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Executive Summary

® Problem:
® Increasing complexity of modern CPUs makes Design Bugs
in commercial products more common
® They are hard to fix/avoid in software and usually unfixable in
hardware
® Goal:
® develop hardware solutions that enables detecting when a
Design Bug triggered
® has to be flexible to detect new bugs as they are discovered
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Executive Summary

e Contributions:

® in-depth study of design bugs of a quasi-commercial CPU at
a low level

® novel mechanism to monitor internal CPU signals and
deciding whether a Design Bug can be triggered

® Makes hardware "updatable” with bug patches like software

® Evaluation:

® To cover 80% of all bugs found in the study:

® low power overhead (3.5%)

® moderate area overhead (10%)

® when combined with Hardware Fault Detection, some hardware
can be shared and total overhead reduces
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Problem

® Modern CPUs are highly complex, especially CISC
architectures

® A lot of effort goes into verifying designs before production,
can take more than 50% of the release cycle

® Design bugs still appear in widespread commercial CPUs

® Bugs in CPUs make it less usable: Correct software on buggy
hardware can produce wrong result

® In commercial CPUs, bugs also lead to bad press and
expensive recalls

® Many bugs in the past, were usually handled by trying to
avoid in software or disabling CPU components
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Examples

® |ntel FDIV bug: Intel Pentium can return wrong floating-point
division results

® Resulted in 500M $ recall
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Examples

® |ntel FDIV bug: Intel Pentium can return wrong floating-point
division results

® Resulted in 500M $ recall
® Intel FOOF bug - certain instruction with the right arguments
locks up entire system
® AMDs have bugs too - a lot of consecutive pops and rets can
cause some AMD Opterons to incorrectly update stack
pointer
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Goal

First step to avoiding Design Bugs is to detect when a bug is
triggered

In Online operation
Optimally, we want to detect all Design Bugs

Not all bugs will be discovered at the manufacture date of the
CPU

We want to be able to add information about design bugs
subsequently
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Paper Summary

Study of Design Bugs
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How do design bugs look like?

Paper analyzes OpenSPARC T1 RTL-level implementation and
comes up with three categories:
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How do design bugs look like?

Paper analyzes OpenSPARC T1 RTL-level implementation and
comes up with three categories:
® Algorithmic design bugs
® major deviation of implemented algorithm from specification
® |nvolves a lot of buggy logic, detecting and fixing is usually
hard
® | ogic design bugs
® buggy logic block(s) used somewhere (e.g. wrong type of
gate, wrong combination of inputs)
® Fixing and detection is easier, since erroneous hardware
localized to a few gates

® Timing design bugs

® Signal latched at the wrong time
® Often fixed by adding/removing a buffer flip-flop
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What about manufacturing defects?

This paper is concerned with Logic design bugs.
What does this paper not try to detect?

e Algorithmic or Timing Design bugs

e Hardware faults caused by manufacturing process or
deterioration of hardware

® Bugs and interference vulnerabilities of physical nature
(things like Rowhammer) which are hard to detect

® Needs to be detectable by monitoring internal CPU signals
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Logic design bugs
® Most common type of design bug in OpenSPARC T1
® 99% of all design bugs in two CPU sections: LSU (left) and

TLU (right)

Algorithmic 35 % Algorithmic 47 %

~ Timing 6 % — Timing 4 %

Logic 59 % |

Logic 49 %

® Hard to discover in verification phase, if bug only occurs in
very specific states

® Once discovered, easy to detect by monitoring source signals

® Algorithmic and Timing bugs could be easier to find in design
verification



Example logic design bug

Buggy code:

1 assign buggy-signal = foo & ~(rst | hw_int | sr_int);

Correct code:

1 assign buggy_signal = foo & ~(rst | sr_int);

Source-Level

signals
- First-Level
Module \ signals  Buggy logic
Inputs / N F="fmmomemm—==—— .
1
1
-
[ Combinational
Flip-flops ™ \u e
ip-flops 1
Y
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What do we learn from this example?

® Semantically, bug occurs on specific combinations of
First-Level Signals

Source-Level
signals
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What do we learn from this example?

® Semantically, bug occurs on specific combinations of
First-Level Signals

® These might not exist in finished CPU
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What do we learn from this example?

® Semantically, bug occurs on specific combinations of
First-Level Signals

® These might not exist in finished CPU

® But because we are at RTL-level it suffices to monitor the
Source-Level signals corresponding to the First-Level Signals

Source-Level
signals

First-Level
signals  Buggy logic
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Scale of monitored signals

® On OpenSPARC T1 there are usually less than 64
Source-Level Signals per bug
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Scale of monitored signals

On OpenSPARC T1 there are usually less than 64
Source-Level Signals per bug

® On average 9 of those are not shared with any other bug

In total, 1118 signals to be monitored for detection of all 162
(documented) logic design bugs

This is bad news!

