
Flexible Reference-Counting-Based Hardware
Acceleration for Garbage Collection

presented by Theo Weidmann, 29th of October

José A. Joao, Onur Mutlu, Yale N. Patt
ISCA 2009

 1

Background & Problem

 2

What is Garbage Collection?

• Garbage Collection: Automatic reclaiming of memory occupied by
unreachable (“dead”) objects

• Objects are unreachable if there are no more pointers to it

• First described in 1960

 3

Why use Garbage Collection?

• Garbage Collection avoids memory management bugs

• Example: Use-after-free (dangling pointer)

• Serious security implications

• Hard to find

• Featured in many modern managed languages

• Java, C#, Swift

 4

Two Main Ways to Garbage Collect
Tracing Garbage Collection

• Start from a root set (stack, global variables, registers) and
recursively follow all pointers until you have reached all objects

• One option: Generational Collection

• “Objects die young”

• Copy all reached objects into another region called “mature”,
then set allocation pointer of “nursery” to beginning

• Objects reclaimed only eventually when the garbage collector runs
Nursery Mature

Allocation pointer

 5

Two Main Ways to Garbage Collect
Reference Counting

• Count existing pointers to every object

• Whenever a new pointer to an object is created → increment counter

• Whenever a pointer to an object is destroyed → decrement counter

• When count reaches 0 → object is dead and memory can be reclaimed

• Objects can be reclaimed immediately

 6

Overhead of Software Garbage Collection

• Reference Counting

• Counters are incremented and decremented very often

• In parallel programming languages these counters must be synchronized

• Often counter changes within a short interval cancel each other out

• Example: Traversing a linked list

• Tracing Collection

• “Stop the world” → Garbage Collector Pauses

• Concurrent: Require extensive synchronization → Overhead

 7

 8

Overhead of Software Garbage Collection

Hardware Garbage Collection

• Ties the ISA and microarchitecture to a specific algorithm

• Different programs require different garbage collection algorithms to
perform best

• They introduce major changes to the processor

• Expensive to develop, test and verify

• Certain software optimizations (such as compacting) become impossible

[Not suitable for general purpose systems]

 9

Goal

 10

Goal

• Provide hardware acceleration to reduce overhead

• Without limiting the flexibility of software collectors

 11

Hardware Accelerated Memory Management (HAMM)

 12

Idea

• Implement simple, flexible garbage collection in hardware
• To keep HAMM flexible and cheap, only partially implement reference counting in

hardware

• Does not handle destructors, cyclic references, large counts and might not be able to
scan all dead objects for pointers → expensive and causes rigidity

• Software garbage collectors collect remaining objects

• Overhead is reduced by less frequent software garbage collection
 13

Mechanism Overview

• Hardware implements basic reference counting

• Hardware maintains a list of dead objects whose space can be
immediately reused: Available Block Table (ABT)

• ISA is extended with

• load/store operations specifically for pointers

• REALLOCMEM to request a block for reuse from the ABT

• ALLOCMEM to inform hardware about a newly allocated object

 14

Hardware of HAMM

Slide Credit: José A. Joao, Onur Mutlu, Yale N. Patt, http://people.inf.ethz.ch/omutlu/pub/joao_isca09_talk.ppt

LD/ST
Unit

L1 RCCB
RC updates

Core 0
L1 ABT

Block address

Core 1 Core N…

L2 RCCBL2 ABT

CPU Chip 0

CPU Chip 1

CPU Chip M

…

Main memory

RC

RC

RC

Live objectsAvailable Block Table
(ABT)

Reusable blocks

L1 Reference Count
Coalescing Buffer (RCCB)

 15

http://people.inf.ethz.ch/omutlu/pub/joao_isca09_talk.ppt

Software: Updated Allocation Algorithm

 16

Software: Updated Allocation Algorithm

// Available Block Table

addr ⟵ REALLOCMEM size

if addr == 0 then

 // ABT does not have a free block, follow software allocation

 addr ⟵ allocate using software method

end if

// Initialize block starting at addr

ALLOCMEM addr, size

 17

Software: Updated Allocation Algorithm

// Available Block Table

addr ⟵ REALLOCMEM size

if addr == 0 then

 // ABT does not have a free block, follow software allocation

 addr ⟵ allocate using software method

end if

// Initialize block starting at addr

ALLOCMEM addr, size

 18

Software: Updated Allocation Algorithm

// Available Block Table

addr ⟵ REALLOCMEM size

if addr == 0 then

 // ABT does not have a free block, follow software allocation

 addr ⟵ allocate using software method

end if

// Initialize block starting at addr

ALLOCMEM addr, size

 19

Software: Updated Allocation Algorithm

// Available Block Table

addr ⟵ REALLOCMEM size

if addr == 0 then

 // ABT does not have a free block, follow software allocation

 addr ⟵ allocate using software method

end if

// Initialize block starting at addr

ALLOCMEM addr, size

 20

Benchmarking in Simulation

• Goal is to reduce GC time

• DaCapo benchmark executed on research JVM on a hardware simulator
simulating HAMM

