Flexible Reference-Counting-Based Hardware

Acceleration for Garbage Collection
José A. Joao, Onur Mutlu, Yale N. Patt

ISCA 2009

presented by Theo Weidmann, 29th of October

1

Background & Problem

What is Garbage Collection?

« Garbage Collection: Automatic reclaiming of memory occupied by
unreachable (“dead”) objects

« Objects are unreachable if there are no more pointers to it

« First described in 1960

Why use Garbage Collection?

» Garbage Collection avoids memory management bugs
- Example: Use-after-free (dangling pointer)
 Serious security implications

e Hard to find

» Featured in many modern managed languages

« Java, C#, Swift

Two Main Ways to Garbage Collect

Tracing Garbage Collection

 Start from a root set (stack, global variables, registers) and
recursively follow all pointers until you have reached all objects

Allocation pointer

« One option: Generational Collection

« “Objects die young”

- Copy all reached objects into another region called “mature”,
then set allocation pointer of “nursery” to beginning

Nursery Mature

- Objects reclaimed only eventually when the garbage collector runs

Two Main Ways to Garbage Collect

Reference Counting

Count existing pointers to every object
Whenever a new pointer to an object is created — increment counter
Whenever a pointer to an object is destroyed = decrement counter

When count reaches O = object is dead and memory can be reclaimed

Objects can be reclaimed immediately

Overhead of Software Garbage Collection

- Reference Counting
« Counters are incremented and decremented very often
» |n parallel programming languages these counters must be synchronized
« Often counter changes within a short interval cancel each other out
- Example: Traversing a linked list
» Tracing Collection
» “Stop the world” = Garbage Collector Pauses

« Concurrent: Require extensive synchronization = Overhead

7

Overhead of Software Garbage Collection

N

B 1.5x minHeap

Ul
o

2X minHeap

S
o

B 3X minHeap

5x minHeap

B 10x minHeap

GC time
(% of total execution time)
w
o

o

= N
o o
I

Hardware Garbage Collection

NOT SUITARBIF FOR GENE

RAL PURPOSE SYSTES
. Ties the ISA and microarchitecture to a specific algorithm

 Different programs require different garbage collection algorithms to
perform best

- They introduce major changes to the processor

« Expensive to develop, test and verify

» Certain software optimizations (such as compacting) become impossible

9

Goal

« Provide hardware acceleration to reduce overhead

- Without limiting the flexibility of software collectors

i

Hardware Accelerated Memory Management (HAMM)

12

« Implement simple, flexible garbage collection in hardware

- To keep HAMM flexible and cheap, only partially implement reference counting in
hardware

- Does not handle destructors, cyclic references, large counts and might not be able to
scan all dead objects for pointers = expensive and causes rigidity

» Software garbage collectors collect remaining objects

« Overhead is reduced by less frequent software garbage collection

13

Mechanism Overview

- Hardware implements basic reference counting

- Hardware maintains a list of dead objects whose space can be
immediately reused: Available Block Table (ABT)

« |SA is extended with

- |oad/store operations specifically for pointers
« REALLOCMEM to request a block for reuse from the ABT

« ALLOCMEM to inform hardware about a newly allocated object

14

Hardware of HAMM

R Rccs] oo core
: RC updates | : 1T A T AN
1| LD/ST i
! Unit l
$ Coalescing r (RCCB)
i | | L2 RCCB
1 Core 0)
O O O g] o O R RSRRURTRRRY N SO
CPUCh/pl Reusable blocks ‘
S— 13— 1] [RC |
= |
........................ ‘ RC ‘
CPUCh’pM Avallable Block Table Live objects _
(ABT) Main memory

Slide Credit: José A. Joao, Onur Mutlu, Yale N. Patt, http://people.inf.ethz.ch/omutlu/pub/joac_isca09_talk.ppt 15

http://people.inf.ethz.ch/omutlu/pub/joao_isca09_talk.ppt

Software: Updated Allocation Algorithm

Software: Updated Allocation Algorithm

addr «—— REALLOCMEM size

If addr == 0 then

addr «— allocate using software method

end If

ALLOCMEM addr, size

17

Software: Updated Allocation Algorithm

addr «—— REALLOCMEM size

If addr == 0 then

addr «— allocate using software method

end If

ALLOCMEM addr, size

18

Software: Updated Allocation Algorithm

addr «—— REALLOCMEM size

If addr == 0 then

addr «— allocate using software method

end If

ALLOCMEM addr, size

19

Software: Updated Allocation Algorithm

addr «—— REALLOCMEM size

If addr == 0 then

addr «— allocate using software method

end If

ALLOCMEM addr, size

20

Benchmarking in Simulation

« Goalistoreduce GC time

- DaCapo benchmark executed on research JVM on a hardware simulator
simulating HAMM

