
Multiscalar Processors

Gurindar S. Sohi, Scott E. Breach, T.N. Vijaykumar

Computer Sciences Department University of Wisconsin-Madison

ISCA 1995

Presented by Benjamin Gundersen

1 / 72



Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

2 / 72



Executive Summary

Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

3 / 72



Executive Summary

Executive Summary

▶ Problem: Improving performance of sequential execution is
critical for modern systems.

▶ Goal: Execute many instructions in parallel per cycle.
▶ Key idea: Introduce the Multiscalar Paradigm where each

Program is divided into a collection of tasks to increase
instruction level parallelism.

▶ Mechanism: Each task is distributed to one of many parallel
processing units while using one logical register file.

▶ Result: Multiscalar processor greatly improve performance in
parallelisable workloads.

4 / 72



Executive Summary

Executive Summary

▶ Problem: Improving performance of sequential execution is
critical for modern systems.

▶ Goal: Execute many instructions in parallel per cycle.

▶ Key idea: Introduce the Multiscalar Paradigm where each
Program is divided into a collection of tasks to increase
instruction level parallelism.

▶ Mechanism: Each task is distributed to one of many parallel
processing units while using one logical register file.

▶ Result: Multiscalar processor greatly improve performance in
parallelisable workloads.

4 / 72



Executive Summary

Executive Summary

▶ Problem: Improving performance of sequential execution is
critical for modern systems.

▶ Goal: Execute many instructions in parallel per cycle.
▶ Key idea: Introduce the Multiscalar Paradigm where each

Program is divided into a collection of tasks to increase
instruction level parallelism.

▶ Mechanism: Each task is distributed to one of many parallel
processing units while using one logical register file.

▶ Result: Multiscalar processor greatly improve performance in
parallelisable workloads.

4 / 72



Executive Summary

Executive Summary

▶ Problem: Improving performance of sequential execution is
critical for modern systems.

▶ Goal: Execute many instructions in parallel per cycle.
▶ Key idea: Introduce the Multiscalar Paradigm where each

Program is divided into a collection of tasks to increase
instruction level parallelism.

▶ Mechanism: Each task is distributed to one of many parallel
processing units while using one logical register file.

▶ Result: Multiscalar processor greatly improve performance in
parallelisable workloads.

4 / 72



Executive Summary

Executive Summary

▶ Problem: Improving performance of sequential execution is
critical for modern systems.

▶ Goal: Execute many instructions in parallel per cycle.
▶ Key idea: Introduce the Multiscalar Paradigm where each

Program is divided into a collection of tasks to increase
instruction level parallelism.

▶ Mechanism: Each task is distributed to one of many parallel
processing units while using one logical register file.

▶ Result: Multiscalar processor greatly improve performance in
parallelisable workloads.

4 / 72



Instruction-level Parallelism

Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

5 / 72



Instruction-level Parallelism Overview

Instruction-level Parallelism (ILP)

▶ Pipelining: Execution of multiple instructions can partially
overlap.

▶ Superscalar: Fetch and dispatch multiple instructions at
once.

▶ Very Long Instruction Word: (VLIW) Encode multiple
instructions in one instruction.

▶ Out-of-order: Instructions execute in any order that does not
violate data dependencies.

▶ Dataflow: Instructions execute once input is available.

6 / 72



Instruction-level Parallelism Overview

Instruction-level Parallelism (ILP)

▶ Pipelining: Execution of multiple instructions can partially
overlap.

▶ Superscalar: Fetch and dispatch multiple instructions at
once.

▶ Very Long Instruction Word: (VLIW) Encode multiple
instructions in one instruction.

▶ Out-of-order: Instructions execute in any order that does not
violate data dependencies.

▶ Dataflow: Instructions execute once input is available.

6 / 72



Instruction-level Parallelism Overview

Instruction-level Parallelism (ILP)

▶ Pipelining: Execution of multiple instructions can partially
overlap.

▶ Superscalar: Fetch and dispatch multiple instructions at
once.

▶ Very Long Instruction Word: (VLIW) Encode multiple
instructions in one instruction.

▶ Out-of-order: Instructions execute in any order that does not
violate data dependencies.

▶ Dataflow: Instructions execute once input is available.

6 / 72



Instruction-level Parallelism Overview

Instruction-level Parallelism (ILP)

▶ Pipelining: Execution of multiple instructions can partially
overlap.

▶ Superscalar: Fetch and dispatch multiple instructions at
once.

▶ Very Long Instruction Word: (VLIW) Encode multiple
instructions in one instruction.

▶ Out-of-order: Instructions execute in any order that does not
violate data dependencies.

▶ Dataflow: Instructions execute once input is available.

6 / 72



Instruction-level Parallelism Overview

Instruction-level Parallelism (ILP)

▶ Pipelining: Execution of multiple instructions can partially
overlap.

▶ Superscalar: Fetch and dispatch multiple instructions at
once.

▶ Very Long Instruction Word: (VLIW) Encode multiple
instructions in one instruction.

▶ Out-of-order: Instructions execute in any order that does not
violate data dependencies.

▶ Dataflow: Instructions execute once input is available.

6 / 72



Instruction-level Parallelism Key Constraint of Previous Mechanisms

Key Constraint of previous mechanisms

▶ Many instructions are independent of each other. Sequential
execution does not exploit independent instructions.

▶ Previous mechanisms focused on increasing ILP, like VLIW or
Superscalar exhibit a key constraint: stall instructions until
all previous control dependencies have been resolved.

7 / 72



Instruction-level Parallelism Key Constraint of Previous Mechanisms

Key Constraint of previous mechanisms

▶ Many instructions are independent of each other. Sequential
execution does not exploit independent instructions.

▶ Previous mechanisms focused on increasing ILP, like VLIW or
Superscalar exhibit a key constraint: stall instructions until
all previous control dependencies have been resolved.

7 / 72



Goal

Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

8 / 72



Goal

Goal

▶ Increase ILP without the constraint of stalling until all
previous control dependencies have been resolved by
proposing the Multiscalar Paradigm.

9 / 72



Multiscalar Paradigm

Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

10 / 72



Multiscalar Paradigm Key idea

Multiscalar Paradigm; Key Idea

▶ Cooperation between Software and Hardware.

▶ Split the program into tasks using the control flow graph.
▶ Speculatively distribute tasks in to parallel processing units

to extract ILP.
▶ Pass values between processing units.
▶ Impose sequential appearance by constraining when

instructions can be executed.

11 / 72



Multiscalar Paradigm Key idea

Multiscalar Paradigm; Key Idea

▶ Cooperation between Software and Hardware.
▶ Split the program into tasks using the control flow graph.

▶ Speculatively distribute tasks in to parallel processing units
to extract ILP.

▶ Pass values between processing units.
▶ Impose sequential appearance by constraining when

instructions can be executed.

11 / 72



Multiscalar Paradigm Key idea

Multiscalar Paradigm; Key Idea

▶ Cooperation between Software and Hardware.
▶ Split the program into tasks using the control flow graph.
▶ Speculatively distribute tasks in to parallel processing units

to extract ILP.

▶ Pass values between processing units.
▶ Impose sequential appearance by constraining when

instructions can be executed.

11 / 72



Multiscalar Paradigm Key idea

Multiscalar Paradigm; Key Idea

▶ Cooperation between Software and Hardware.
▶ Split the program into tasks using the control flow graph.
▶ Speculatively distribute tasks in to parallel processing units

to extract ILP.
▶ Pass values between processing units.