None of the logic design bugs in T1 had source signals from
data or bus registers, only control signal registers
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Paper Summary

Proposed solution
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Basic idea - Signatures

® Triggering conditions for a bug represented by Bug
Signature
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Basic idea - Signatures

® Triggering conditions for a bug represented by Bug
Signature

® Bug Signatures express what values Source-Level signals
need to have for the bug to occur (0,1, X - don't care)

® Bug Signatures for all bugs combined into single System Bug
Signature

Bug Signature Collection

XXX1X0..X1X0XX
BUG#1

XXX0X0..X1X1XX

BUGH#2 | X101XX.XX01XX

BUGHN | XXXX1X.X101XX

Merge
Bug Signatures

Dxlifxfol - [x[i]o]x]

System Bug Signature
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Basic idea - Segments

® Bug Detection Segments monitor signals (flip-flops) they are
responsible for

Global Bug .
Detection Signal | Design Bug
Recovery
Handler
Segment Match

N . Detection Segment

Bug Signature Collection = Checking Tree

XXX1X0..X1X0XX
BUGH#1
XXX0X0..X1X1XX
BUGHZ | X101XX..XXOLXX Segment Match Segment Match
Detection oo Detection
. . Table Table
BUGH#N | XXXX1X.X101XX |_' '_| match/mismatch signals l—' ‘—|
1 I 1 1
Bug Bug Bug Bug
Merge Detection Detection o Detection Detection
Bug Signatures Segment Segment Segment Segment
T~ 1= LT =T 11111 1]
System State (Flip-Flops)
System Bug Signature
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Basic idea - Segments

® Bug Detection Segments monitor signals (flip-flops) they are

responsible for

® cach of those outputs whether all its signals match System

Bug Signature

® Bug Detection Segment match results are combined using
Segment Match Detection Tables into a Segment Checking
Tree to generate Global Bug Detection Signal

Global Bug

Bug Signature Collection
XXX1X0..X1X0XX
BUGH#1
XXX0X0..X1X1XX
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Basic idea - Segments

® Only System Bug Signature and Segment Match Detection
Tables need to be field-programmable

® Firmware updates can then initialize these

Global Bug

Detection Signal | Design Bug
Recovery
Handler
Segment Match
Detection Segment
Table Checking Tree

Bug Signature Collection
XXX1X0..X1X0XX
BUG#1
XXX0X0..X1X1XX
BUGHZ2 | X101XX..XX01XX
BUG#N | XXXX1X..X101XX

Merge
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Why do we need a Segment Checking Tree?

® We can't just "OR" the bug signatures together, that would
lead to too many false positives

e summarize ("OR") all bug signatures of a single design bug
to form an Intermediate Bug Signature

® Merge Intermediate Signatures to System Bug Signature in a
special way (see example)

® Bug Detection Segments that do need to report a signature
match for a certain design bug to occur are selected in
Segment Match Detection Tables

® This is essentially demultiplexing the System Bug Signature

® Tree structure is needed to reduce number of false
positives, while reducing space used on storing Bug
Signatures
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Signature merging example
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Hardware implementation

® |dea: integrate Bug Detection Segments into flip-flops
® keeps routes short, output compared directly at flip-flops

® System Bug Signature translates into two signals per
flip-flop: 0/1 and care/don’t care(X)

® Bug Detection logic in Flip-flops outputs 0 for a signature
match, and 1 for a mismatch

e All flip-flops in one Bug Detection Segment have their local
bug detection signals chained together with OR-gates

— Only if all flip-flop’s values match signature, Bug Detection
Segment sends match signal up the Segment Checking Tree
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Reuse of Scan chain logic

® Modern CPUs use scan flip-flops, an augmented flip-flop type
that can be used for hardware testing

e Allows all flip-flops of the processor to be connected in a Scan
chain (like a large shift register) and to be tested using ATPG

® Used once after fabrication, after that scan logic is inactive

® Use scan logic to load one bit of System Bug Signature to
flip-flops, use additional logic to store the other bit

22/40



Extensions and additional aspects

23/40



Extensions and additional aspects

® For actually fixing/avoiding bug after detection, existing
checkpointing-based recovery solutions such as ReVive or
SafetyNet can be used

23 /40



Extensions and additional aspects

® For actually fixing/avoiding bug after detection, existing
checkpointing-based recovery solutions such as ReVive or
SafetyNet can be used

® Can be neatly combined with similar online hardware fault
detection (" Access/Control Extension”) to share even more
hardware

23 /40



Extensions and additional aspects

® For actually fixing/avoiding bug after detection, existing
checkpointing-based recovery solutions such as ReVive or
SafetyNet can be used

® Can be neatly combined with similar online hardware fault
detection (" Access/Control Extension”) to share even more
hardware

® Paper proposes mechanism to tweak false positive rate
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Thoughts

e Can

we modify the system to detect Timing Bugs?

