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Executive Summary

= Problem:

= Practical power and thermal constraints limit the deployment of homogeneous multicore systems with
many big OoO cores

= Low performance of InO cores limits their widespread usage

= Goal:
= The goal is to design a Het-CMP with near Oo0 performance and InO energy consumption

= |dea:
= The idea is to use clusters of InO cores around one 000 core

= The 000 core is used as a «scheduler» and the InO cores as «workers»

= Evaluation:

= The Mirage Core can achieve on average 84% performance of a Homo-CMP, while conserving 55% of
energy and 25% of area costs
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Out-of-Order cores

= Improve latency of programs

= Contain additional HW to reorder instructions to minimize stalls (ROB, RS, LSQ, etc.)

= This increased performance comes at the cost of increased power consumption
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Heterogeneous Computing

= Systems contain mixed processor types (e.g.
CPUs and GPUs on the same chip)

" Built in logic for interfacing with additional HW

" Hardware accelerators




Goal

Design a processor that...

" has high throughput and single-threaded performance...
= and is very energy-efficient
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ARM big.LITTLE Architecture

= Released in 2011

SAMSUNG —
Exynos NVIDIA.
Qualcomnm | ~
snapdragon
= Apple A series = Nintendo
= Many Android Smartphones (A14 used in Switch using
iPhone 125s) Nvidia Tegra XI




Mirage Core Architecture

i) Homogeneous OoO CMP (i) Homogeneous InO CMP (iii) Mirage Cores

* Low system throughput « High system throughput » High system throughput
« Shorter execution latency + Longer execution latency « Shorter execution latency




Mirage Core Architecture
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Memolzation

fib(5)

= Calculating the fib(4) /\ﬁb(z)
5th Fibonacci /\ RN

. fib(3) fib(2) fib(2) fib(1)
Number using /\ /\ /\
recursion fib(2) fib(1)=1 fib(1)=1 fib(0)=0 fib(1)=1 fib(0)=0
fib(1) =1 fib(0)=0




Memolzation

fib(5)

= Calculating the | A
5th Fibonacci fib(4) fib(3)
2 1
Number with /\ /\

N ot fib(3) fib(2) fib(2) fib(1)
emaolzation
’ 1
by storing /\ 1 /\ /\
, : fib(2) fib(1)=1 fib(1)=1 fib(0)=0 fib(1)=1 fib(0)=
intermediate /\
values in an fib(1) = 1 fib(0) = 0 Stored values for Fibonacci
array fib(n) |0 1 1 2 3 5

n 0 1 2 3 4 5




Memolzation

= Reordering of long latency Performance relative to 000
events Only aCCOuntS fOr B Performance with memoization =e=—9% Total instructions memoized
19% of the performance L00%

advantage of Oo0O’s.
80%

= Most applications spend

most of their time in loops o

. 40%
= This means that

scheduling usually holds

the same pattern in similar 0%
contexts Overall HPD Category LPD Category

20%




Memoizability

—Performance relative to no switching —% Ttotal instructions memoized
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Designing the Arbitrator

" Energy-Efficiency Oriented Arbitration

= System Throughput Oriented Arbitration

= Fairness Oriented Arbitration




Energy-Efficiency Oriented Arbitration

= Schedule Cache Misses per Kilo Instructions (SC-MPKI) quantify the
usefulness of memoization

= Picks the application with the highest SC-MPKI above a certain
threshold

= |f none are above the threshold, OoO is turned off to conserve
energy

SC-MPKIr,0 — SC-MPKlpo0
SC-MPKIp o0

ASC-MPKI =




Energy-Efficiency Oriented Arbitration

- Appllcatlon 1 = Application 2 = Application 3

Has high SC-MPKI, = Has low SC-MPKI, o = Has high SC-MPKI, 4

= Has low SC-MPKIl,q = Has low SC-MPKIl,q = Has high SC-MPKl,,q

* |In0O-000 is high " |n0O-000 is near 0 " |n0O-000 is near 0

= ->good candidate for = ->bad candidate for = ->bad candidate for
memoization, as it memoization, as it memoization, because
performs well on already performs the code probably has
000, but bad on InO near OoO unpredictable control

flow




System Throughput Oriented Arbitration

" Overall system throughput (STP) as metric for the scheduler
= Migrates the slowest application to the OoO

= Traditional design on IPCInO(i)
heterogeneous chips Speedupi — (

)
IPCoo0(i)




Fairness Oriented Arbitration

= Arbitrator migrates application in round robin order

= Util(i) metric to determine each application’s timeshare

= Application will be migrated only if either Util(i) is less than
1/(#apps) or if ASC-MPKI falls below the threshold

t0o0(i) T tinOmemoize(i) * speedup;

Util(l-) = [ )

Loverall




Designing the Core Architecture
" Designing the 000 core

= Designing the InO core

" Migration between the cores




Designing the Oo0 Core

" In order to memoize schedules, the Oo0O must be able to recognize
" (a) when a trace is repetitive
= (b) if its instructions are scheduled in the same order

= Traces that are deemed memoizable are stored in the schedule cache

" Metrics used to compare two
traces are execution time, IPC, 000 —
memory characteristics, branch L1i L1dS$
misses and reordered instructions

Sched$S




DynaMOS: dynamic schedule migration
for heterogeneous cores

Shruti Padmanabha, Andrew Lukefahr, Reetuparna Das, and Scott Mahlke
Advanced Computer Architecture Laboratory
University of Michigan, Ann Arbor, Ml

Micro-48: Proceedings of the 48th International Symposium on Microarchitecture, December
2015

https://dl.acm.org/doi/pdf/10.1145/2830772.2830791



https://dl.acm.org/doi/pdf/10.1145/2830772.2830791

Designing the InO Core

Introduces the OinO mode with following modifications

= Atomic Execution

= Physical Register File
= |l oad/Store Queue

= Schedule Cache

To Shared L2 | é \@ [_To Shared Lz




Atomic Execution

" InO cores cannot detect unexpected events like
branch mispredictions or memory aliases