▶ Impose sequential appearance by constraining when
instructions can be executed.

11 / 72



Multiscalar Paradigm Key idea

Multiscalar Paradigm; Key Idea

▶ Cooperation between Software and Hardware.
▶ Split the program into tasks using the control flow graph.
▶ Speculatively distribute tasks in to parallel processing units

to extract ILP.
▶ Pass values between processing units.
▶ Impose sequential appearance by constraining when

instructions can be executed.

11 / 72



Multiscalar Paradigm Multiscalar Paradigm; Outline

Multiscalar Paradigm; Outline

▶ Possible Hardware Implementation

▶ Control Flow Graph
▶ Definition of Task
▶ Imposing Sequential Appearance
▶ Example Code
▶ Multiscalar Program
▶ Example Program

12 / 72



Multiscalar Paradigm Multiscalar Paradigm; Outline

Multiscalar Paradigm; Outline

▶ Possible Hardware Implementation
▶ Control Flow Graph

▶ Definition of Task
▶ Imposing Sequential Appearance
▶ Example Code
▶ Multiscalar Program
▶ Example Program

12 / 72



Multiscalar Paradigm Multiscalar Paradigm; Outline

Multiscalar Paradigm; Outline

▶ Possible Hardware Implementation
▶ Control Flow Graph
▶ Definition of Task

▶ Imposing Sequential Appearance
▶ Example Code
▶ Multiscalar Program
▶ Example Program

12 / 72



Multiscalar Paradigm Multiscalar Paradigm; Outline

Multiscalar Paradigm; Outline

▶ Possible Hardware Implementation
▶ Control Flow Graph
▶ Definition of Task
▶ Imposing Sequential Appearance

▶ Example Code
▶ Multiscalar Program
▶ Example Program

12 / 72



Multiscalar Paradigm Multiscalar Paradigm; Outline

Multiscalar Paradigm; Outline

▶ Possible Hardware Implementation
▶ Control Flow Graph
▶ Definition of Task
▶ Imposing Sequential Appearance
▶ Example Code

▶ Multiscalar Program
▶ Example Program

12 / 72



Multiscalar Paradigm Multiscalar Paradigm; Outline

Multiscalar Paradigm; Outline

▶ Possible Hardware Implementation
▶ Control Flow Graph
▶ Definition of Task
▶ Imposing Sequential Appearance
▶ Example Code
▶ Multiscalar Program

▶ Example Program

12 / 72



Multiscalar Paradigm Multiscalar Paradigm; Outline

Multiscalar Paradigm; Outline

▶ Possible Hardware Implementation
▶ Control Flow Graph
▶ Definition of Task
▶ Imposing Sequential Appearance
▶ Example Code
▶ Multiscalar Program
▶ Example Program

12 / 72



Multiscalar Paradigm Possible Hardware Implementation

Possible Hardware Implementation

Figure: Example Hardware

13 / 72



Multiscalar Paradigm Control Flow Graph

Control Flow Graph (CFG)

▶ CFG consists of basic blocks (nodes) and control flow (edges).

▶ First instruction of basic block is the entry point (unique).
▶ Last instruction is the only control flow instruction in a

basic block.

Figure: Control Flow Graph.

14 / 72



Multiscalar Paradigm Control Flow Graph

Control Flow Graph (CFG)

▶ CFG consists of basic blocks (nodes) and control flow (edges).
▶ First instruction of basic block is the entry point (unique).

▶ Last instruction is the only control flow instruction in a
basic block.

Figure: Control Flow Graph.

14 / 72



Multiscalar Paradigm Control Flow Graph

Control Flow Graph (CFG)

▶ CFG consists of basic blocks (nodes) and control flow (edges).
▶ First instruction of basic block is the entry point (unique).
▶ Last instruction is the only control flow instruction in a

basic block.

Figure: Control Flow Graph.

14 / 72



Multiscalar Paradigm Definition of Task

Definition of Task

▶ Task is a portion of CFG.

▶ Corresponds to a contiguous region of a dynamic instruction
sequence. (Examples: part of basic block, single loop
iteration, function call, multiple basic blocks).

▶ Tasks are assigned to processing units for execution.
▶ Tasks are not independent of each other.

15 / 72



Multiscalar Paradigm Definition of Task

Definition of Task

▶ Task is a portion of CFG.
▶ Corresponds to a contiguous region of a dynamic instruction

sequence. (Examples: part of basic block, single loop
iteration, function call, multiple basic blocks).

▶ Tasks are assigned to processing units for execution.
▶ Tasks are not independent of each other.

15 / 72



Multiscalar Paradigm Definition of Task

Definition of Task

▶ Task is a portion of CFG.
▶ Corresponds to a contiguous region of a dynamic instruction

sequence. (Examples: part of basic block, single loop
iteration, function call, multiple basic blocks).

▶ Tasks are assigned to processing units for execution.

▶ Tasks are not independent of each other.

15 / 72



Multiscalar Paradigm Definition of Task

Definition of Task

▶ Task is a portion of CFG.
▶ Corresponds to a contiguous region of a dynamic instruction

sequence. (Examples: part of basic block, single loop
iteration, function call, multiple basic blocks).

▶ Tasks are assigned to processing units for execution.
▶ Tasks are not independent of each other.

15 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Imposing Sequential Appearance

▶ Challenge of Multiscalar Paradigm: Ensure that each
processing unit adheres to sequential execution semantics.

▶ Now we will look at these critical factors to impose sequential
order:

▶ Processing Unit order
▶ Passing Values: Register and Memory Synchronization
▶ Speculative Tasks
▶ Task Retirement

16 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Imposing Sequential Appearance

▶ Challenge of Multiscalar Paradigm: Ensure that each
processing unit adheres to sequential execution semantics.

▶ Now we will look at these critical factors to impose sequential
order:

▶ Processing Unit order
▶ Passing Values: Register and Memory Synchronization
▶ Speculative Tasks
▶ Task Retirement

16 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Imposing Sequential Appearance

▶ Challenge of Multiscalar Paradigm: Ensure that each
processing unit adheres to sequential execution semantics.

▶ Now we will look at these critical factors to impose sequential
order:

▶ Processing Unit order

▶ Passing Values: Register and Memory Synchronization
▶ Speculative Tasks
▶ Task Retirement

16 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Imposing Sequential Appearance

▶ Challenge of Multiscalar Paradigm: Ensure that each
processing unit adheres to sequential execution semantics.

▶ Now we will look at these critical factors to impose sequential
order:

▶ Processing Unit order
▶ Passing Values: Register and Memory Synchronization

▶ Speculative Tasks
▶ Task Retirement

16 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Imposing Sequential Appearance

▶ Challenge of Multiscalar Paradigm: Ensure that each
processing unit adheres to sequential execution semantics.

▶ Now we will look at these critical factors to impose sequential
order:

▶ Processing Unit order
▶ Passing Values: Register and Memory Synchronization
▶ Speculative Tasks

▶ Task Retirement

16 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Imposing Sequential Appearance

▶ Challenge of Multiscalar Paradigm: Ensure that each
processing unit adheres to sequential execution semantics.

▶ Now we will look at these critical factors to impose sequential
order:

▶ Processing Unit order
▶ Passing Values: Register and Memory Synchronization
▶ Speculative Tasks
▶ Task Retirement

16 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Order on Processing Units

▶ Enforce loose sequential order over all processing units. Which
imposes sequential order on tasks.

▶ Organize units in circular queue.
▶ Head an tail pointers indicate which units are executing

earliest and last of the current tasks.