• Comparing GC time with and without HAMM

 21

Benchmarking in Simulation

 22
Reduction by up to 60%

Benchmarking in Simulation

 23
Programs with lots of short-lived objects benefit greatly

Benchmarking in Simulation

 24
HAMM benefits are smaller with mostly long-lived objects

Benchmarking in Simulation

 25

Average Garbage Collection Time Reduction 31%
At least 10% for heap sizes from 1.5x to 3x minHeap

Results

• HAMM reduces GC time

• 69% of the new objects reuse memory blocks

• Reuse of heap memory → reduces GC cycles (50% nursery / 52% full)

• Delaying GC gives objects more time to die → fewer objects are copied
to mature region (21% less on average)

• Maximum L1 cache miss increase: 4%
Maximum L2 cache miss increase: 3.5%
→ no significant overhead introduced

 26

Conclusion

 27

Executive Summary

• Problem: Garbage collection is useful in avoiding bugs but has significant overhead

• Goal: Reduce overhead while keeping hardware flexible

• Solution: Implement partial reference-counting in hardware so it can provide free blocks to
software allocator

• Hardware Implementation:

• Does not affect critical path

• ISA extended with several instructions for pointers and allocation

• Software Implementation:

• Allocation algorithm is updated to query hardware for free block

• Effect: Reduces GC time by 31% on average while not adversely affecting overall
performance

 28

Discussion

 29

Strengths

• Elegant idea yet very effective

• Mechanism is optional, non-disruptive/backwards compatible

• Can be easily integrated into existing systems

• Hardware changes do not affect critical path

• General purpose system may greatly benefit

• Comprehensive evaluation

• Easy to understand paper

 30

Weaknesses

• Only useful in environments that can use tracing collection in software
• For example: Existing C++ applications with std::shared_ptr could hardly benefit, tracing

garbage collection in C++ is problematic

• Another example: Native iOS/macOS applications also rely on “Automatic Reference Counting”

• Tracing collection is considered bad in real-time applications (e.g. games) due to pauses

• Not accelerating “memory management” in general but only “tracing collection”

• Objects with finalizers/destructors cannot be managed in hardware
• Mentioned workaround in paper: Initialize reference counter to max so that hardware won’t

mark object as dead

• Destructors: An issue with many approaches in garbage collection¹

¹ Hans-J. Boehm. 2003. Destructors, finalizers, and synchronization. SIGPLAN Not. 38, 1 (January 2003), 262–272.

 31

https://dl.acm.org/doi/10.1145/604131.604153

Questions

 32

Open Discussion

• Would results be different for non-generational/non-copying collectors?

• Could this mechanism be adapted to do reference counting as would be
required for C++, Swift…? What would the trade-offs be?

• What can we learn from HAMM?

• What other run-time mechanisms could be accelerated by special
hardware?

• RAM-Swapping, Type-Checking?

 33

Outlook
State of The Art 2020

• Focus on in-memory processing

• GC performance is ultimately limited by memory bandwidth
• Jaeyoung Jang, Jun Heo, Yejin Lee, Jaeyeon Won, Seonghak Kim, Sung Jun Jung, Hakbeom Jang, Tae Jun Ham,

and Jae W. Lee. 2019. Charon: Specialized Near-Memory Processing Architecture for Clearing Dead Objects
in Memory. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO '52). Association for Computing Machinery, New York, NY, USA, 726–739.

 34

https://dl.acm.org/doi/10.1145/3352460.3358297
https://dl.acm.org/doi/10.1145/3352460.3358297

Outlook
State of The Art 2020

• Radically rethinking memory hierarchy as we know it

• Suited for memory-safe languages like Java, Go, Rust

• Instead of caches, different levels of pads where objects live

• Pointers become mere abstractions
• Po-An Tsai, Yee Ling Gan, and Daniel Sanchez. 2018. Rethinking the memory hierarchy for modern

languages. In Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-51). IEEE Press, 203–216.

 35

http://www.apple.com
http://www.apple.com

Flexible Reference-Counting-Based Hardware
Acceleration for Garbage Collection

presented by Theo Weidmann, 29th of October

José A. Joao, Onur Mutlu, Yale N. Patt
ISCA 2009

 36

Backup Slides

 37

Issue in RC: Cycles

A
Count: 1

B
Count: 1

Can be solved by having weak references: References that do not count.

 38

