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ABSTRACT

Future GPUs and other high-performance throughput processors will

require multiple TB/s of bandwidth to DRAM. Satisfying this band-

width demand within an acceptable energy budget is a challenge

in these extreme bandwidth memory systems. We propose a new

high-bandwidth DRAM architecture, Fine-Grained DRAM (FGDRAM),

which improves bandwidth by 4× and improves the energy efficiency

of DRAM by 2× relative to the highest-bandwidth, most energy-

efficient contemporary DRAM, High Bandwidth Memory (HBM2).

These benefits are in largemeasure achieved by partitioning the DRAM

die into many independent units, called grains, each of which has a

local, adjacent I/O. This approach unlocks the bandwidth of all the

banks in the DRAM to be used simultaneously, eliminating shared

buses interconnecting various banks. Furthermore, the on-DRAM data

movement energy is significantly reduced due to the much shorter

wiring distance between the cell array and the local I/O. This FGDRAM

architecture readily lends itself to leveraging existing techniques to

reducing the effective DRAM row size in an area efficient manner,

reducing wasteful row activate energy in applications with low local-

ity. In addition, when FGDRAM is paired with a memory controller

optimized to exploit the additional concurrency provided by the in-

dependent grains, it improves GPU system performance by 19% over

an iso-bandwidth and iso-capacity future HBM baseline. Thus, this

energy-efficient, high-bandwidth FGDRAM architecture addresses the

needs of future extreme-bandwidth memory systems.

CCS CONCEPTS

• Hardware → Dynamic memory; Power and energy; • Com-

putingmethodologies→Graphics processors; •Computer sys-

tems organization →Parallel architectures;
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1 INTRODUCTION

High bandwidth DRAM has been a key enabler of the continu-

ous performance scaling of Graphics Processing Units (GPUs) and

other throughput-oriented parallel processors. Successive gener-

ations of GPU-specific DRAMs, optimized primarily to maximize

bandwidth rather than minimize cost per bit, have increased ag-

gregate system bandwidth; first through high-frequency off-chip

signaling with Graphics Double-Data Rate memories (GDDR3/5/5X

[18, 21, 24]) and, most recently, through on-package integration of

the processor die and wide, high-bandwidth interfaces to stacks of

DRAM (e.g., High Bandwidth Memory (HBM/HBM2) [20, 23] and

Multi-Channel DRAM (MCDRAM) [15]). Future GPUs will demand

multiple TB/s of DRAM bandwidth requiring further improvements

in the bandwidth of GPU-specific DRAM devices.

In this paper, we show that traditional techniques for extend-

ing the bandwidth of DRAMs will either add to the system en-

ergy, and/or add to the cost/area of DRAM devices. To meet the

bandwidth objectives of the future, DRAM devices must be more

energy-efficient than they are today without significantly sacrific-

ing area-efficiency. To architect a DRAM device that meets these

objectives, we carry out a detailed design space exploration of high-

bandwidth DRAM microarchitectures. Using constraints imposed

by practical DRAM layouts and insights from GPU memory ac-

cess behaviors to inform the design process, we arrive at a DRAM

and memory controller architecture, Fine-grained DRAM (FGDRAM),
suited to future high-bandwidth GPUs.

The most formidable challenge to scaling the bandwidth of GPU

DRAMs is the energy of DRAM accesses. Every system is designed

to operate within a fixed maximum power envelope. The energy

spent on DRAM access eats into the total power budget available

for the rest of the system. Traditionally, high-end GPU cards have

been limited to approximately 300W, of which no more than about

20% is budgeted to the DRAM when operating at peak bandwidth.
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(a) Maximum DRAM access energy for given peak bandwidth within

60W DRAM power budget
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(b) HBM2 energy consumption

Figure 1: GPU Memory Power and Energy

Figure 1a shows the DRAM energy per access that can be tolerated

at a given peak DRAM bandwidth while remaining within a 60W

DRAM power budget. We see that the energy improvements of on-

die stacked High Bandwidth Memory (HBM2) over off-chip GDDR5

memories have allowed modern GPUs to approach a terabyte-per-

second of memory bandwidth at comparable power to previous

GPUs that provided less than half the bandwidth using GDDR5. This

figure also demonstrates, however, that even with HBM2, systems

with more than 2 TB/s of bandwidth won’t be possible within this

traditional power budget. A future exascale GPU with 4 TB/s of

DRAM bandwidth would dissipate upwards of 120 W of DRAM

power.

The energy to access a bit in HBM2 is approximately 3.97 pJ/bit,

and, as shown in Figure 1b, it consists largely of data movement

energy (the energy to move data from the row buffer to the I/O

pins) and activation energy (the energy to precharge a bank and

activate a row of cells into the row-buffer); the I/O energy accounts

for the small remainder. The activation energy is a function of

the row size and the row locality of the memory access stream,

and it is a significant factor because most GPU workloads access

only a small fraction of the 1KB row activated in HBM2. The data
movement energy is determined primarily by the distance that

the data moves on both the DRAM die and the base layer die to

reach the I/O pins, the capacitance of these wires, and the rate

of switching on this datapath. Since most current DRAM devices,

including HBM2, send data from banks spread across the die to a

common I/O interface, data may travel from the farthest corners

of the device to the I/O PHYs on the base-layer, leading energy for

data movement to dominate the overall energy. FGDRAM reduces

both of these components of DRAM energy.

In FGDRAM, a DRAM die is a collection of small units called grains,

with each grain having a local, dedicated, and narrow data interface.

Much like a traditional DRAM channel, each grain serves a DRAM

request in its entirety. However, there are two fundamental differ-

ences between an FGDRAM grain and an HBM2 channel. First, unlike

a traditional HBM2 die where 16 DRAM banks share a single wide

I/O interface, each FGDRAM grain fetches data from only a single

DRAM bank. Second, each grain has a fraction of the bandwidth of

a traditional HBM2 channel. These two architectural changes enable

the main benefits of FGDRAM. First, eliminating the sharing of a

DRAM channel by multiple banks eliminates the inter-bank global

data bus on a DRAM die. This architecture reduces the distance

moved by data from a row-buffer to the I/O hub, thereby reduc-

ing the on-DRAM data movement energy. Second, because each

FGDRAM bank needs to provide less bandwidth than a traditional

bank, FGDRAM is able to use techniques explained in Section 3.2 to

achieve lower activation energy without significant area overheads.

While these benefits combine synergistically to reduce the DRAM

access energy, the allocation of private data channels to the individ-

ual banks on a die also exposes the entire bandwidth of the DRAM

die to the GPU and paves the way for area-efficient bandwidth

scaling. The throughput-optimized memory controllers on a GPU

can easily exploit this architecture to provide high bandwidth to

memory intensive applications.

In summary, this paper makes the following contributions:

• Based on a detailed analysis of GPU workloads (both com-

pute and graphics) and practical DRAM architectures, we

demonstrate that both data movement and row activation

energies must be reduced to meet the energy target of future

memories.

• We propose a new DRAM architecture, FGDRAM, which pro-

vides both 4× more bandwidth and 51% lower energy per

access than HBM2, the highest bandwidth and most efficient

contemporary DRAM.

• We develop an evolutionary approach to HBM2 which also

provides 4× more bandwidth, but show FGDRAM is 49% lower

energy than this iso-bandwidth baseline.

• The additional concurrency in our proposed FGDRAM archi-
tecture can be easily exploited by a GPU to improve the

performance of a wide range of GPU compute workloads by

19% on average over the iso-bandwidth baseline.

• We also consider the iso-bandwidth baseline enhanced with

two prior proposed techniques to improve DRAM perfor-

mance and energy. We show that FGDRAM requires 34% less

energy, is 1.5% less area, and is within 1.3% of the perfor-

mance of this enhanced baseline.

2 BANDWIDTH SCALING CHALLENGES

This section examines the main challenges faced by conventional

bandwidth scaling techniques when applied to high bandwidth

DRAMs. We use the key insights gained from this analysis to guide

the design of our proposed FGDRAM architecture.