17 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Order on Processing Units

▶ Enforce loose sequential order over all processing units. Which
imposes sequential order on tasks.

▶ Organize units in circular queue.

▶ Head an tail pointers indicate which units are executing
earliest and last of the current tasks.

17 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Order on Processing Units

▶ Enforce loose sequential order over all processing units. Which
imposes sequential order on tasks.

▶ Organize units in circular queue.
▶ Head an tail pointers indicate which units are executing

earliest and last of the current tasks.

17 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Passing values

▶ Executing instructions in a task produce and consume
values.

▶ Values are either bound to a location in memory or to
registers.

▶ In multiscalar execution there are multiple PUs, the view of
one single set of registers and memory locations must be
upheld.

▶ Produced and consumed values must be the same as in
sequential execution.

▶ Solution: Register and Memory synchronization.

18 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Passing values

▶ Executing instructions in a task produce and consume
values.

▶ Values are either bound to a location in memory or to
registers.

▶ In multiscalar execution there are multiple PUs, the view of
one single set of registers and memory locations must be
upheld.

▶ Produced and consumed values must be the same as in
sequential execution.

▶ Solution: Register and Memory synchronization.

18 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Passing values

▶ Executing instructions in a task produce and consume
values.

▶ Values are either bound to a location in memory or to
registers.

▶ In multiscalar execution there are multiple PUs, the view of
one single set of registers and memory locations must be
upheld.

▶ Produced and consumed values must be the same as in
sequential execution.

▶ Solution: Register and Memory synchronization.

18 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Passing values

▶ Executing instructions in a task produce and consume
values.

▶ Values are either bound to a location in memory or to
registers.

▶ In multiscalar execution there are multiple PUs, the view of
one single set of registers and memory locations must be
upheld.

▶ Produced and consumed values must be the same as in
sequential execution.

▶ Solution: Register and Memory synchronization.

18 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Passing values

▶ Executing instructions in a task produce and consume
values.

▶ Values are either bound to a location in memory or to
registers.

▶ In multiscalar execution there are multiple PUs, the view of
one single set of registers and memory locations must be
upheld.

▶ Produced and consumed values must be the same as in
sequential execution.

▶ Solution: Register and Memory synchronization.

18 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Register synchronization

▶ In the Multiscalar Paradigm register values which a task may
produce can be statically determined.

▶ Produced values in a task are forwarded to successor tasks.
▶ Consuming instructions have to wait for all values it wants

to consume.

19 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Register synchronization

▶ In the Multiscalar Paradigm register values which a task may
produce can be statically determined.

▶ Produced values in a task are forwarded to successor tasks.

▶ Consuming instructions have to wait for all values it wants
to consume.

19 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Register synchronization

▶ In the Multiscalar Paradigm register values which a task may
produce can be statically determined.

▶ Produced values in a task are forwarded to successor tasks.
▶ Consuming instructions have to wait for all values it wants

to consume.

19 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Memory synchronization

▶ Memory locations known: similar approach to registers.

▶ Not known: Either take conservative approach or aggressive
approach.

▶ Conservative: Wait until it is certain that a load will read
correct value.

▶ Aggressive: Loads are performed speculatively. Conflicts
must be resolved.

▶ Multiscalar processors take the aggressive approach.

20 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Memory synchronization

▶ Memory locations known: similar approach to registers.
▶ Not known: Either take conservative approach or aggressive

approach.

▶ Conservative: Wait until it is certain that a load will read
correct value.

▶ Aggressive: Loads are performed speculatively. Conflicts
must be resolved.

▶ Multiscalar processors take the aggressive approach.

20 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Memory synchronization

▶ Memory locations known: similar approach to registers.
▶ Not known: Either take conservative approach or aggressive

approach.
▶ Conservative: Wait until it is certain that a load will read

correct value.

▶ Aggressive: Loads are performed speculatively. Conflicts
must be resolved.

▶ Multiscalar processors take the aggressive approach.

20 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Memory synchronization

▶ Memory locations known: similar approach to registers.
▶ Not known: Either take conservative approach or aggressive

approach.
▶ Conservative: Wait until it is certain that a load will read

correct value.
▶ Aggressive: Loads are performed speculatively. Conflicts

must be resolved.

▶ Multiscalar processors take the aggressive approach.

20 / 72



Multiscalar Paradigm Imposing Sequential Appearance

Memory synchronization

▶ Memory locations known: similar approach to registers.
▶ Not known: Either take conservative approach or aggressive

approach.
▶ Conservative: Wait until it is certain that a load will read

correct value.
▶ Aggressive: Loads are performed speculatively. Conflicts

must be resolved.
▶ Multiscalar processors take the aggressive approach.

20 / 72



Multiscalar Paradigm Speculative Tasks

Speculative Tasks

▶ Task may be speculative because of control speculation
(branch prediction) or data speculation.

▶ If a conflict occurs the task and all successors must be
squashed.

21 / 72



Multiscalar Paradigm Speculative Tasks

Speculative Tasks

▶ Task may be speculative because of control speculation
(branch prediction) or data speculation.

▶ If a conflict occurs the task and all successors must be
squashed.

21 / 72



Multiscalar Paradigm Task Retirement

Task Retirement

▶ Only when retirement of a task is imminent the values
produced by the task are certain.

▶ Since values are forwarded earlier tasks must be retired in the
order they were added.

22 / 72



Multiscalar Paradigm Task Retirement

Task Retirement

▶ Only when retirement of a task is imminent the values
produced by the task are certain.

▶ Since values are forwarded earlier tasks must be retired in the
order they were added.

22 / 72



Multiscalar Paradigm Example Code

Example Code

Figure: Example Code Segment

▶ Take symbol from buffer and
if it is in list process it.
Otherwise add it to the list.

▶ Assumption: After running
for a while most symbols
will already be in the list.
Thus list is not updated
frequently.

▶ List not changing much
means that many tasks can
run independently from each
other. Thus we get an
execution of multiple
instructions per cycle.

23 / 72



Multiscalar Paradigm Example Code

Example Code

Figure: Example Code Segment

▶ Take symbol from buffer and
if it is in list process it.
Otherwise add it to the list.

▶ Assumption: After running
for a while most symbols
will already be in the list.
Thus list is not updated
frequently.

▶ List not changing much
means that many tasks can
run independently from each
other. Thus we get an
execution of multiple
instructions per cycle.

23 / 72



Multiscalar Paradigm Example Code

Example Code

Figure: Example Code Segment

▶ Take symbol from buffer and
if it is in list process it.
Otherwise add it to the list.

▶ Assumption: After running
for a while most symbols
will already be in the list.
Thus list is not updated
frequently.

▶ List not changing much
means that many tasks can
run independently from each
other. Thus we get an
execution of multiple
instructions per cycle.

23 / 72



Multiscalar Paradigm Multiscalar Paradigm; Next steps

Multiscalar Paradigm; Next Steps

▶ Multiscalar Programs

▶ Sequencer
▶ Communication between tasks
▶ Example Program

24 / 72



Multiscalar Paradigm Multiscalar Paradigm; Next steps

Multiscalar Paradigm; Next Steps

▶ Multiscalar Programs
▶ Sequencer

▶ Communication between tasks
▶ Example Program

24 / 72



Multiscalar Paradigm Multiscalar Paradigm; Next steps

Multiscalar Paradigm; Next Steps

▶ Multiscalar Programs
▶ Sequencer
▶ Communication between tasks

▶ Example Program

24 / 72



Multiscalar Paradigm Multiscalar Paradigm; Next steps

Multiscalar Paradigm; Next Steps

▶ Multiscalar Programs
▶ Sequencer
▶ Communication between tasks
▶ Example Program

24 / 72



Multiscalar Paradigm Multiscalar Programs

Multiscalar Programs

▶ Must enable fast walk through CFG to distribute tasks on
many processing units.

