quantized values?
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Discussion (V): Tradeoff between Robustness 
and Compactness
• As shown earlier, pruning could harm the robustness after a threshold
• A metrics to compensate for both accuracy loss and robustness loss is 

urgently needed
• Under what metrics should one prune the network?

• Accuracy loss over the original data?
• Accuracy loss over the adversarial data?
• Both?
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Discussions (VI): Overparameterization

• More evidences are showing that overparameterization has 
mysterious relationships with generalization

• Even more with current interpretation of double gradient descent 
phenomenon occurring in a largely overparametrized models

• Trade-off between generalization and compactness must be made
• How would you think of doing it?
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Discussions (I): Sparsification

• Current solutions are only able to sparsify a neural network after it 
has been densely trained

• Can you think of any solution to directly prune a network without 
having to train the dense one first?
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Backup Slides

Source: 78



EIE Accelerator

Source: 79



EIE HW Architecture

Source: 80



Adversarial Training + Pruning

Source: 81



Lagrangian Multiplier

Source: 82