2.1 DRAM Energy

As shown in Figure 1a, reducing DRAM energy is required to en-

able increased bandwidth without exceeding a reasonable energy

budget for the DRAM in a system. The energy consumed by the

DRAM is a function of the microarchitecture of the DRAM and

the memory request pattern generated by the processor. Previ-

ous work [7] demonstrated that GPU workloads, both from the

graphics and compute domains, incur high activation energy due
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Figure 2: HBM2 access energy components. Reproduced

from [6].

to low row-access locality arising from irregular accesses and/or

row-buffer interference between the thousands of concurrently ex-

ecuting threads. However, as shown in Figure 1b, the movement of

data from the sense-amplifiers to the DRAM I/Os is another more

significant contributor to overall energy. Figure 2 shows that in a

stacked DRAM, the data first travels on the DRAM die from the

bank’s sense-amplifier to the central stripe, then down to the base

layer using through-silicon vias (TSVs), and a short distance over

the base-layer to reach the I/O bumps that connect the HBM2 stack

to the GPU (approximately 9.9mm). Using a detailed energy model

based on physical floorplan and DRAM process characteristics (Sec-

tion 4) and the actual data toggle rate of different applications,

we found that switching the capacitance on this datapath requires

2.24 pJ/bit of energy on average. In contrast, transferring the data

over the I/O wires on the silicon interposer requires an additional

0.3 pJ/bit, considering actual application data toggle rates. In total,

with the average of 1.21 pJ/bit of activation energy, each HBM2 ac-
cess incurs 3.92 pJ/bit of energy (including ECC overhead) which is

a major impediment to increasing the aggregate bandwidth for a

GPU.

Clearly, to reach a target 2 pJ/bit of overall energy consumption,

future high-bandwidth DRAMs must reduce internal data move-

ment energy. Opportunities to reduce activation energy should also

be considered, as it is still a significant component of overall energy

consumption.

2.2 Increasing Per-bank Bandwidth

Traditionally, bandwidth scaling of DRAMdevices has been achieved

by improvements in the I/O signaling frequency. However, while

signal speed either on a PCB, an organic package substrate, or a

silicon interposer can be increased with relative ease, scaling the

frequency of the DRAM core and storage arrays at a commensurate

pace is extremely difficult. Consequently, with internal DRAM fre-

quencies remaining fairly similar over several product generations,

DRAM vendors have turned to increasing the prefetch width to scale

the internal DRAM bandwidth and match it with the bandwidth

at the I/O. However, because current high-end GPU DRAMs are at

the very limit of this scaling technique, continuing down this path

will require either high energy or high area overhead.

In an HBM2 channel, the 64-bit I/O interface is operated at a 1GHz

frequency, providing 16GB/s of bandwidth on the DDR interface.

The DRAM atom size (the size of a single DRAM request) is 32 Bytes,
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Figure 3: High Bandwidth Memory microarchitecture. Re-

produced from [6].

which is transferred with a burst length of four over the 64-bit DDR

I/O interface. Throughout this paper, we consider an HBM2 stack to

be operating in pseudochannel mode [41] with sixteen 64-bit wide

channels per stack rather than legacy mode with eight 128-bit wide

channels.

To support the 16GB/s bandwidth per channel, an HBM2 bank

operating at 500MHz outputs 128 bits in each internal clock; two

banks operate in parallel to provide the required bandwidth (as

described below in Section 2.3). Creating a future HBM stack with

4× the bandwidth at the same internal frequency with the tradi-

tional prefetch scaling method would require two changes. First,

the internal prefetch from each bank must be increased to 512 bits

and the DRAM atom size (the size of each DRAM request) must be

correspondingly increased to 128 Bytes.

Increasing the prefetch width essentially requires a wider datap-

ath from the DRAM bank to the I/O circuitry of the DRAM device.

As shown in Figure 3, a DRAM bank is composed of several subar-

rays, with each subarray containing a subset of the rows in the bank

and a set of sense-amplifiers that constitute the row-buffer of the

subarray. As a typical example, the 16K rows in an HBM2 bank are

organized as 32 subarrays, each containing 512 rows of DRAM cells.

Each subarray is not monolithic, but consists of several 512×512
arrays of DRAM cells which are typically referred to asmats. When

a row is activated in a subarray, each mat activates a section of the

row into its local set of sense-amplifiers. This subarray performs

this operations by first driving a Master Wordline (MWL) in a high

level metal across the subarray, which in turn drives a Local Word-

line (LWL) in every constituent mat. Subsequently, when a DRAM

atom is read, every mat of the subarray outputs a few bits of the

DRAM atom. In HBM2, a 1 KB wide row is split across 16 mats, each

512 bits wide; on a read command, each mat provides 16 bits over

two internal cycles to return the 32 Byte DRAM atom. The read

command drives a set of Column Select Lines (CSLs) in each mat

which work as mux select signals, driving data from the target

sense-amplifiers to the Master Datalines (MDLs) via the Local Data
Lines (LDLs) [13, 25, 44]. Quadrupling the prefetch width of the

bank requires either increasing the number of mats in a subarray to

64 or quadrupling the bandwidth per mat so that each mat outputs

64 bits over two cycles instead of 16 bits. The first option increases

the row-size and consequently the activation energy. Given the
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need to reduce energy in high bandwidth memories, this increase

is a step in the wrong direction.

On the other hand, increasing the mat bandwidth requires large

area overheads. The 3 metal layers in a typical DRAM process

require a metal layer for the vertical bitlines in the mat, one for the

MWLs and LDLs in the horizontal direction, and a third for the CSLs
and MDLs in the vertical direction. The MWL and LDL metal layer has

4× the pitch of the LWLwhich is built using silicided polysilicon [16,

25, 36, 44]. Likewise, the CSLs and MDLs have 4× the pitch of a

bitline. A DRAM mat’s area is dictated by the number of wiring

tracks required in these coarse-pitch metal layers. Quadrupling the

mat bandwidth requires increasing the number of both the LDLs and
MDLs from 16 to 64 (each signal being differential). This approach

leads to a 77% increase in mat area due to increases in the wiring

tracks in both the vertical and horizontal directions. While some of

that area can be saved by trading off CSL count for increased MDL
count, additional area is required to increase the width of the global

inter-bank I/O bus that connects the banks to the I/O circuitry.

Increasing the prefetch width thus significantly increases the cost

of the DRAM device.

Furthermore, increasing the DRAM atom size is undesirable

for multiple reasons. First, previous work has shown that GPU

compute applications benefit from 32-byte sector sizes, and mem-

ory hierarchies designed to support such request sizes boost both

performance and energy by avoiding data overfetch [35]. Second,

graphics pipelines compress render surface tiles into 32-byte units

to save DRAM bandwidth and amplify L2 capacity [31]. Increasing

the atom size from 32 Bytes to 128 Bytes defeats the benefit of this

important optimization and leads to a 17% degradation in perfor-

mance for the graphics workloads we simulated. DRAM bandwidth

scaling techniques must avoid increasing the DRAMmat bandwidth

or the DRAM atom size.

2.3 Overlapping Accesses in Different Banks

Due to increasing I/O frequencies and stagnating DRAM internal

frequencies in modern high-bandwidth DRAM devices, the time

to transfer a single DRAM atom on the I/O bus (tBURST) is smaller

than the minimum time between successive read requests to one

DRAM bank. Thus, successive read accesses to the same DRAM

bank cannot saturate the DRAM data interface.

To address this issue, recent DRAM standards, such as DDR4 [19],

GDDR5, and HBM/HBM2 support bank grouping. The banks in a

given DRAM channel are partitioned into several bank groups, typi-

cally with 4 banks per group. Accesses to different bank groups can

be issued closely together, regardless of the cycle time of a single

bank. This short delay between successive column commands (i.e.

reads and writes) to different bank groups is the tCCDS timing pa-

rameter. This tCCDS parameter is equal to the tBURST time, ensuring

“gapless” transmission on the data bus across successive accesses.