▶ Contains actual code, CFG structure and communication
characteristics.

▶ Only minimal changes have to be made to the ISA, thus an
existing ISA can be used as basis.

25 / 72



Multiscalar Paradigm Multiscalar Programs

Multiscalar Programs

▶ Must enable fast walk through CFG to distribute tasks on
many processing units.

▶ Contains actual code, CFG structure and communication
characteristics.

▶ Only minimal changes have to be made to the ISA, thus an
existing ISA can be used as basis.

25 / 72



Multiscalar Paradigm Multiscalar Programs

Multiscalar Programs

▶ Must enable fast walk through CFG to distribute tasks on
many processing units.

▶ Contains actual code, CFG structure and communication
characteristics.

▶ Only minimal changes have to be made to the ISA, thus an
existing ISA can be used as basis.

25 / 72



Multiscalar Paradigm Sequencer

Sequencer

▶ Assigns tasks to processing units.

▶ Needs to know successors of tasks.
▶ Chooses one possible successor task to continue the CFG

walk.
▶ Controlflow information can be statically determined and is

placed in a task descriptor.
▶ Task descriptor may be placed within program text or in a

single location

26 / 72



Multiscalar Paradigm Sequencer

Sequencer

▶ Assigns tasks to processing units.
▶ Needs to know successors of tasks.

▶ Chooses one possible successor task to continue the CFG
walk.

▶ Controlflow information can be statically determined and is
placed in a task descriptor.

▶ Task descriptor may be placed within program text or in a
single location

26 / 72



Multiscalar Paradigm Sequencer

Sequencer

▶ Assigns tasks to processing units.
▶ Needs to know successors of tasks.
▶ Chooses one possible successor task to continue the CFG

walk.

▶ Controlflow information can be statically determined and is
placed in a task descriptor.

▶ Task descriptor may be placed within program text or in a
single location

26 / 72



Multiscalar Paradigm Sequencer

Sequencer

▶ Assigns tasks to processing units.
▶ Needs to know successors of tasks.
▶ Chooses one possible successor task to continue the CFG

walk.
▶ Controlflow information can be statically determined and is

placed in a task descriptor.

▶ Task descriptor may be placed within program text or in a
single location

26 / 72



Multiscalar Paradigm Sequencer

Sequencer

▶ Assigns tasks to processing units.
▶ Needs to know successors of tasks.
▶ Chooses one possible successor task to continue the CFG

walk.
▶ Controlflow information can be statically determined and is

placed in a task descriptor.
▶ Task descriptor may be placed within program text or in a

single location

26 / 72



Multiscalar Paradigm Communication between Tasks

Communication between tasks

▶ Only last update of a register in task should forward to
successor tasks.

▶ Not all execution paths update all values. Non updated values
must also be communicated.

▶ Instructions which possibly leave the task are known.
▶ The compiler is our friend and can solve these problems for

us.

27 / 72



Multiscalar Paradigm Communication between Tasks

Communication between tasks

▶ Only last update of a register in task should forward to
successor tasks.

▶ Not all execution paths update all values. Non updated values
must also be communicated.

▶ Instructions which possibly leave the task are known.
▶ The compiler is our friend and can solve these problems for

us.

27 / 72



Multiscalar Paradigm Communication between Tasks

Communication between tasks

▶ Only last update of a register in task should forward to
successor tasks.

▶ Not all execution paths update all values. Non updated values
must also be communicated.

▶ Instructions which possibly leave the task are known.

▶ The compiler is our friend and can solve these problems for
us.

27 / 72



Multiscalar Paradigm Communication between Tasks

Communication between tasks

▶ Only last update of a register in task should forward to
successor tasks.

▶ Not all execution paths update all values. Non updated values
must also be communicated.

▶ Instructions which possibly leave the task are known.
▶ The compiler is our friend and can solve these problems for

us.

27 / 72



Multiscalar Paradigm Example Program

Example Program

Figure: Example Program

▶ Task creates values bound
to registers: 4, 8, 17, 20, 23

▶ 18, 17 must be released
after loop since they are
repeatedly updated in the
loop.

▶ The other values have
forward bits.

▶ 4 is released if its update
code is skipped.

28 / 72



Multiscalar Paradigm Example Program

Example Program

Figure: Example Program

▶ Task creates values bound
to registers: 4, 8, 17, 20, 23

▶ 18, 17 must be released
after loop since they are
repeatedly updated in the
loop.

▶ The other values have
forward bits.

▶ 4 is released if its update
code is skipped.

28 / 72



Multiscalar Paradigm Example Program

Example Program

Figure: Example Program

▶ Task creates values bound
to registers: 4, 8, 17, 20, 23

▶ 18, 17 must be released
after loop since they are
repeatedly updated in the
loop.

▶ The other values have
forward bits.

▶ 4 is released if its update
code is skipped.

28 / 72



Multiscalar Paradigm Example Program

Example Program

Figure: Example Program

▶ Task creates values bound
to registers: 4, 8, 17, 20, 23

▶ 18, 17 must be released
after loop since they are
repeatedly updated in the
loop.

▶ The other values have
forward bits.

▶ 4 is released if its update
code is skipped.

28 / 72



Multiscalar Paradigm Augmenting binaries

Augmenting binaries

▶ We analyze existing binaries, generate the multiscalar
information (CFG, task structure) and add the information to
the binary.

▶ Possible for non multiscalar and multiscalar binaries.
▶ Allows to change multiscalar interface by augmenting a binary.

29 / 72



Multiscalar Paradigm Augmenting binaries

Augmenting binaries

▶ We analyze existing binaries, generate the multiscalar
information (CFG, task structure) and add the information to
the binary.

▶ Possible for non multiscalar and multiscalar binaries.

▶ Allows to change multiscalar interface by augmenting a binary.

29 / 72



Multiscalar Paradigm Augmenting binaries

Augmenting binaries

▶ We analyze existing binaries, generate the multiscalar
information (CFG, task structure) and add the information to
the binary.

▶ Possible for non multiscalar and multiscalar binaries.
▶ Allows to change multiscalar interface by augmenting a binary.

29 / 72



Multiscalar Hardware

Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

30 / 72



Multiscalar Hardware One of many implementations

Multiscalar Hardware; One of many implementations

Figure: Example Hardware

Key Components:
▶ Sequencer

▶ Processing
Units

▶ Data Banks

31 / 72



Multiscalar Hardware One of many implementations

Multiscalar Hardware; One of many implementations

Figure: Example Hardware

Key Components:
▶ Sequencer
▶ Processing

Units

▶ Data Banks

31 / 72



Multiscalar Hardware One of many implementations

Multiscalar Hardware; One of many implementations

Figure: Example Hardware

Key Components:
▶ Sequencer
▶ Processing

Units
▶ Data Banks

31 / 72



Multiscalar Hardware Sequencer

Sequencer

▶ Sequencer decides on order of tasks.

▶ Fetches task descriptor and then invokes task.
▶ Invocation consists of providing the address of the first

instruction of the task, information to enable the passing of
values.

▶ Given task descriptor determine / predict next task.

32 / 72



Multiscalar Hardware Sequencer

Sequencer

▶ Sequencer decides on order of tasks.
▶ Fetches task descriptor and then invokes task.

