
Continuous Runahead

Transparent Hardware Acceleration

for Memory Intensive Workloads

ETH Zürich –Computer Architecture Seminar HS 2020

Leandra Maisch

Authors: M. Hashemi, O. Mutlu, Y. N. Patt

Presented at MICRO 2016

Problem Statement

 For various applications we would like to

process large amounts of data

 Frequent memory accesses lead to a lot of wait

time

 Runahead techniques want to reduce this wait

time by prefetching and executing memory

requests during wait time

2

Quick Summary

Continuous Runahead explores a method to

prefetch and execute instructions while a program

is running to generate cache misses and

subsequent memory loads. This leads to fewer

cache misses while a program is executed and

therefore to lower wait times on memory.

3

Overview

 Runahead Execution

 Continuous Runahead

◼ Choosing and Storing Dependence Chains

◼ CRE

 Performance evaluations

 Critic

 Discussion

4

RUNAHEAD EXECUTION

5

Runahead Execution

 What is Runahead Execution?

 Prefetching methods

◼ Stream prefetcher

◼ Global History buffer

 Current Limitations of Runahead Execution

6

Runahead Execution

 Memory accesses can cause full pipeline stalls

 Stalls use around 50% of execution time of a

program

 Runahead uses instruction window to fetch and

execute upcoming instructions

Fewer cache misses

7

Stream Prefetcher

 Defines stream of cache misses by looking at

addresses close in memory

 Looks only in a defined direction

 Prefetches blocks of memory in said direction

More in “Memory Prefetching using Adaptive Stream Detection” by I. Hur and

C.Lin

https://www.cs.utexas.edu/~lin/papers/micro06.pdf

8

https://www.cs.utexas.edu/~lin/papers/micro06.pdf

Global History Buffer

 Holds most recent miss addresses in FIFO order

 Ordered table allows to discard unused data

 Complete picture of cache miss history

 Small sized table

More in “Data Cache Prefetching Using a Global History Buffer” by K. J. Nesbit

and J. E. Smith

https://www.eecg.utoronto.ca/~steffan/carg/readings/ghb.pdf

9

https://www.eecg.utoronto.ca/~steffan/carg/readings/ghb.pdf

Limitations of Prefetching

 Short duration of full-window stall

 Prioritisation of memory accesses

10

CONTINUOUS RUNAHEAD

11

Key Ideas

 Dynamically filter incoming dependence chains

◼ Filter dependence chains generating memory

accesses

 Execute dependence chains in a loop

 Loop executed on the

Continuous Runahead Engine

(CRE)

12

DEFINITIONS

13

Dependence Chain

 Set of dependent

instructions leading

up to a key instruction

 Generated by

backtracking the data

flow

14

Example of a dependence chain:

Computing the address for a memory access

Full-Window Stall

 Instructions are retired in program order

 Long-latency instructions can block pipeline

 Instruction window is filled with incoming

instructions

 Both instruction window is blocked and pipeline

stalled is called full-window stall

15

IMPLEMENTATION

16

Dependence Chain Selection

 Base Policy

◼ Select next memory access in buffer

 PC based Policy

◼ Lists all PCs that caused LLC misses

◼ Dependent on operation which is blocking retirement

 Maximum-Misses Policy

◼ Finds and selects PC causing most cache misses

 Stall Policy

◼ Tracks PCs causing full-window stalls

◼ Selects chain causing most full-window stalls
17

Evaluation of the Policies

 Evaluation of the policies on a single core system using

Runahead

 Using policies tracking most misses gives improved

performance on most workloads

18

Comparisions of the policies

Selecting Instructions

19

 Small amount of instructions cause over 90% of

full window stalls

Instructions causing full window stalls

Only a handful instructions need to be looped to be effective

Continuous Runahead Engine

 Strongly based on an enhanced memory

controller
See paper “Accelerating Dependent Cache Misses with an Enhanced

Memory Controller” by M. Hashemi et al.

http://eimanebrahimi.com/pub/hashemi_isca16.pdf

 Sits on the memory controller to reduce latency

on memory loads

20

http://eimanebrahimi.com/pub/hashemi_isca16.pdf

Architecture of the CRE

 32-uop buffer to hold

full dependence

chains

 32-entry physical

register

 4kB cache with 32-

entry TLB

21

Data path of the CRE

Handling Dependence Chains

 Upon generation TLB sends required load to the

CRE

 TLB misses are sent to core of the CPU to

resolve

 Dependence chains are continuously executed

 The running dependence chain is relaced every

full-window stall

22

PERFORMANCE EVALUATION

23

Simulation Environment

 Execution-driven, cycle-level x86 simulator

 Single core system with

◼ 256-entry reorder buffer

◼ 32KB of instruction/data cache

◼ 1MB LLC

 Combined with

◼ GBH prefetcher

◼ Stream prefetcher

24

RESULTS

25

CRE alone

 34.4% performance gain over the no-prefetching

baseline

 11.9% performance gain over GHB prefetcher

26

Performance comparisons

CRE + GHB Prefetching

 36.4% performance gain over the no-prefetching

baseline

 11.9% performance gain over GHB prefetcher

27

Performance comparisons

Memory Bandwidth Consumption

 Increased memory bandwidth consumption for

stream prefetching and GHB on some

applications

 Overhead drastically reduced with CRE

28

Comparisions on memory bandwidth consumption

CONCLUSION

29

Points to take Home

 Solves limit on runahead distance by

◼ Dynamically identifying critical dependence chains

◼ Executing these in a loop

 Cheap and low-complexity hardware solution

 Significant performance gain on a variety of

workloads

30

CRITIQUE

31

Formal Critique

 Positives

◼ Written in an understandable way

◼ Well structured

 Negatives

◼ Relying heavily on the readers understanding of

specific previous work

32

Positives regarding Content

 New idea on handling the specified problem

 Efficient solution using few additional resources

 Exploring variety of ways to combine previous

solutions with described solution

33

Negatives regarding Content

 Potentially few workloads profiting from this

 Potential negative side effects caused by placing

a CRE on the memory controller not explored

 Solution only for independent cache misses

34

QUESTIONS

35

DISCUSSION

36

Topics

 Alternatives for Implementation

 Could/Should we implement this in general

purpose computers

 Performance on Multicore Systems

 Energy consumption

37

Alternatives for Implementation

 What do we need to be able to

 Is the CRE the only way to implement Continous

Runahead?

◼ Simulations multi threading

◼ Idle cores

38

Performance on Multicore Systems

39