The cycle time of a given bank (and possibly some structures shared

with other banks in the same group) determines the rate at which

successive column commands to the same group can be issued. This

longer delay is the tCCDL timing parameter. To make efficient use of

the full DRAM bandwidth, requests must alternate among different

bank groups.
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Figure 4: Overlapping multi-cycle accesses among bank

groups. Each command requires two clock cycles to access

the data for a 32B burst. Commands to the different bank

groups can be separated by tCCDS =2ns, while commands to

the same bank group must be separated by tCCDL =4ns.

Using this bank grouping approach, a DRAM can support higher

bandwidth from a channel than a single bank can provide. In par-

ticular, if each bank accumulates the required data for a request

over multiple internal cycles, the DRAM can support channel band-

widths many times that of a single bank’s bandwidth. Figure 4

illustrates how a single 256-bit access is split over two 128-bit ac-

cesses to a single bank. Since a request to a different bank-group

can overlap with the second phase access of the first bank, the total

bandwidth available on the interface is twice that of a single bank.

In fact, HBM2 employs this technique [23], allowing the bandwidth

to double relative to first-generation HBM without requiring addi-

tional per-mat bandwidth. This approach can be further extended

with more bank groups and more internal access cycles to enable a

larger ratio between the bank and channel bandwidth.

While this approach enables higher channel bandwidths, it re-

quires very fast switching on the internal DRAM global data bus

that interconnects all the banks, particularly for high channel band-

widths. Furthermore, the high ratios required for a 4× bandwidth

HBM2 derivative would require rotating read and write commands

among at least 8 bank groups in each channel. Unfortunately, back-

to-back accesses to the same bankwould be very slow in this case, as

each bank would require multiple cycles for a single access. In this

example, tCCDL is 16ns, instead of 4 ns as it is today. We found that

performance degrades by an average of 10.6% compared to an iso-

bandwidth system with conventional inter- and intra-bankgroup

timings.

2.4 Additional Parallel Channels

The complexities of increasing the bandwidth of a single channel

can be avoided by simply increasing the number of channels in the

device. Each channel remains the same baseline bandwidth, though

possibly using a narrower, higher-speed I/O channel. All of the

channel timing parameters remain the same.

Unfortunately, a straightforward replication of channels is area

intensive. Even if the total storage capacity remains the same, the

number of independent DRAM banks increases in proportion to the

number of additional channels – each bank simply has proportion-

ally fewer rows. However, increasing the channel count requires

the replication of the row and column address decoders and the

global sense-amplifiers, leading to 36% higher area.
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Figure 5: FGDRAM Die Stack Architecture

Alternatively, the number of banks per channel can be propor-

tionally reduced to avoid most of this additional area penalty. For

instance, a current 16-channel HBM2 stack with 16 banks per chan-

nel evolves into a 4× bandwidth 64-channel stack with 4 banks per

channel. Each channel has the same bandwidth as a current HBM2
channel, using one quarter the number of 8 Gb/s I/O signals. The to-

tal number of banks remains constant. This evolutionary approach

to scaling bandwidth has the fewest downsides, and we use this

quad-bandwidth HBM stack (QB-HBM) as a baseline for comparison

to our FGDRAM proposal.
By reducing the number of banks available in each channel, it

becomes more difficult for the memory controller to always find

work for all four banks so that it can hide activate/precharge la-

tencies under data transfers from the other banks. Also, while this

QB-HBM architecture addresses the target bandwidth demand for

future systems, there is no significant reduction in the energy per

access. As a result, we also consider an enhanced alternative to the

QB-HBM baseline which incorporates prior published approaches

to increase bank-level parallelism and reduce DRAM activation

energy.

A potential solution to the reduction in exploitable bank-level

parallelism can be found in a technique called Subarray Level Par-

allelism (SALP) [26]. This approach enables subarrays within a

DRAM bank to be independently activated, effectively creating

additional opportunities to perform activates/precharges while ac-

cesses to other subarrays take place. In effect, it creates a number

of smaller semi-independent banks within a single bank structure.

When SALP is enabled, bank-level parallelism is recovered, and the

performance of the baseline 16-bank configuration is restored.

As shown in Figure 1b, the energy due to DRAM row activations

is a significant portion of DRAM energy. The subchannels archi-

tecture [6] partitions each bank and the associated DRAM channel

into narrow partitions, reducing the effective DRAM row size and

DRAM activation energy. We apply both SALP and subchannels to

create an enhanced baseline quad-bandwidth HBM design. We will

compare these baseline alternatives to our proposed architecture

in energy, area, and performance.

3 FINE-GRAINED DRAM

Based on the challenges faced in scaling bandwidth and reducing

DRAM energy, three key objectives shape our DRAM architecture

proposal:

(1) Additional bandwidthmust be exposed via additional parallel

channels.

(2) Data movement energy must reduced by limiting the dis-

tance between banks and I/Os.

(3) Activation energy must be reduced by limiting the effective

row-size of each activate.

Our goal is to architect a DRAM stack with 4× the bandwidth

of a current HBM2 stack while simultaneously reducing the energy

per access by a factor of two. This 1 TB/s, 2 pJ/bit DRAM will

enable future multi-TB/s GPU memory systems. Our proposed Fine-

Grained DRAM (FGDRAM) stack architecture (Figure 5) partitions the
DRAM into a number of small, independent grains. Each grain is

essentially a narrow slice of a DRAM bank along with an adjacent

associated and dedicated I/O interface. This architectural approach

achieves the energy and bandwidth objectives by simultaneously

addressing data movement energy and providing direct parallel

access to every DRAM bank. Furthermore we apply an area-efficient

technique to reduce the effective row-size, addressing activation

energy. The finely partitioned FGDRAM architecture requires changes
to the interface organization, the bank (grain) architecture, and the

memory controller architecture. In contrast to Figure 2, the data

movement energy (1) row activation energy and (2) data transfer

within the chip are significantly reduced.

3.1 Interface Architecture

Parallel narrow channels. The proposed 1 TB/s FGDRAM stack

architecture provides equivalent bandwidth to the proposed quad-

bandwidth HBM (QB-HBM) baseline design. The QB-HBM design has

64 channels, each providing 16GB/s of bandwidth. The FGDRAM ar-

chitecture provides 512 grains in each stack, each providing 2GB/s

of bandwidth. The access granularity of each read or write request

is still a 32 byte atom in both architectures. In FGDRAM, one request
must be serialized over the narrower bus resulting in a tBURST of
16 ns. While this increases the minimum latency of each read re-

quest by several nanoseconds, this modest increase has a negligible

impact on performance in highly threaded, bandwidth-oriented

systems.

Using many narrow relatively low-bandwidth channels allows

the FGDRAM architecture to provide direct connections to each bank

in the stack. Figure 6 shows one QB-HBM channel with its 4 physical

banks, and the equivalent 16 grains in the FGDRAM proposal. One

key aspect of the FGDRAM architecture is unlocking bandwidth by

allowing all banks to be accessed in parallel and eliminating the

bottleneck of a shared bus interconnecting several banks. This ap-

proach reduces energy via the direct connection to nearby I/O, as

well as provides the necessary bandwidth without an area penalty.

Partitioning the interface into a large number of low bandwidth

channels provides a number of other opportunities to optimize

energy and simplify the memory controller, as discussed in Sec-

tion 3.3.

Address/command interface.One command channel provides

the commands to eight grains; there are 64 command channels for a

512-grain FGDRAM stack. As shown in Figure 6, the shared command

logic sits between two physical banks to control the eight grains.

Each command specifies the grain it targets. The command protocol

is similar to a DDR/HBM2 interface with explicit activates, reads,

45

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 01,2020 at 15:50:38 UTC from IEEE Xplore.  Restrictions apply. 



MICRO-50, October 14–18, 2017, Cambridge, MA, USA M. O’Connor et al.

8

1 Channel QB-HBM
8 Grains FGDRAM

Bank

TSV
array

Bank/Pseudobank
Mux and 

Global Sense Amps

Shaded arrows show data movement

������ 
�! "#$�%&

1 Grain FGDRAM + 
shared control

Row Decoder

Grain
Data
TSVs

Pseudobank
Mux
and 

Global 
Sense Amps

Pseudobanks

Shared
Clock

Strobes
& Cmd.