" Forces the OinO to execute schedules atomically

= On misprediction, resets the whole execution and
executes in original, non-memoized program order




Physical Register File

= 0in0 is supplemented with expanded on
register file that maps every o
architectural register to at most 4 o
physical registers (PR), resulting in a AR o
128 entry PRF = .
= Bookkeeping adds an additional 28 PRE
bytes of storage o
= A bigger PRF and tables adds 14% oue oo

dynamic energy to the InO




Load-Store Queue

= Implemented to circumvent
memory alias errors for load and

store operations 0x1234 e

0x2468 -532

" |s added to every recorded
schedule as a fixed-size meta-
data block and adds 20B

= 32 entry LSQ contributes 5.5%
overhead to the dynamic energy
of OinO

0x3579 1234

0x6729 82394

0x8923 -3659

0x1234 58329

0x3333 -2342

— —r|lun |- 0| un|r-

Ox4444 93094




Schedule Cache

= 8KB cache that stores schedules memoized and transferred
from the OoO

" Trace mis-speculations and SC writes are very expensive

= Employ an algorithm that is heavily biased against traces
that mis-speculate

= Eviction policy: unmemoizable traces -> least recently used

= Contributes 10% towards leakage energy but reduces L1
iCache access energy




Migration between cores

" Must store all of the active core’s state, including the RF, PC, control
bits, store buffer entries, etc. into memory on migration and its
pipeline must be flushed
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Methodology

= 000: = InO: = Memory System:

— 3 wide superscalar @ 2 GHz — 3 wide superscalar @ 2 GHz — 32KBL1iCache @ 2 cycles

— 12 stage pipeline — 8 stage pipeline — 32 KB L1 dCache @ 2 cycles
128 entrv integer resister file — 2 MB shared L2 Cache with stride

— 128 entry ROB y 8 & prefetcher @ 15 cycles

— 128 entry integer register file — 128 entry floating-point register file  _ 195 \B Main Memory @ 120 cycles
— 8KB Schedule Cache — 32 BL1-L2 bus @ 2 GHz

— 256 entry floating-point register file
— 8KB Schedule Cache




Methodology

= 27 applicatitons from SPEC
2006 benchmark suite

Category IPC Ratio | Benchmarks
High Performance | < 60% cactusADM, bwaves, gamess, u G em 5 Si mu Iato rfom Od e I
Difference (HPD) gromacs, h264ref, hmmer, )

leslie3d, libquantum, mcf, M Ira ge CO Fes

milc, povray, tonto, zeusmp
Low Performance | >=60% GemsFDTD, astar, bzip2, calculix, = McPAT modelin g framework
Difference (LPD) dealll, gce, gobmk, namd, omnetpp, . .

perlbench, sjeng, wrf, xalancbmk tO EStI m ate d rea, Stat IC dNn d

dynamic energy consumption
for the core and L1 caches




Fvaluation

8:0 Homo-InO 0:8 Homo-0o0 8:1 Het-Traditional 8:1 Mirage

oo oo

Oo0 +
scheduler
2




Architecture Configuration
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Architecture Configuration
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Architecture Configuration
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Performance
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Performance
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Performance
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Performance
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Energy Consumption

B Homo-InO MSC-MPKI ® SC-MPKI+maxSTP  ® maxSTP
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Case Studx
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Analyses of Benchmark Categories

= 8:1 configuration

® Homo-InO m SC-MPKI B Homo-InO W SC-MPKI ® Homo-InO W SC-MPKI
1 (%] o
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Arbitrator for Equal Resource Sharing

= 8:1 configuration

WMapp0 WMappl mapp2 mWapp3 MWappd MWapp5 pp6 Mapp7
SC-MPKI-fair | /

Fair #
sc-Mpkl I /

maxSTP |1
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Area Neutral Study
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Cost of Core Migration
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Summary
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= Practical power and thermal constraints limit the deployment of homogeneous multicore systems with
many big OoO cores

= Low performance of InO cores limits their widespread usage

= Goal:
= The goal is to design a Het-CMP with near Oo0 performance and InO energy consumption
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= The idea is to use clusters of InO cores around one 000 core
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Strengths

= Simple ldea, that can achieve high system throughput and
low energy consumption without having to make a heavy
tradeoff on single thread performance.

= Scheduler is flexible to fulfil the users needs, hence
applicable to many systems.

= Tackles an important problem in energy consumption

= Well-written, easy to understand paper




Weaknesses

" Does not go too much into detail when it comes to
multithreaded computing

= Gives no programming model or example design
= Only looks at CPU heterogeneity

= Servers cannot profit off this architecture due to more irregular
fetch patterns

" |s only efficient when there is a good mix between LPD and
HPD workloads
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Intel Core Alder Lake (2021)

= 8 «little» Gracemont cores for high efficiency

= 8 «big» Golden Cove cores for high performance
with multithreading

= 24 threads in total
" including a HW scheduler

= To be released in 2021
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Key Takeaways

= A nlce approach to get high system throughput, high
sm%e -thread performance and low energy consumption
at the same time.

" Does not require a lot of new additional HW
= Flexible Arbitrator Design
" There is a lot to build on with this idea

" Heterogeneous Designs are an important tool for
increased energy efficiency
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Open Discussion

= Fields where the Mirage Core can be applied

= What needs to be changed to make it efficient for servers?

= What needs to be changed to make it efficient for
multithreading?

= Can the Mirage Cores problems be fixed by adding more
heterogeneity in general?

= Hardware accelerators that can be used