▶ Invocation consists of providing the address of the first
instruction of the task, information to enable the passing of
values.

▶ Given task descriptor determine / predict next task.

32 / 72



Multiscalar Hardware Sequencer

Sequencer

▶ Sequencer decides on order of tasks.
▶ Fetches task descriptor and then invokes task.
▶ Invocation consists of providing the address of the first

instruction of the task, information to enable the passing of
values.

▶ Given task descriptor determine / predict next task.

32 / 72



Multiscalar Hardware Sequencer

Sequencer

▶ Sequencer decides on order of tasks.
▶ Fetches task descriptor and then invokes task.
▶ Invocation consists of providing the address of the first

instruction of the task, information to enable the passing of
values.

▶ Given task descriptor determine / predict next task.

32 / 72



Multiscalar Hardware Processing Unit

Processing Unit

▶ Processing units independently fetch and execute
instructions of their assigned task.

▶ When it encounters a stop bit the condition is evaluated and
if it is true then task is completed.

▶ Through the unidirectional ring which connects all processing
units information is forwarded.

33 / 72



Multiscalar Hardware Processing Unit

Processing Unit

▶ Processing units independently fetch and execute
instructions of their assigned task.

▶ When it encounters a stop bit the condition is evaluated and
if it is true then task is completed.

▶ Through the unidirectional ring which connects all processing
units information is forwarded.

33 / 72



Multiscalar Hardware Processing Unit

Processing Unit

▶ Processing units independently fetch and execute
instructions of their assigned task.

▶ When it encounters a stop bit the condition is evaluated and
if it is true then task is completed.

▶ Through the unidirectional ring which connects all processing
units information is forwarded.

33 / 72



Multiscalar Hardware Data Bank

Data Bank

▶ Data banks consist of cache banks and Address Resolution
Buffers (ARB).

▶ ARBs hold speculative memory operations, detect memory
dependency violations and initiate corrective action.

▶ Cache only updated after speculative values become non
speculative values.

▶ ARBs track units which performed operations.

34 / 72



Multiscalar Hardware Data Bank

Data Bank

▶ Data banks consist of cache banks and Address Resolution
Buffers (ARB).

▶ ARBs hold speculative memory operations, detect memory
dependency violations and initiate corrective action.

▶ Cache only updated after speculative values become non
speculative values.

▶ ARBs track units which performed operations.

34 / 72



Multiscalar Hardware Data Bank

Data Bank

▶ Data banks consist of cache banks and Address Resolution
Buffers (ARB).

▶ ARBs hold speculative memory operations, detect memory
dependency violations and initiate corrective action.

▶ Cache only updated after speculative values become non
speculative values.

▶ ARBs track units which performed operations.

34 / 72



Multiscalar Hardware Data Bank

Data Bank

▶ Data banks consist of cache banks and Address Resolution
Buffers (ARB).

▶ ARBs hold speculative memory operations, detect memory
dependency violations and initiate corrective action.

▶ Cache only updated after speculative values become non
speculative values.

▶ ARBs track units which performed operations.

34 / 72



Analyzing CPU cycles

Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

35 / 72



Analyzing CPU cycles

Analyzing CPU cycles

▶ Objective: Each processing unit should perform useful
computation. And thus in combination the PUs execute
multiple instructions per cycle. What we want to avoid:

▶ Non-useful computation because it will be squashed later.
▶ Performs no computation because task is waiting for values.
▶ Remains idle since head is not finished but predecessor task

has finished executing all instructions.

36 / 72



Analyzing CPU cycles

Analyzing CPU cycles

▶ Objective: Each processing unit should perform useful
computation. And thus in combination the PUs execute
multiple instructions per cycle. What we want to avoid:

▶ Non-useful computation because it will be squashed later.

▶ Performs no computation because task is waiting for values.
▶ Remains idle since head is not finished but predecessor task

has finished executing all instructions.

36 / 72



Analyzing CPU cycles

Analyzing CPU cycles

▶ Objective: Each processing unit should perform useful
computation. And thus in combination the PUs execute
multiple instructions per cycle. What we want to avoid:

▶ Non-useful computation because it will be squashed later.
▶ Performs no computation because task is waiting for values.

▶ Remains idle since head is not finished but predecessor task
has finished executing all instructions.

36 / 72



Analyzing CPU cycles

Analyzing CPU cycles

▶ Objective: Each processing unit should perform useful
computation. And thus in combination the PUs execute
multiple instructions per cycle. What we want to avoid:

▶ Non-useful computation because it will be squashed later.
▶ Performs no computation because task is waiting for values.
▶ Remains idle since head is not finished but predecessor task

has finished executing all instructions.

36 / 72



Analyzing CPU cycles How to avoid

How to avoid

▶ Non-useful computation: Synchronization of scalars and
globals

▶ No computation: Early Validation of Prediction
▶ Idle: Reduce inter-task dependencies and balance the load.

37 / 72



Analyzing CPU cycles How to avoid

How to avoid

▶ Non-useful computation: Synchronization of scalars and
globals

▶ No computation: Early Validation of Prediction

▶ Idle: Reduce inter-task dependencies and balance the load.

37 / 72



Analyzing CPU cycles How to avoid

How to avoid

▶ Non-useful computation: Synchronization of scalars and
globals

▶ No computation: Early Validation of Prediction
▶ Idle: Reduce inter-task dependencies and balance the load.

37 / 72



Analyzing CPU cycles How to avoid

Non-useful Computation: Synchronization

▶ Experience: Squashes because of memory conflict are usually
caused by updates of global scalars and structures.

▶ Thus these accesses should be synchronized.

38 / 72



Analyzing CPU cycles How to avoid

Non-useful Computation: Synchronization

▶ Experience: Squashes because of memory conflict are usually
caused by updates of global scalars and structures.

▶ Thus these accesses should be synchronized.

38 / 72



Analyzing CPU cycles How to avoid

No Computation: Early Validation of Prediction

▶ Catching false prediction lowers time spent on
non-computation cycles significantly.

▶ Could change structure of loops such that loop exit test is
performed at the beginning.

▶ Could add explicit prediction validation instructions.

39 / 72



Analyzing CPU cycles How to avoid

No Computation: Early Validation of Prediction

▶ Catching false prediction lowers time spent on
non-computation cycles significantly.

▶ Could change structure of loops such that loop exit test is
performed at the beginning.

▶ Could add explicit prediction validation instructions.

39 / 72



Analyzing CPU cycles How to avoid

No Computation: Early Validation of Prediction

▶ Catching false prediction lowers time spent on
non-computation cycles significantly.

▶ Could change structure of loops such that loop exit test is
performed at the beginning.

▶ Could add explicit prediction validation instructions.

39 / 72



Analyzing CPU cycles How to avoid

Idle: Reduce Inter-Task Dependencies

▶ Dependencies may result in near sequential execution.

▶ Consider: Induction variable updated as last instruction in a
loop versus induction variable updated at beginning of a loop
and copy kept for current task.

40 / 72



Analyzing CPU cycles How to avoid

Idle: Reduce Inter-Task Dependencies

▶ Dependencies may result in near sequential execution.
▶ Consider: Induction variable updated as last instruction in a

loop versus induction variable updated at beginning of a loop
and copy kept for current task.

40 / 72



Analyzing CPU cycles How to avoid

Idle: Load Balancing

▶ Some tasks may have a lot less work than others and thus are
waiting for previous ones with more work.