TSVs

TSVs to
other layers

Figure 6: QB-HBM Channel and FGDRAM Grain architecture. Arrows illustrate data movement within the two architectures.

and writes sent to the DRAM. Sharing a single command interface

among eight grains does not degrade performance. The long tBURST
required from a grain allows commands for each of the other grains

to be sent before a given grain needs another command. The overall

ratio of command to data bandwidth remains the same as HBM2 and
the QB-HBM baseline.

I/O signaling. As in the QB-HBM baseline, we are assuming a

straightforward evolution of the existing HBM2 PHY technology to

an 8Gb/s Pseudo-Open Drain Logic (PODL) PHY operating at 1.2V

similar to those in GDDR5 [18]. This provides 4× the bandwidth

of the existing 2Gb/s HBM2 PHY with a similar signal count. As a

result, each grain transfers data over just two data signals.

3.2 Grain Architecture

One key objective guiding the architecture of a grain is reduced

activation energy. Each grain in the FGDRAM architecture is the

equivalent of a bank in HBM2 except that it has a private, serial I/O

connection to the GPU. This section demonstrates how the existing

HBM2 bank architecture can be modified to create pseudobanks in a

grain, reducing the effective row-activation granularity.

Reducing row size. To reduce row size and the corresponding

activation energy overhead, we leverage the bank architecture of the

“subchannels” architecture described in [6]. This scheme partitions

a bank into a number of semi-independent “subchannel” slices, each

with a fraction of the original bank bandwidth. Importantly, each of

these subchannels also can semi-independently activate a row that

is a fraction of the baseline row size of the entire bank. We only use

the bank architecture proposed in the subchannels paper, as the

other aspects of the subchannels are pertinent just in the context

of a conventional HBM2 architecture. The interface partitioning and

command bandwidth issues are not applicable to FGDRAM.
The subchannels architecture exploits the existing hierarchical

composition of a DRAM row assert signal. In the HBM2 baseline
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Figure 7: FGDRAM Grain. A bank is split into 2 grains, each

with 2 pseudobanks.

(Figure 3(b)), on an activate, a MWL is driven across the entire sub-

array. The MWL, in turn, drives a local wordline (LWL) in each of

the mats in the subarray by turning on each mat’s local wordline

driver (LWD). In the FGDRAM architecture, the assertion of the MWL
leads to assertion of the LWLs in only a subset of the mats. As a

result, the effective row size of an activation is reduced. Since only

a subset of mats contain the active row, the bandwidth for a sub-

channel is correspondingly limited to a fraction of the original bank

bandwidth.

FGDRAMpseudobanks. Like the QB-HBM baseline, the FGDRAM
architecture delivers the required bandwidth by allowing many

banks to be simultaneously active. There are 256 banks in a 64-

channel QB-HBM stack, and each bank is capable of delivering 128 bits
every 2 ns (8GB/sec). Like current HBM2, the QB-HBM architecture
keeps two banks active in each channel (via the bank-grouping tech-

nique described in Section 2.3). In contrast, the FGDRAM architecture
allows all banks to be active simultaneously, transferring different

46

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 01,2020 at 15:50:38 UTC from IEEE Xplore.  Restrictions apply. 



Fine-Grained DRAM MICRO-50, October 14–18, 2017, Cambridge, MA, USA

DRAM atoms, since each bank has access to its own dedicated I/O

channel.

To match the 2GB/s bandwidth of a grain, it is sufficient to

involve only 4 mats in each grain, with each mat providing 8 bits per

internal 500MHz bank cycle. This is well matched to partitioning

each bank using the subchannels bank architecture into 4 slices.

Data is brought out of one of these slices in each grain over the

32-bit wide connection to the GSAs of the grain and pushed to

the serialization I/O buffer over 8 internal cycles. The datapath

is pipelined such that the external burst to the GPU can begin

as soon as the first 32-bit section of the DRAM atom is received

at the I/O buffer. For a single DRAM atom (32 Byte) read in the

FGDRAM architecture, multiple column-select lines (CSLs) must be

asserted sequentially, to select consecutive columns that store the

entire DRAM atom with a slice. Instead of sending multiple column

commands from the memory controller, the column address sent

with the read command is incremented using a small 3-bit ripple

carry adder inside the DRAM in successive cycles of a burst.

We call each such division of a grain a pseudobank as shown in

Figure 7. A pseudobank is somewhat different from a subchannel

because all of the subchannels in a bank are potentially active

at once, and interleaving of requests among traditional banks is

required for good performance.

Instead, the FGDRAM architecture divides a bank into 4 pseu-

dobanks, but there are only 2 grains per bank. It is here that we

take advantage of the fact that the total bank bandwidth in a base-

line QB-HBM stack is twice what we need to deliver in our 1 TB/s

FGDRAM stack. Each grain therefore consists of two pseudobanks.

“Bank-level parallelism” (BLP) within a grain is achieved by allow-

ing activates and precharges in one pseudobank, while a read or

write operation is accessing the other. Thus, the FGDRAM architec-
ture leverages the same technique to both reduce the effective row

size and provide (pseudo)bank-level parallelism within a single

bank.

Reducing data movement energy. As shown in Section 2.1,

a large fraction of the HBM2 access energy in many applications is

expended inmoving data from the global sense amplifiers associated

with a DRAM bank to the I/O pads. This energy is proportional

to the distance the data must travel. Therefore, the FGDRAM grain
architecture reduces this distance by providing each DRAM bank

with adjacent local I/O. Figure 6 illustrates the reduction in data

movement distancewith FGDRAM. Datamoves directly to an adjacent

set of global sense amplifiers, and the small, narrow multiplexer

that selects which of two adjacent pseudobanks is providing data

to be sent through the TSVs to the I/O PHYs. This is in contrast

to the traditional QB-HBM approach, where the data from all four

banks must be multiplexed onto a central shared bus before being

sent to the appropriate TSVs down to the base-layer PHYs. Also,

rather than a central TSV area in the middle of the die as the QB-HBM
requires, the TSV array is partitioned into two strips in the FGDRAM
architecture. The QB-HBM design can’t easily partition the TSV array

in a similarmanner because all the data from 4 banksmust bemuxed

to a central shared bus, and splitting the group of 4 banks with a

TSV array would force half of the per-bank data buses to traverse

the TSV array to the mux, and then have the shared data bus deliver

the selected data back to the TSVs. In FGDRAM, the data buses from
a bank are directly routed to the immediately adjacent TSV area to

be routed to the base layer. Adjacent to the TSV area on the base

layer are the PHYs which connect to the host processor within the

package.

Each grain is essentially a pair of DRAM pseudobanks along

with an associated private serial I/O interface, and the grains can

independently process different DRAM operations in parallel. By

subdividing the DRAM die and constraining data movement (and

to a certain extent command signals) to these small subdivisions,

on-die data movement energy is significantly reduced.

3.3 Memory Controller Architecture

The FGDRAM architecture requires the memory controller to man-

age and schedule requests for a large number of independent grains.

Rather than a single HBM2 command interface supporting two 16GB/s

channels, FGDRAM distributes this bandwidth among 16 grains. Be-

cause a group of 8 grains shares a command channel, there are twice

as many command interfaces onto which the memory controller

must schedule requests. The request rate on each command chan-

nel is one half that of the baseline HBM2 command interface. Thus,

the memory controller must perform essentially the same amount

of work per unit of bandwidth. Splitting the command interfaces

allows a more energy efficient implementation in the DRAM. The

commands a delivered near where they are needed and commands

can be handled at the core 500 MHz clock rate. This architecture

saves a small amount of data movement energy and clock power in

the DRAM.

Command interface. The shared command interface is used

to send commands to the eight associated grains. Just as in HBM2,
separate row and column commands can be sent simultaneously.

Each command specifies the 3-bit grain identifier with each com-

mand. Each command requires at least 2 ns to be transmitted across

the interface. This latency allows each command to be processed at

the low-speed 500 MHz internal DRAM core clock, thereby saving

clock power in the DRAM command processing logic. The com-

mands mirror those found in conventional HBM2. The commonplace

commands like refresh, activate, precharge, read, and write (with

optional auto-precharge) all specify which of the eight associated

grains are targeted by the command. Some commands apply to

all eight grains associated with a command channel; these com-

mands are primarily associated with configuration or transitioning

between low-power sleep/self-refresh modes.