« Comparing GC time with and without HAMM

21

Benchmarking in Simulation

70
B 1.5x minHeap
- 60 B 2x minHeap
= 2.5% minH
— 50 .Sx minHeap
O B 3x minHeap
S
5 40
@
= 30
=
= 20
O
© 10
0
&'\(\,b(\ z,b(‘
2 ¥

Reduction by up to 60%

Benchmarking in Simulation

70

GC time reduction (%)
= N W = 9y (@)
o o o o o o

o

B 1.5x minHeap

H2x minHeap
2.5x minHeap

B 3x minHeap

Programs with lots of short-lived objects benefit greatly

Benchmarking in Simulation

70
B 1.5x minHeap

- 60 B 2x minHeap
= 2.5% minH
— 50 .Sx minHeap
O B 3x minHeap
S
5 40
ks
= 30
£
= 20
O
© 10

0

HAMM benefits are smaller with mostly long-lived objects

Benchmarking in Simulation

70

1.5x minHeap
2X minHeap
2.5x minHeap

B 3X minHeap

uction (%)
U1
-

S
-

Average Garbage Collection Time Reduction 31%
At least 10% for heap sizes from 1.5x to 3x minHeap

ST Y ?

25

« HAMM reduces GC time
« 69% of the new objects reuse memory blocks
« Reuse of heap memory — reduces GC cycles (50% nursery / 52% full)

» Delaying GC gives objects more time to die = fewer objects are copied
to mature region (21% less on average)

« Maximum L1 cache miss increase: 4%
Maximum L2 cache miss increase: 3.5%
— no significant overhead introduced

26

Conclusion

Executive Summary

Problem: Garbage collection is useful in avoiding bugs but has significant overhead
Goal: Reduce overhead while keeping hardware flexible

Solution: Implement partial reference-counting in hardware so it can provide free blocks to
software allocator

Hardware Implementation:

» Does not affect critical path

« |SA extended with several instructions for pointers and allocation
Software Implementation:

 Allocation algorithm is updated to query hardware for free block

Effect: Reduces GC time by 31% on average while not adversely affecting overall
performance

28

Discussion

Strengths

Elegant idea yet very effective

Mechanism is optional, non-disruptive/backwards compatible
Can be easily integrated into existing systems

Hardware changes do not affect critical path

General purpose system may greatly benefit

Comprehensive evaluation

Easy to understand paper

30

Weaknesses

» Only useful in environments that can use tracing collection in software

« For example: Existing C++ applications with std::shared_ptr could hardly benefit, tracing
garbage collection in C++ is problematic

« Another example: Native iI0S/macOS applications also rely on “Automatic Reference Counting”
« Tracing collection is considered bad in real-time applications (e.g. games) due to pauses

- Not accelerating “memory management” in general but only “tracing collection”

» Objects with finalizers/destructors cannot be managed in hardware

- Mentioned workaround in paper: Initialize reference counter to max so that hardware won't
mark object as dead

- Destructors: An issue with many approaches in garbage collection’

' Hans-J. Boehm. 2003. Destructors, finalizers, and synchronization. SIGPLAN Not. 38, 1 (January 2003), 262-272.

31

https://dl.acm.org/doi/10.1145/604131.604153

Questions

Open Discussion

- Would results be different for non-generational/non-copying collectors?

» Could this mechanism be adapted to do reference counting as would be
required for C++, Swift...? What would the trade-offs be?

« What can we learn from HAMM?

- What other run-time mechanisms could be accelerated by special
hardware?

« RAM-Swapping, Type-Checking?

33

Outlook
State of The Art 2020

» Focus on iIn-memory processing

« GC performance is ultimately limited by memory bandwidth

Jaeyoung Jang, Jun Heo, Yejin Lee, Jaeyeon Won, Seonghak Kim, Sung Jun Jung, Hakbeom Jang, Tae Jun Ham,
and Jae W. Lee. 2019. Charon: Specialized Near-Memory Processing Architecture for Clearing Dead Objects
in Memory. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO '52). Association for Computing Machinery, New York, NY, USA, 726-7309.

34

https://dl.acm.org/doi/10.1145/3352460.3358297
https://dl.acm.org/doi/10.1145/3352460.3358297

Outlook
State of The Art 2020

» Radically rethinking memory hierarchy as we know it
 Suited for memory-safe languages like Java, Go, Rust
 |nstead of caches, different levels of pads where objects live

« Pointers become mere abstractions

Po-An Tsai, Yee Ling Gan, and Daniel Sanchez. 2018. Rethinking the memory hierarchy for modern
languages. In Proceedings of the 51st Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-51). IEEE Press, 203-216.

35

http://www.apple.com
http://www.apple.com

Flexible Reference-Counting-Based Hardware

Acceleration for Garbage Collection
José A. Joao, Onur Mutlu, Yale N. Patt

ISCA 2009

presented by Theo Weidmann, 29th of October

36

Backup Slides

Issue in RC: Cycles

Can be solved by having weak references: References that do not count.

38