▶ Thus must be flexible in choice of grain size of a task.

41 / 72



Analyzing CPU cycles How to avoid

Idle: Load Balancing

▶ Some tasks may have a lot less work than others and thus are
waiting for previous ones with more work.

▶ Thus must be flexible in choice of grain size of a task.

41 / 72



Comparison to other ILPs

Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

42 / 72



Comparison to other ILPs

Comparison to other ILPs

▶ Multiscalar processor do not have to predict every branch,
only the ones at task edges. This leads to a larger instruction
window.

▶ Multiscalar processors do not have to check for conflicts when
issuing loads and stores.

▶ Multiscalar hardware is less complex than superscalar
hardware.

43 / 72



Comparison to other ILPs

Comparison to other ILPs

▶ Multiscalar processor do not have to predict every branch,
only the ones at task edges. This leads to a larger instruction
window.

▶ Multiscalar processors do not have to check for conflicts when
issuing loads and stores.

▶ Multiscalar hardware is less complex than superscalar
hardware.

43 / 72



Comparison to other ILPs

Comparison to other ILPs

▶ Multiscalar processor do not have to predict every branch,
only the ones at task edges. This leads to a larger instruction
window.

▶ Multiscalar processors do not have to check for conflicts when
issuing loads and stores.

▶ Multiscalar hardware is less complex than superscalar
hardware.

43 / 72



Performance Evaluation

Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

44 / 72



Performance Evaluation Methodology

Methodology
▶ Simulate using MIPS instructions.

▶ Modified version of GCC 2.5.8 as compiler.
▶ 5 stage pipeline (IF, ID, EX, MEM, WB). Can be configured

in-order / out-of-order and 1-way/2-way.
▶ 1 or 2 simple integer, 1 complex integer, 1 floating point, 1

branch and 1 memory FU.
▶ Unidirectional ring adds 1 cycle communication latency.

Figure: Functional Unit latencies
45 / 72



Performance Evaluation Methodology

Methodology
▶ Simulate using MIPS instructions.
▶ Modified version of GCC 2.5.8 as compiler.

▶ 5 stage pipeline (IF, ID, EX, MEM, WB). Can be configured
in-order / out-of-order and 1-way/2-way.

▶ 1 or 2 simple integer, 1 complex integer, 1 floating point, 1
branch and 1 memory FU.

▶ Unidirectional ring adds 1 cycle communication latency.

Figure: Functional Unit latencies
45 / 72



Performance Evaluation Methodology

Methodology
▶ Simulate using MIPS instructions.
▶ Modified version of GCC 2.5.8 as compiler.
▶ 5 stage pipeline (IF, ID, EX, MEM, WB). Can be configured

in-order / out-of-order and 1-way/2-way.

▶ 1 or 2 simple integer, 1 complex integer, 1 floating point, 1
branch and 1 memory FU.

▶ Unidirectional ring adds 1 cycle communication latency.

Figure: Functional Unit latencies
45 / 72



Performance Evaluation Methodology

Methodology
▶ Simulate using MIPS instructions.
▶ Modified version of GCC 2.5.8 as compiler.
▶ 5 stage pipeline (IF, ID, EX, MEM, WB). Can be configured

in-order / out-of-order and 1-way/2-way.
▶ 1 or 2 simple integer, 1 complex integer, 1 floating point, 1

branch and 1 memory FU.

▶ Unidirectional ring adds 1 cycle communication latency.

Figure: Functional Unit latencies
45 / 72



Performance Evaluation Methodology

Methodology
▶ Simulate using MIPS instructions.
▶ Modified version of GCC 2.5.8 as compiler.
▶ 5 stage pipeline (IF, ID, EX, MEM, WB). Can be configured

in-order / out-of-order and 1-way/2-way.
▶ 1 or 2 simple integer, 1 complex integer, 1 floating point, 1

branch and 1 memory FU.
▶ Unidirectional ring adds 1 cycle communication latency.

Figure: Functional Unit latencies
45 / 72



Performance Evaluation Benchmark

Benchmarks

Figure: Benchmark Instruction Count

▶ Number of dynamic instructions listed. More in Multiscalar
because of additional multiscalar instructions.

46 / 72



Performance Evaluation In-Order

In-Order

Figure: In-Order Issue Processing Units.

47 / 72



Performance Evaluation In-Order

In-Order

Figure: 1-way issue, in-order, 4-unit Multiscalar

48 / 72



Performance Evaluation In-Order

In-Order

Figure: 1-way issue, in-order, 8-unit Multiscalar

49 / 72



Performance Evaluation In-Order

In-Order

Figure: 2-way issue, in-order, 4-unit Multiscalar

50 / 72



Performance Evaluation In-Order

In-Order

Figure: 2-way issue, in-order, 8-unit Multiscalar

51 / 72



Performance Evaluation Out-Order

Out-Order

Figure: Out-Of-Order Issue Processing Units.

52 / 72



Performance Evaluation Out-Order

Out-Order

Figure: 1-way issue, out-of-order, 4-unit Multiscalar

53 / 72



Performance Evaluation Out-Order

Out-Order

Figure: 1-way issue, out-of-order, 8-unit Multiscalar

54 / 72



Performance Evaluation Out-Order

Out-Order

Figure: 2-way issue, out-of-order, 4-unit Multiscalar

55 / 72



Performance Evaluation Out-Order

Out-Order

Figure: 2-way issue, out-of-order, 8-unit Multiscalar

56 / 72



Strengths and Weaknesses

Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

57 / 72



Strengths and Weaknesses

Strengths
▶ Influential paper, large impact, enabled a lot of future

research.

▶ First group of authors to write about Multiscalar Processors.
Gurindar Sohi describes the about 10 year process
retrospectively here: ISCA ’98: 25 years of the international
symposia on Computer architecture (selected papers) August
1998 Pages 111–114https://doi.org/10.1145/285930.285970

▶ Adopted by industry.
▶ Authors released updates on

http://pages.cs.wisc.edu/~mscalar/ (last edited 2008)
and followed if they were still investigating a specific subject
of the paper or were vague: Dead register analysis, Control
flow speculation.

▶ With high prediction accuracy come large speedups.
▶ Well explained examples were provided.

58 / 72

http://pages.cs.wisc.edu/~mscalar/


Strengths and Weaknesses

Strengths
▶ Influential paper, large impact, enabled a lot of future

research.
▶ First group of authors to write about Multiscalar Processors.

Gurindar Sohi describes the about 10 year process
retrospectively here: ISCA ’98: 25 years of the international
symposia on Computer architecture (selected papers) August
1998 Pages 111–114https://doi.org/10.1145/285930.285970

▶ Adopted by industry.
▶ Authors released updates on

http://pages.cs.wisc.edu/~mscalar/ (last edited 2008)
and followed if they were still investigating a specific subject
of the paper or were vague: Dead register analysis, Control
flow speculation.

▶ With high prediction accuracy come large speedups.
▶ Well explained examples were provided.

58 / 72

http://pages.cs.wisc.edu/~mscalar/


Strengths and Weaknesses

Strengths
▶ Influential paper, large impact, enabled a lot of future

research.
▶ First group of authors to write about Multiscalar Processors.

Gurindar Sohi describes the about 10 year process
retrospectively here: ISCA ’98: 25 years of the international
symposia on Computer architecture (selected papers) August
1998 Pages 111–114https://doi.org/10.1145/285930.285970

▶ Adopted by industry.