Just as in a conventional DRAM, a number of timing parameters

govern when certain commands can be sent relative to earlier com-

mands. In FGDRAM, some of these timing parameters differ from the

HBM2 baseline. For instance, because FGDRAM has a smaller DRAM

row size and lower peak command issue rate, the tFAW (Four Ac-

tivate Window) parameter due to power delivery constraints is

effectively eliminated. Each command interface issuing an activate

of a 256B row every 2 ns roughly matches the aggregate activation

rate in number of bytes that an HBM2 die can sustain under the

constraints of its tFAW parameter. The long 16 ns tBURST associated

with each grain also simplifies the scheduling in the memory con-

troller. With two pseudobanks per grain, and just two requests per

activate, FGDRAM can hide all activation/precharge latencies and

keep its interfaces 100% busy. While the memory controller must

manage tracking requests to a number of grains and pseudobanks,
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these are relatively simple directly indexed structures. Deep as-

sociative queues required to find multiple row-buffer hits are are

much less important in the FGDRAM architecture, saving memory

controller complexity.

One complexity FGDRAM introduces to the memory controller is

the need to ensure that two different rows in different pseudobanks

within in the same subarray are never simultaneously activated.

The logic to track this is straightforward, but is new relative to

the baseline HBM2 controller. Careful memory address layout and

address swizzling makes this situation relatively unlikely to occur,

but it must be prevented by delaying the activate or precharging

the other pseudobank.

Commandbandwidth.While the FGDRAM architecture hasmore

independent command interfaces, the total aggregate bandwidth,

both in command rate and raw I/O bandwidth of these interfaces,

is the same as HBM2 relative to the total data bandwidth. In other

words, a 1 TB/s FGDRAM stack has 4×more command I/O bandwidth

and the memory controller must support 4× the command issue

rate of an HBM2 stack. A new read or write command can only be

sent to a grain once every 16 ns due to the length of the data burst

on the per-grain data lines. Because eight grains share a command

channel, a total of 8 read or write commands can be sent on this

command channel every 16 ns. The worst-case scenario for com-

mand bandwidth is the case of one read or write command per

activate. The row-command interface requires more than 2 ns to

send an activate command due to the long row address. The 8:1

ratio of grains to command creates a bottleneck in this situation, but

it is similar to the difficulty of keeping the bus utilized in HBM2 with
only one access per activate. The FGDRAM architecture is balanced to
sustain 100% utilization with two 32B accesses per activated 256B

row, as long as each grain has requests distributed among both

pseudobanks.

3.4 ECC

The current HBM2 architecture supports ECC bits stored within

the DRAM array and sent across the interface. Each 32B DRAM

burst is accompanied by 32-bits of additional ECC data sent on 16

additional data pins per channel. The QB-HBM architecture assumes

a similar arrangement, sending the 32 additional bits per burst

on 4 additional data signals per channel. This enables single-error

correct, double-error detect (SECDED) on each of the two 64-bit

word of a burst. ECC generation and checking is handled by the

host processor.

With FGDRAM, storing the ECC data in the array is straightfor-

ward. As pointed out in [6], in structures like the narrow pseu-

dobanks, additional ECC data is stored in slightly wider mats with

576 columns. Sending additional data in FGDRAM on extra pins is

difficult since adding a single pin per grain would be a 50% over-

head. As a result, two options are possible. First, the ECC data

can be sent over additional cycles on the existing data bus. This

would require the data I/Os to operate at 9 Gb/s rather than 8Gb/s

to compensate for having fewer data pins than an ECC-enabled

HBM2-style interface. The energy overhead these approaches are

roughly equivalent (though there is somewhat lower I/O energy if

the data+ECC burst is sent on fewer pins at a slightly faster rate).

Alternatively, if operating the data I/Os significantly faster is not

a possibility, moving to in-DRAM ECC generation/checking like

that employed in LPDDR4 [5] would provide protection within the

DRAM array without the necessity to transfer the data across the

interface. The long burst lengths in FGDRAM are well suited to this

approach by providing a minimum access granularity to prevent

the need for read-modify-writes to update the ECC data. A short

4-bit CRC code is then applied to each data transfer to detect errors

on the I/O interface for retry. This 4-bit CRC can detect all 3-bit or

fewer errors, and requires the I/O to operate only slightly faster

at 8.125Gb/s to transmit this incremental CRC data. The energy

overheads of this approach are expected to be minor, with the I/O

energy savings compensating for the ECC generation and checking

being performed in a less power-efficient DRAM process than the

host processor.

3.5 I/O Alternatives

HBM2 relies on simple unterminated signaling across a silicon in-

terposer with small-geometry, high-density wiring. While these

I/Os require very little energy, they have very short reach; the

small-geometry wiring exhibits a physical bandwidth that is in-

versely proportional to the square of the length, similar to on-chip

wiring. The HBM2 PHYs are located in a stripe near the middle of

the base layer die and must be placed within a few millimeters

of the processor. In practice, the I/O currently employed by HBM2
can travel roughly 5 to 7mm on an interposer while maintaining

unterminated signaling at 2Gb/s. This distance depends strongly

on the thickness, width and spacing of the wires. For example, a

copper wire that is 1.5 μm thick, 1.0 μm wide, and spaced 2.5 μm
from neighboring wires is limited to about 5mm for 2Gb/s untermi-

nated signaling. Thicker and wider wires that use increased spacing

can reach longer distances, but the achievable bandwidth density

along the edge of the processor will decrease proportionally.

Since a key premise of the FGDRAM architecture is the placement

of the DRAM PHYs close to the banks spread across the DRAM die,

any practical I/O signaling technology must efficiently move data

at least a centimeter from the far side of a DRAM die. Furthermore,

this signaling technology should be more efficient over this distance

than the on-die data transport energy; otherwise, any savings of

on-die data transport energy simply becomes increased I/O energy.

Pseudo-Open Drain Signaling. In the baseline evaluation, we

assume a conservative design similar to high-speed GDDR5 1.2V

terminated pseudo-open drain logic (PODL) signaling technology.

These existing DRAMs support 8 Gb/s data rates over the required

distances, so it is a straightforward baseline. Since this paper focuses

primarily on the DRAM architecture, we use this conservative I/O

as the baseline in our evaluations.

Ground-Referenced Signaling. A promising alternative signal-

ing technique is Ground-Referenced Signaling (GRS) [34]. This type

of single-ended signaling has several advantages over PODL. For

example, the current consumed by the line driver is essentially

constant, except for a small ripple at the data rate. Since this ripple

is at very high-frequencies it is easily filtered by on-chip bypass ca-

pacitance. The fact that this current is not data-dependent helps to

mitigate simultaneous switching output (SSO) noise, which is often

a limiting factor for single-ended memory interfaces [37]. This elim-

inates the need to use DBI coding [39] and the associated signals on
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the data buses. In addition, GRS only uses the ground network to

complete the signal return path by signaling “about” ground, which

forces the signaling current to flow in the tight loop created by

the lane wire and the nearest ground conductor. This also helps to

reduce common-impedance return-path noise since the return path

is well-defined and ground is almost always the lowest impedance

network. Also, the ground network is easily the best reference for

a single-ended interface because it is low impedance and common

to all. Another important advantage of the GRS transceiver system

is that the entire path for strobe and data are matched to have iden-

tical delay and delay-sensitivities. This ensures the relative timing

between strobe and data is preserved in the presence of process,

temperature, and voltage variation. It also means that the relative

timing between strobe and data tracks together in the presence of

power supply noise; this has been demonstrated at signaling rates

up to 20Gb/s with PHYs built in a logic process.

Higher Bandwidth Signaling. These signaling technologies may

enable faster data rates than the 8Gb/s assumed in this paper. Sup-

porting higher data rates would allow fewer PHYs and signals

between the processor and the DRAM. Ideally, the wire bandwidth

would be sufficient to allow adequate memory bandwidth to be

routed directly over an organic package substrate, enabling more

traditional (less expensive) multi-chip module (MCM) assembly

and obviating the requirement for assembly on a silicon interposer.

Because the wires on an organic package have virtually distance-

independent physical bandwidth (up to several centimeters) this is

a viable approach. In other words, when using high-speed signaling

over a terminated link on an organic package, energy consumption

does not depend on wire length. This is due to the fact that the wire

is relatively short (e.g., less than 40mm) and frequency-dependent

attenuation is primarily due only to the parasitic capacitances of

the micro-bump pads, ESD protection devices, and I/O devices at

each end of the link. The additional high-frequency attenuation

from the losses in the longest package traces is less than 1 dB (i.e.,

10%) for signaling rates up to 20Gb/s, even when using low-cost

packaging technology.

This can enable systems that require many DRAM devices (or

stacks) co-populated with a processor in a package. Currently, it

is impossible to use unterminated 2Gb/s signaling over a silicon

interposer and reach a second DRAM device on the far side of a

closer DRAM device. The problem is that the bandwidth of the

wires that connect the distant DRAM devices is significantly lower

because they must be approximately 3× longer than the wires that

connect the adjacent DRAM devices. Signaling over an organic

substrate enables larger packages with more stacks of DRAM than

current HBM2 systems.

The benefits of these alternative signaling technologies could

apply to the alternative QB-HBM baseline as well. Thus, we consider

only the conservative PODL signaling in out subsequent evaluation

of the proposed FGDRAM architecture.

3.6 Design Assumptions

While we describe a 1 TB/s FGDRAM design with certain assumptions

regarding the underlying process technology, the architectural ap-

proach is generally applicable under a range of different technology

scaling assumptions. In general, we compare to a QB-HBM baseline

Table 1: GPU Configuration

#SMs, Warps/SM, Threads/Warp 60, 64, 32
L2 cache (size, assoc., block, sector) 4MB, 16-way, 128B, 32B
DRAM QB-HBM or FGDRAM

that assumes identical aspects of a contemporary DRAM process.

If different assumptions are made, they generally have a similar

consequence in both our proposed FGDRAM design and the QB-HBM
baseline.

TSV scaling.Weassume thatwe are able to drive signals through

the TSVs at 4× the data rate of contemporary HBM2 DRAMs. As a

result, we need the same number of signal TSVs as current HBM2
designs for both the QB-HBM and FGDRAM architectures. This as-

sumption may be aggressive, but if additional TSVs are required,

the impact would affect QB-HBM and FGDRAM equally. Future process
technologies may reduce the TSV pitch, enabling more TSVs in a

smaller area. Again, any area benefit of this approach would apply

equally to FGDRAM and QB-HBM.
Stack height. We assume a 4-high DRAM stack in our analysis.

It may be practical and economical to construct stacks with 8 or

more devices going forward. Adding additional bandwidth to a stack

via additional dies requires more TSVs and additional PHYs on the

base layer. If additional dies in a stack are added only to provide

additional capacity, then an approach similar to placing multiple

DIMMs on a shared DRAM bus can be used. Additional dies in a

stack act like another rank, with multiple dies sharing the TSVs

much like a conventional DRAM bus. There may be some impact on

peak data rates in this scheme, as there will be additional capacitive

loading on the TSV channels. This may push tall stacks towards

having more TSVs running at lower data rates to compensate.

Non-stacked DRAMs. All of the advantages of the FGDRAM ar-

chitecture would apply to a non-staked DRAM as well. A single

DRAM die built using the FGDRAM design could have the DRAM

PHYs in the strips where the TSV arrays are located in the proposed

stacked design. This approach can allow further efficient bandwidth

scaling of traditional GDDR-class memories. Coupled with high-

speed, distance-efficient I/O technologies like GRS, it could enable

systems with large package substrates to simply use many non-

stacked DRAMs to provide the bandwidth required, eliminating the

overheads of stacked DRAMs.

4 METHODOLOGY

4.1 Simulation Details

GPU Model: We simulate a modern GPU-system based on the

NVIDIA Tesla P100 chip [30] (configured as shown in Table 1) on

a detailed GPU and memory simulator. We model the details of

the compute and graphics pipelines, as well as the interconnect

and caches. The caches are sectored (32B DRAM atom) for higher

efficiency [35].

Memory Controller and DRAM: The baseline memory con-

troller model is optimized for harvesting maximum bandwidth and

thus deploys deep request buffers and aggressive request reorder-

ing to find row hits, batched write draining based on watermarks

to reduce write-to-read and read-to-write turnarounds, and an ad-

dress mapping policy designed to eliminate camping on banks and
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Table 2: DRAM Configurations

Category HBM2 QB-HBM FGDRAM

channels/die (4-die stack) 4 (16) 16 (64) 128 (512)
banks/channel 16 4 2 pseudobanks
grains/bank N/A N/A 4
row-size/activate 1KB 1KB 256B
data I/Os/die (4-die stack) 256 (1024) 256 (1024) 256 (1024)
datarate/pin 2Gb/s 8Gb/s 8Gb/s
bandwidth/channel or grain 16GB/s 16GB/s 2GB/s
bandwidth/die 64GB/s 256GB/s 256GB/s
bandwidth/4-die stack 256GB/s 1 TB/s 1 TB/s

common
tRC=45, tRCD=16, tRP=16, tRAS=29

timing parameters
tCL=16, tRRD=2, tWR=16, tFAW=12

in ns unless
tWTRl=8, tWTRs=3, tWL=2 clks

specified
tBURST 2 2 16
tCCDL 4 4 16
tCCDS 2 2 2
activates

8 8 32
in tFAW

channels due to pathological access strides (similar to the baseline

in [7]). The structural differences between QB-HBM and FGDRAM are

reflected in the hierarchical composition of their building blocks

and in the timing parameters in Table-2. The memory controller’s

internal state machine, and timing manager models these changes,

and also models the fact that the FGDRAM command interface is

arbitrated between eight grains.

Workloads:We evaluate memory intensive regions of 26 CUDA

applications from the Rodinia [8] and Lonestar [4] suites, exascale

workloads [1, 10, 14, 27, 29, 43] (CoMD, HPGMG, lulesh, MCB, Mini-

AMR, Nekbone), a hidden convolution layer fromGoogLeNet [40], as

well as two well-known memory-bound applications with disparate

access patterns, STREAM and GUPS [11], to show the effect of our

proposals on the spectrum of applications executed by a GPU. We

also present results for 80 graphics workloads representing modern

game engines and rendering pipelines (both shader- and render-

backend-generated traffic is simulated). These applications are from

the domains of professional graphics and games.

4.2 Energy and Area Model

For estimating the energy and area of HBM2, QB-HBM and FGDRAM de-
vices, we use the methodology of previous work on subchannels [6]

which was based on the model from Rambus [44]. In essence, we use

detailed floorplans of DRAM dies and devices to estimate the areas

of different blocks and the lengths of various datapath components

traversed by bits from a DRAM cell to the GPU’s pins, estimate the

capacitive loading on these components using DRAM technology

parameters for a 28nm node (scaled from 55nm [44]), and use ap-

propriate switching activities to obtain the energy consumed to

precharge a bank and activate a row, and in performing reads and

writes. Table 3 enumerates the energy consumed for different oper-

ations for the different DRAM types. The row-activation energy,

which is the sum of precharge and activate energies, differs based

on the DRAM row activation granularity. The datapath energy has

three components - i) traversing the LDLs and MDLs from the row-

buffer to the GSAs (pre-GSA), ii) traversing the path from the GSAs
to the DRAM I/Os (post-GSA), and iii) traversing the I/O channel

between the DRAM and GPU. The first component is not data de-

pendent as the LDLs and MDLs are precharged to a middle voltage

before every bit transfer, the second depends on the data toggling

Table 3: DRAM Energy.

Component HBM2 QB-HBM FGDRAM

Row activation (pJ) 909 909 227
Pre-GSA data movement (pJ/b) 1.51 1.51 0.98
Post-GSA data movement (pJ/b)∗ 1.17 1.02 0.40
I/O (pJ/b)∗ 0.80 0.77 0.77
∗ at 50% activity

rate (Table 3 shows the value at 50% toggle rate), and their sum

is the on-die data movement energy. Note that while FGDRAM has
much lower overall data movement energy compared to HBM2 by
design, even QB-HBM has more efficient data movement than HBM2
due to the reduced distance between the arrays and the I/O blocks.