▶ Authors released updates on
http://pages.cs.wisc.edu/~mscalar/ (last edited 2008)
and followed if they were still investigating a specific subject
of the paper or were vague: Dead register analysis, Control
flow speculation.

▶ With high prediction accuracy come large speedups.
▶ Well explained examples were provided.

58 / 72

http://pages.cs.wisc.edu/~mscalar/


Strengths and Weaknesses

Strengths
▶ Influential paper, large impact, enabled a lot of future

research.
▶ First group of authors to write about Multiscalar Processors.

Gurindar Sohi describes the about 10 year process
retrospectively here: ISCA ’98: 25 years of the international
symposia on Computer architecture (selected papers) August
1998 Pages 111–114https://doi.org/10.1145/285930.285970

▶ Adopted by industry.
▶ Authors released updates on

http://pages.cs.wisc.edu/~mscalar/ (last edited 2008)
and followed if they were still investigating a specific subject
of the paper or were vague: Dead register analysis, Control
flow speculation.

▶ With high prediction accuracy come large speedups.
▶ Well explained examples were provided.

58 / 72

http://pages.cs.wisc.edu/~mscalar/


Strengths and Weaknesses

Strengths
▶ Influential paper, large impact, enabled a lot of future

research.
▶ First group of authors to write about Multiscalar Processors.

Gurindar Sohi describes the about 10 year process
retrospectively here: ISCA ’98: 25 years of the international
symposia on Computer architecture (selected papers) August
1998 Pages 111–114https://doi.org/10.1145/285930.285970

▶ Adopted by industry.
▶ Authors released updates on

http://pages.cs.wisc.edu/~mscalar/ (last edited 2008)
and followed if they were still investigating a specific subject
of the paper or were vague: Dead register analysis, Control
flow speculation.

▶ With high prediction accuracy come large speedups.

▶ Well explained examples were provided.

58 / 72

http://pages.cs.wisc.edu/~mscalar/


Strengths and Weaknesses

Strengths
▶ Influential paper, large impact, enabled a lot of future

research.
▶ First group of authors to write about Multiscalar Processors.

Gurindar Sohi describes the about 10 year process
retrospectively here: ISCA ’98: 25 years of the international
symposia on Computer architecture (selected papers) August
1998 Pages 111–114https://doi.org/10.1145/285930.285970

▶ Adopted by industry.
▶ Authors released updates on

http://pages.cs.wisc.edu/~mscalar/ (last edited 2008)
and followed if they were still investigating a specific subject
of the paper or were vague: Dead register analysis, Control
flow speculation.

▶ With high prediction accuracy come large speedups.
▶ Well explained examples were provided.

58 / 72

http://pages.cs.wisc.edu/~mscalar/


Strengths and Weaknesses

Weaknesses

▶ Seems to be heavily reliant on code rewriting / specific
compiler.

▶ Only hints on how tasks are to be split up were given.
▶ ISA needs to be (minimally) changed.
▶ Speedup does not appear to be capped at 8-units for highly

predictable tasks, would have been interesting to see how the
speedup behaves with 16-units on highly predictable
executions.

59 / 72



Strengths and Weaknesses

Weaknesses

▶ Seems to be heavily reliant on code rewriting / specific
compiler.

▶ Only hints on how tasks are to be split up were given.

▶ ISA needs to be (minimally) changed.
▶ Speedup does not appear to be capped at 8-units for highly

predictable tasks, would have been interesting to see how the
speedup behaves with 16-units on highly predictable
executions.

59 / 72



Strengths and Weaknesses

Weaknesses

▶ Seems to be heavily reliant on code rewriting / specific
compiler.

▶ Only hints on how tasks are to be split up were given.
▶ ISA needs to be (minimally) changed.

▶ Speedup does not appear to be capped at 8-units for highly
predictable tasks, would have been interesting to see how the
speedup behaves with 16-units on highly predictable
executions.

59 / 72



Strengths and Weaknesses

Weaknesses

▶ Seems to be heavily reliant on code rewriting / specific
compiler.

▶ Only hints on how tasks are to be split up were given.
▶ ISA needs to be (minimally) changed.
▶ Speedup does not appear to be capped at 8-units for highly

predictable tasks, would have been interesting to see how the
speedup behaves with 16-units on highly predictable
executions.

59 / 72



Inspired Work

Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

60 / 72



Inspired Work Slipstream processors

Inspired Work: Slipstream processors

▶ Slipstream processors: Create shorter but equivalent by
removing ineffectual computation and computation related to
highly-predictable control flow. Concurrently run original and
short program. Shorter program speculatively runs ahead of
original program and supplies original program with control
and data flow outcomes. The full program then uses that
information to execute more efficiently and validates the
speculative, shorer program.

▶ Purser, Zach, Karthik Sundaramoorthy, and Eric Rotenberg.
”A study of slipstream processors.” Proceedings of the 33rd
annual ACM/IEEE International Symposium on
Microarchitecture. 2000.

61 / 72



Inspired Work Slipstream processors

Inspired Work: Slipstream processors

▶ Slipstream processors: Create shorter but equivalent by
removing ineffectual computation and computation related to
highly-predictable control flow. Concurrently run original and
short program. Shorter program speculatively runs ahead of
original program and supplies original program with control
and data flow outcomes. The full program then uses that
information to execute more efficiently and validates the
speculative, shorer program.

▶ Purser, Zach, Karthik Sundaramoorthy, and Eric Rotenberg.
”A study of slipstream processors.” Proceedings of the 33rd
annual ACM/IEEE International Symposium on
Microarchitecture. 2000.

61 / 72



Inspired Work Thread level Speculation

Inspired Work: Thread level speculation

▶ Thread level speculation: Speculatively execute portions of
code parallel to the main thread in an independent thread.
May need to make assumptions about input values. If
assumptions are violated the speculative thread must be
discarded and squashed.

▶ Steffan, J. Greggory, et al. ”A scalable approach to
thread-level speculation.” ACM SIGARCH Computer
Architecture News 28.2 (2000): 1-12.

62 / 72



Inspired Work Thread level Speculation

Inspired Work: Thread level speculation

▶ Thread level speculation: Speculatively execute portions of
code parallel to the main thread in an independent thread.
May need to make assumptions about input values. If
assumptions are violated the speculative thread must be
discarded and squashed.

▶ Steffan, J. Greggory, et al. ”A scalable approach to
thread-level speculation.” ACM SIGARCH Computer
Architecture News 28.2 (2000): 1-12.

62 / 72



Discussion

Outline

Executive Summary
Instruction-level Parallelism
Goal
Multiscalar Paradigm
Multiscalar Hardware
Analyzing CPU cycles
Comparison to other ILPs
Performance Evaluation
Strengths and Weaknesses
Inspired Work
Discussion

63 / 72



Discussion

Discussion

64 / 72



Discussion Optimizing Forwarding of Values

Optimizing Forwarding of Values

What can be done to potentially reduce the number of values
which have to be forwarded?

65 / 72



Discussion Optimizing Forwarding of Values

Optimizing Forwarding of Values

▶ Use Liveness analysis / dead value analysis or similar to
determine if values are needed later on. If not, there is no
need to forward. (Mentioned in paper)

▶ Split tasks such that local variables local to some code are
fully incorporated in that task.

▶ Exploiting Dead Value Information Milo M. Martin, Amir
Roth, Charles N. Fischer 30th Annual international
Symposium on Microarchitecture (MICRO-30), Dec 1997.