The final component is the I/O energy. In HBM2 it is influenced by

the data switching activity, but in QB-HBM and FGDRAM the energy
of the high-speed I/Os is determined by the termination energy

and thus depends primarily on the number of 1 values in the data

(Table 3 shows the values at 50% 1s).

5 RESULTS

This section, compares the energy-efficiency and performance of

two iso-bandwidth DRAM systems: a QB-HBM stack and an FGDRAM
stack. We also analyze the incremental area that would be required

by these designs over current HBM2 devices.

5.1 Energy Improvement

Figure 8 shows the total DRAM energy consumed per bit by GPU

compute applications using QB-HBM and FGDRAM . The compute

workloads are grouped into two categories, with the first set (dmr

to pathfinder) containing applications that use a small fraction (less

than 60%) of the aggregate DRAM bandwidth, and the second con-

sisting of memory intensive applications (GUPS to STREAM) which

are more likely to be DRAM power (=energy-per-bit×bandwidth)
limited. We find that the FGDRAM architecture significantly reduces

energy across all the workloads by simultaneously reducing both

the activation and data movement energies.

Naturally, the reduction in activation energy is most beneficial

for applications with low row locality (sssp, MCB, dmr, GUPS, nw,

bfs, sp, kmeans, MiniAMR). Similar to classic GUPS, applications

dmr, sssp, sp, bfs and MCB have low intrinsic row-buffer locality

as they perform many sparse data-dependent loads - i.e., pointer

chasing. On the other hand, kmeans, nw, and MiniAMR suffer from

inter-thread interference at the row-buffers, and therefore have low

effective row locality as a natural consequence of highly threaded

processors [6]. The FGDRAM architecture reduces the fundamental ac-

tivation granularity to 256 Bytes from 1 KB in QB-HBM. This reduces
row-overfetch, and activation energy across the entire benchmark

suite by 65% on average.

On the other hand, data movement energy is also either the

largest or, at the least, a very significant fraction of overall energy

in QB-HBM for many of the workloads. While data movement en-

ergy varies between applications depending on their data toggle

rates (e.g., HPGMG has higher data movement energy compared to

srad_v2 in QB-HBM), it is primarily determined by the distance the

data must travel between the sense-amplifiers and the I/O pads. By

reducing this distance, FGDRAM reduces the average data movement
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Figure 8: DRAM Access Energy Per Bit (lower is better). Applications are divided into two groups based on their bandwidth

utilization in the baseline QB-HBM system.Within each group, the applications are sorted in descending order of energy-per-bit

in the QB-HBM baseline.
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Figure 9: DRAM energy consumed by graphics applications

(gaming, rendering, and professional graphics) (lower is bet-

ter). Applications are sorted in descending order of energy

consumption in the QB-HBM baseline system.

energy by 48%. This key benefit of the FGDRAM architecture is effec-

tive across the board for all applications, but is most significant for

those memory intensive applications where data movement energy

dwarfs the activation energy due to high row locality (streamcluster,

mst, HPGMG, STREAM, LULESH). Previous work that focused solely

on activation energy reduction ([6, 9, 12, 32, 42, 45]) is ineffective

at addressing this important energy bottleneck.

The I/O energies are the same for both QB-HBM and FGDRAM ar-
chitectures (as explained in Section 4). Using GRS technology for

the I/O in FGDRAM and QB-HBM would slightly increase the I/O en-

ergy component from 0.43 pJ/bit to 0.54 pJ/bit, but would enable

the benefits offered by GRS as outlined in Section 3.5.

Overall, on average, FGDRAM consumes only 1.95 pJ/bit, a 49%

improvement over QB-HBM which consumes 3.83 pJ/bit. Notably,

FGDRAM is able to reduce the DRAM energy consumption of appli-

cations at both ends of the row locality spectrum by addressing

all sources of energy consumption in a holistic manner. Conse-

quently, both GUPS and STREAM are able to meet the energy target

of 2 pJ/bit needed for future high-bandwidth systems.

Figure 9 shows the per-access energy for graphics applications.

Graphics applications tend to have higher row-buffer locality than

compute applications, and thus lower energy in the QB-HBM baseline.
Overall, FGDRAM reduces the baseline QB-HBM DRAM energy by 35%,

primarily by reducing the data movement energy.

5.2 Performance

Figure 10 demonstrates the performance of a GPU with FGDRAM nor-
malized to a baseline GPU with an iso-bandwidth QB-HBM system.

Depending on access characteristics, applications either see im-

proved or unchanged performance with FGDRAM. Memory intensive

benchmarks that suffer from frequent row conflicts in QB-HBM and

access a few bytes per activated row (GUPS, nw, bfs, sp, kmeans and

MiniAMR) are helped by FGDRAM’s i) increased concurrency that

allows more requests to be overlapped in time across different pseu-

dobanks in a grain, and across the grains on a die, and ii) higher row

activate rates made possible by smaller activation granularity, i.e.,

more activates in the same tFAW period. These two factors increase

the performance of such irregular memory-intensive applications

significantly — GUPS (3.4×), nw (2.1×), bfs (2.1×), sp (1.6×), kmeans

(1.6×) and MiniAMR (1.5×).
On the other hand, memory-intensive applications with regular

access patterns (STREAM, streamcluster, LULESH) that utilized a

large fraction of the QB-HBM bandwidth, have very little change in

performance when using the iso-bandwidth FGDRAM system as they

continue to enjoy high utilization of the same available bandwidth.

The small benefits observed in these applications with FGDRAM are

due to a secondary benefit of the highly partitioned FGDRAM ar-

chitecture that allows each grain to independently process reads

and writes. This means that the write-to-read turnaround penalty

on a grain is overlapped by data transfer from other grains, lead-

ing to more effective utilization of the same aggregate bandwidth

compared to QB-HBM.
In general, applications that are not memory intensive remain

unaffected by the change in memory technology. One exception is

MCB, which is heavily bank-limited in the QB-HBM baseline. FGDRAM
alleviates this bottleneck by using area-efficient pseudobanks, which

improves bank-level-parallelism, and hence performance, compared

to the iso-bandwidth QB-HBM. Across the simulated CUDA work-

loads, FGDRAM improves performance by 19% over an iso-bandwidth

future QB-HBM system.

This outcome also shows that the increase in burst latency with

FGDRAM (16ns) over that of QB-HBM (2ns), and the consequent in-

crease in the empty-pipe memory access latency, has no impact

on the performance of GPU applications. In theory, for a 1TB/s

memory system, we need an extra 109 128-byte full cache line re-

quests to cover the additional bandwidth-delay product resulting

from the 14ns increase in the unloaded memory latency. This would

mean an additional 2.8% more warps for a NVIDIA P100 machine

that has 3840 warps already. In practice, however, by increasing
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Figure 10: Performance normalized to QB-HBM baseline (higher is better). Applications are divided into two groups based on

their bandwidth utilization in the baseline QB-HBM system.

parallelism through finer-grained channels that alleviates bank con-

tention, FGDRAM reduces the queuing delay encountered by memory

intensive applications in the QB-HBM architecture. This lowers the
average DRAM access latency by 40% across the simulated work-

loads. In fact, a GPU already spends several hundred nanoseconds

to fetch a request from DRAM [3]. The minor increase in burst

latency to achieve better bandwidth utilization is easily justifiable

in a throughput architecture like a GPU where most of the memory

latency is from queuing delay rather than the unloaded DRAM

latency.

Graphics applications running on GPUs leverage tiled accesses

to improve cache utilization and compression to reduce DRAM

bandwidth demand. As a result, most graphics applications are

unable to fully utilize the bandwidth of the baseline QB-HBM system.