66 / 72



Discussion Optimizing Forwarding of Values

Optimizing Forwarding of Values

▶ Use Liveness analysis / dead value analysis or similar to
determine if values are needed later on. If not, there is no
need to forward. (Mentioned in paper)

▶ Split tasks such that local variables local to some code are
fully incorporated in that task.

▶ Exploiting Dead Value Information Milo M. Martin, Amir
Roth, Charles N. Fischer 30th Annual international
Symposium on Microarchitecture (MICRO-30), Dec 1997.

66 / 72



Discussion Optimizing Forwarding of Values

Optimizing Forwarding of Values

▶ Use Liveness analysis / dead value analysis or similar to
determine if values are needed later on. If not, there is no
need to forward. (Mentioned in paper)

▶ Split tasks such that local variables local to some code are
fully incorporated in that task.

▶ Exploiting Dead Value Information Milo M. Martin, Amir
Roth, Charles N. Fischer 30th Annual international
Symposium on Microarchitecture (MICRO-30), Dec 1997.

66 / 72



Discussion Microarchitecture changes

Microarchitecture changes
How can the microarchitecture be changed to improve certain
metrics like space and latency?

Figure: Example Hardware 67 / 72



Discussion Microarchitecture changes

Microarchitecture changes

▶ Space: Processing units share functional units like floating
point units. Negative: May have to wait for other processing
units to finish using parts of hardware.

▶ Latency: Move data bank directly next to processing units.
Negative: Need to handle inconsistent caches and buffers and
forward information.

68 / 72



Discussion Microarchitecture changes

Microarchitecture changes

▶ Space: Processing units share functional units like floating
point units. Negative: May have to wait for other processing
units to finish using parts of hardware.

▶ Latency: Move data bank directly next to processing units.
Negative: Need to handle inconsistent caches and buffers and
forward information.

68 / 72



Discussion Can we reuse information from squashed tasks?

Can we reuse information from squashed tasks?

69 / 72



Discussion Can we reuse information from squashed tasks?

Can we reuse information from squashed tasks?

▶ Some parts of a task may not depend on previous values but
may still be squashed.

▶ Could keep a record of that information.
▶ Could split tasks such that there are less dependencies and

with that one would probably have to increase the amount of
units.

▶ Register Integration: A Simple and Efficient Implementation
of Squash Reuse Amir Roth and Gurindar S. Sohi 33rd
International Symposium on Microarchitecture (MICRO-33),
Dec. 10-13, 2000.

70 / 72



Discussion Can we reuse information from squashed tasks?

Can we reuse information from squashed tasks?

▶ Some parts of a task may not depend on previous values but
may still be squashed.

▶ Could keep a record of that information.

▶ Could split tasks such that there are less dependencies and
with that one would probably have to increase the amount of
units.

▶ Register Integration: A Simple and Efficient Implementation
of Squash Reuse Amir Roth and Gurindar S. Sohi 33rd
International Symposium on Microarchitecture (MICRO-33),
Dec. 10-13, 2000.

70 / 72



Discussion Can we reuse information from squashed tasks?

Can we reuse information from squashed tasks?

▶ Some parts of a task may not depend on previous values but
may still be squashed.

▶ Could keep a record of that information.
▶ Could split tasks such that there are less dependencies and

with that one would probably have to increase the amount of
units.

▶ Register Integration: A Simple and Efficient Implementation
of Squash Reuse Amir Roth and Gurindar S. Sohi 33rd
International Symposium on Microarchitecture (MICRO-33),
Dec. 10-13, 2000.

70 / 72



Discussion Can we reuse information from squashed tasks?

Can we reuse information from squashed tasks?

▶ Some parts of a task may not depend on previous values but
may still be squashed.

▶ Could keep a record of that information.
▶ Could split tasks such that there are less dependencies and

with that one would probably have to increase the amount of
units.

▶ Register Integration: A Simple and Efficient Implementation
of Squash Reuse Amir Roth and Gurindar S. Sohi 33rd
International Symposium on Microarchitecture (MICRO-33),
Dec. 10-13, 2000.

70 / 72



Discussion Can we reuse information from squashed tasks?

Task selection

▶ Which heuristics could be helpful in determining the task
boundaries?

▶ Should we reorder instructions and how?

71 / 72



Discussion Can we reuse information from squashed tasks?

Task selection

▶ Which heuristics could be helpful in determining the task
boundaries?

▶ Should we reorder instructions and how?

71 / 72



Discussion Can we reuse information from squashed tasks?

Task selection

▶ Use heuristics:

▶ Task size
▶ Control Flow
▶ Data Dependence
▶ T. N. Vijaykumar and G. S. Sohi, ”Task selection for a

multiscalar processor,” Proceedings. 31st Annual ACM/IEEE
International Symposium on Microarchitecture, 1998, pp.
81-92, doi: 10.1109/MICRO.1998.742771.

72 / 72



Discussion Can we reuse information from squashed tasks?

Task selection

▶ Use heuristics:
▶ Task size

▶ Control Flow
▶ Data Dependence
▶ T. N. Vijaykumar and G. S. Sohi, ”Task selection for a

multiscalar processor,” Proceedings. 31st Annual ACM/IEEE
International Symposium on Microarchitecture, 1998, pp.
81-92, doi: 10.1109/MICRO.1998.742771.

72 / 72



Discussion Can we reuse information from squashed tasks?

Task selection

▶ Use heuristics:
▶ Task size
▶ Control Flow

▶ Data Dependence
▶ T. N. Vijaykumar and G. S. Sohi, ”Task selection for a

multiscalar processor,” Proceedings. 31st Annual ACM/IEEE
International Symposium on Microarchitecture, 1998, pp.
81-92, doi: 10.1109/MICRO.1998.742771.

72 / 72



Discussion Can we reuse information from squashed tasks?

Task selection

▶ Use heuristics:
▶ Task size
▶ Control Flow
▶ Data Dependence

▶ T. N. Vijaykumar and G. S. Sohi, ”Task selection for a
multiscalar processor,” Proceedings. 31st Annual ACM/IEEE
International Symposium on Microarchitecture, 1998, pp.
81-92, doi: 10.1109/MICRO.1998.742771.

72 / 72



Discussion Can we reuse information from squashed tasks?

Task selection

▶ Use heuristics:
▶ Task size
▶ Control Flow
▶ Data Dependence
▶ T. N. Vijaykumar and G. S. Sohi, ”Task selection for a

multiscalar processor,” Proceedings. 31st Annual ACM/IEEE
International Symposium on Microarchitecture, 1998, pp.
81-92, doi: 10.1109/MICRO.1998.742771.

72 / 72


	Executive Summary
	Instruction-level Parallelism
	Overview
	Key Constraint of Previous Mechanisms

	Goal
	Multiscalar Paradigm
	Key idea
	Multiscalar Paradigm; Outline
	Possible Hardware Implementation
	Control Flow Graph
	Definition of Task
	Imposing Sequential Appearance
	Speculative Tasks
	Task Retirement
	Example Code
	Multiscalar Paradigm; Next steps
	Multiscalar Programs
	Sequencer
	Communication between Tasks
	Example Program
	Augmenting binaries

	Multiscalar Hardware
	One of many implementations
	Sequencer
	Processing Unit
	Data Bank

	Analyzing CPU cycles
	How to avoid

	Comparison to other ILPs
	Performance Evaluation
	Methodology
	Benchmark
	In-Order
	Out-Order

	Strengths and Weaknesses
	Inspired Work
	Slipstream processors
	Thread level Speculation

	Discussion
	Optimizing Forwarding of Values
	Microarchitecture changes
	Can we reuse information from squashed tasks?