In fact, even applications like raytracing, which one could presume

to have sparse, random access patterns owing to incoherent rays, are

heavily optimized to maximally utilize the on-die SRAM memory

structures and produce sequential DRAM access streams that have

high row-buffer locality [2]. Consequently, none of the graphics

applications are activation rate limited and perform similarly on

the two iso-bandwidth systems, with less than 1% different between

QB-HBM and FGDRAM.

5.3 DRAM Area

To analyze the area overhead of the QB-HBM and FGDRAM stacks

relative to an HBM2 stack, we use the detailed area model outlined

in Section 4.

QB-HBM overhead: The QB-HBM (and FGDRAM) I/Os are oper-
ated at 4× the datarate of the HBM2 I/Os, and as a result there is

no additional TSV area overhead. Also, the total number of banks

on a die remains unchanged between QB-HBM and HBM2 (64), but

the banks are rearranged so that each QB-HBM channel has 4 banks.

To provide 4× the bandwidth of HBM2, 4× more banks have to be

accessed in parallel in QB-HBM, which requires a proportional in-

crease in GSA count and the wiring that connects the GSAs to the

I/O buffers. These two factors increase the HBM2 area by 3.20% and

5.11% respectively. The additional control logic needed to manage

the increased number of channels can be placed under the global

wires, and only a small (0.26%) area is needed for additional de-

coding logic. Overall, the QB-HBM die is 8.57% larger than an HBM2
die.
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Figure 11: Average DRAM access energy per bit of baseline

QB-HBM, enhanced QB-HBM+SALP+SC, and FGDRAM architectures.

FGDRAM overhead: The FGDRAM stack has the same band-

width as QB-HBM and, thus, has an equal number of TSVs and GSAs.
Like QB-HBM, FGDRAM has 3.20%more area than HBM2 due to the GSAs
alone. However, since the data wires from the pseudobanks only

have to be routed to local data TSVs, the routing is considerably

simpler and thus the routing channel area overhead for data wires

is almost negligible. A consequence of the reduced routing area

is that the area for the additional control logic is not overlapped

with these wires and increases the die size by 3.41% relative to

HBM2. The next set of overheads for FGDRAM comes from the pseu-

dobank organization. The overheads (3.47% over HBM2) are similar

to those required for subchannels [6], and are due to extra LWD
stripes, address decoupling latches, and control routing from the

grain periphery to the pseudobanks. Overall, the FGDRAM stack is

10.36% larger than an HBM2 stack, and only 1.65% larger than the

iso-bandwidth QB-HBM baseline.

The area overheads are derived with the assumption that the

I/O and TSV frequency can be scaled to provide higher per pin

bandwidth in QB-HBM and FGDRAM compared to HBM2. If TSV fre-

quency cannot be increased, then both the baseline QB-HBM and

FGDRAM would require 4× the number of TSVs to deliver the data

from the banks to the I/O circuitry on the base die. Without any

improvements in TSV pitch, this would make a QB-HBM die 23.69%

larger than an HBM2 die, and our proposed FGDRAM die would be

1.45% larger than QB-HBM.

5.4 Comparison to Prior Work

Two significant drawbacks of the QB-HBM baseline system are the

limited number of banks per channel (required to limit area over-

head) which restricts bank-level parallelism, and the relatively
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large 1 KB row-size. Two previous proposals, subarray-level par-

allelism (SALP) [26], and subchannels (SC) [6] can address these

shortcomings. We modify a bank in QB-HBM to allow access to all

row buffers belonging to the 32 constituent subarrays. Note that

adjacent subarrays share a sense-amplifier stripe which limits par-

allelism somewhat. We also vertically segment the row and bank

datapath into subchannels, so that the minimum activation gran-

ularity is 256 Bytes. This configuration, QB-HBM+SALP+SC, thus in-
corporates the best of prior proposals with the most feasible future

scaling of the HBM architecture. The QB-HBM+SALP+SC approach
has the area overheads of both QB-HBM (4× data wires and GSAs),
as well as the overhead for maintaining access to each subchannel

and subarray in a bank. Consequently, QB-HBM+SALP+SC is 3.2%

larger than the QB-HBM baseline and 1.54% larger than our FGDRAM
proposal.

Through our simulations, we found that the overlapping of ac-

tivation and precharges to different subarrays from SALP and the

increased activation rate possible from the smaller rows due to sub-

channels improves the performance of the baseline QB-HBM system

to nearly identical levels as FGDRAM for all benchmarks. A few bench-

marks, like streamcluster, have slightly improved performance over

FGDRAM due to the slightly higher available bank-level parallelism

from SALP. Overall, QB-HBM+SALP+SC has 1.3% better performance

than FGDRAM. However, the energy efficiency of QB-HBM+SALP+SC
is worse than that of FGDRAM. As shown in Figure 11, it fails to

meet the the desired energy target of 2 pJ/b necessary to enable

a 4 TB/s memory system. The subchannel technique reduces the

minimum activation granularity of QB-HBM+SALP+SC to 256 bytes,

and SALP additionally reduces the row conflict rate by keeping

multiple rows open in a bank simultaneously. These mechanisms

lead to 74% lower activation energy than QB-HBM (compared to 65%

reduction with FGDRAM). Without any reduction in data movement

energy, however, QB-HBM+SALP+SC is only able to improve energy

by 23% over QB-HBM. This result falls well short of the 49% savings

provided by FGDRAM. The benefits of SALP are orthogonal to FGDRAM,
and could be applied to our proposed architecture as well if the

incremental benefits warranted the additional area and complexity.

To our knowledge, no prior work has focused on reducing the data

movement energy in DRAM devices.

6 RELATEDWORK

Previous work on DRAM energy reduction [9, 12, 28, 38, 42, 45],

focused solely on reducing activation energy. Since, on average,

more than 50% of the average DRAM access energy is attributable

to on-die data movement, these techniques achieve a small fraction

of the energy-efficiency of FGDRAM. The FGDRAM architecture readily
lends itself to reducing the row-size by allocating lower-bandwidth

I/Os to individual banks, which allows using the recently proposed

area-efficient subchannels technique [6] to complement FGDRAM’s
low data movement energy.

Some DRAMs do have somewhat reduced data movement energy.

The LPDDR4 die architecture [22], where the I/O pads for the two

channels on the die are placed at opposite edges sees some reduction

in data movement energy as a side-effect of the split interface. The

Hybrid Memory Cube (HMC) [17] splits the DRAM die into several

vaults with the banks stack above each other within the die stack.

This technique educes the data movement within a vault since

the data traveling from the far banks must only move through a

few short TSVs. Overall, however, there is little savings since the

data from a vault must travel through several buffers in the vault

controller on the base layer and is then routed through a network on

the base-layer to the appropriate I/O interface, finally traversing the

serial channel on the PCB to the processor. These overheads make

the HMC solution (10pJ/b [33]) less energy-efficient than FGDRAM.
More importantly, scaling the bandwidth of HMC beyond its current

capability will require addressing the same set of challenges as faced

by HBM today. The FGDRAM architecture provides a roadmap for

bandwidth scaling that can thus benefit the HMC as well.

7 CONCLUSION

Future GPUs and throughput CPUs that demand multiple TB/s of

bandwidth require higher bandwidth and more energy efficient

DRAMs. Our proposed FGDRAM architecture addresses bandwidth
scalability in a performant and area efficient manner by unlocking

the internal bandwidth of each bank in the stack. At the same time,

we address the most significant sources of DRAM energy consump-

tion: data movement energy and activation energy. Partitioning

the DRAM into independent grains, each with adjacent local I/O,

significantly reduces data movement energy within the DRAM die.

Furthermore, we leverage an area-efficient technique to reduce

the DRAM row size, saving activation energy. Synergistically, this

technique also allows us to provide a mechanism to overlap acti-

vations and accesses within a grain inside a single DRAM bank.

Overall, we reduce DRAM energy to 1.97 pJ/bit, a 49% improve-

ment over an improved 4× bandwidth HBM2 variant. We show that

the increase in concurrency within FGDRAM devices can improve

performance relative to an iso-bandwidth QB-HBM system, partic-

ularly for activate-rate limited workloads. Overall, the proposed

FGDRAM architecture provides a solution for the energy-efficient,

high-bandwidth DRAM required for exascale systems and a range

of other applications.
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