We could make Segment Match Detection nodes (of the tree)
only propagate their results on each clock cycle

Then chain nodes together in a way that we match a temporal
pattern

But this would mean getting rid of the 'levels’ of the Segment
Checking tree

Also detection of non-Timing Bugs would be delayed by a
number of cycles (bad considering a bug could lock up the
CPU in the meantime)
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Evaluation method

® Using RTL design of OpenSPARC T1 for evaluation of area
and power overhead

® Augment design with implementation of bug detection
flip-flops, segment checking tree with field programmable
match detection tables

e Covers all control-signal FFs except for memories/caches

® Caches and most other parts of CPU evaluated using
simulation tools

® Power consumption of some parts was taken from
UltraSPARC T1 specs
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Fixing design parameters

® To precisely estimate overhead of design, design parameters
have to be fixed first

® Paper chooses 8-bit Bug Detection Segments, 4-level tree
structure
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Fixing design parameters
Table 3. Fraction of data and control signals in the OpenSPARC T1
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Figure 16. Area overhead versus design bug coverage

® How many Segment Match Detection Table entries?
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Figure 16. Area overhead versus design bug coverage

® How many Segment Match Detection Table entries?

® Paper chooses 16 entries (80% bug coverage), arguing that
not all design bugs are critical
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Fixing design parameters

Table 3. Fraction of data and control signals in the OpenSPARC T1
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Figure 16. Area overhead versus design bug coverage

® How many Segment Match Detection Table entries?

® Paper chooses 16 entries (80% bug coverage), arguing that
not all design bugs are critical

® |n a quoted comparison of other CPUs, only about 64% of
all bugs were critical

® Non-critical = errors in performance measurement, error
reporting, debugging etc.
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® 17% area overhead for full bug coverage

29 /40



Evaluation results - Power

30/40



Evaluation results - Power

® Baseline Power consumption estimated at 56.3 W (about 12%
less than commercial UltraSPARC T1)

30/40



Evaluation results - Power

® Baseline Power consumption estimated at 56.3 W (about 12%
less than commercial UltraSPARC T1)

® Design with Online Bug detection - 58.3 W, 3.5% increase

30/40



Evaluation results - Power

® Baseline Power consumption estimated at 56.3 W (about 12%
less than commercial UltraSPARC T1)
® Design with Online Bug detection - 58.3 W, 3.5% increase

® Amortized overhead when we add online hardware defect
detection (ACE):
® 15.15% area and 6.8% power
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Evaluation results - Power

1.3%

— 0:6%

m ACE Framework
B Segment Checking Tree
B Augmented Flip-Flops
B Cores & L1 Cache
L2 Cache
M Leakage
B Crossbar, MC, Misc
1/0 Pads
B Wires & Repeaters
EFPU
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Executive Summary

® Problem:
® Increasing complexity of modern CPUs makes Design Bugs
in commercial products more common
® They are hard to fix/avoid in software and usually unfixable in
hardware
® Goal:
® develop hardware solutions that enables detecting when a
Design Bug triggered
® has to be flexible to detect new bugs as they are discovered
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Executive Summary

e Contributions:
® in-depth study of design bugs of a quasi-commercial CPU at
a low level
® novel mechanism to monitor internal CPU signals and
deciding whether a Design Bug can be triggered
® integrated into Flip-Flops, reusing hardware used in CPUs
today, field programmable
® Variable amount of detectable bugs (trade-off w/ area
overhead), covering all signals of importance
® Extensible to also do Hardware Fault Detection
® Makes hardware "updatable” with bug patches like software
® |ess pressure on verification, can make development of new
CPUs faster
® Evaluation:
® To cover 80% of all bugs found in the study:
low power overhead (3.5%)
moderate area overhead (10%)
when combined with Hardware Fault Detection, some hardware
can be shared and total overhead reduces
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Strengths

® Based on thorough low-level analysis of design bugs, not
based on processor errata sheets

® Previous work often makes assumptions based on (high-level)
processor errata sheets

® Flexible and comprehensive solution

® Almost all signals can be covered
® Bug Signatures are "updatable”

® Low power overhead and moderate area overhead due to
clever reuse of existing scan-chain logic

® Qverhead can amortize in combination with Hardware Fault
Detection

® Paper goes into a lot of detail, but is still intelligible
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Weaknesses

® Bug analysis tailored to one particular CPU design -
conclusions might not hold for other CPU
® OpenSPARC/UltraSPARC T1 is in-order superscalar CPU,
most competitor CPUs at that time already used out-of-order
execution

® | arge category of Algorithmic Design Bugs is ignored on the
basis that they might be discovered in verification

® In TLU+LSU 45% of the bugs were not Logic Design Bugs!
® Algorithmic Design Bugs can have greater impact than
Logic Design Bugs
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Weaknesses

® Power and area overhead evaluation are estimations based on
partial simulation with different tools
® Exact overhead can only be measured after place-and-route
® Detailed RTL model is missing implementation of recovery
mechanism/bug avoidance
® Full solution will have higher overhead
® Estimated overhead based on assumption that 80% bug
coverage is enough
® Criticality of bugs in OpenSPARC T1 was not analyzed
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Discussion

® Are design bugs still an issue?

® Think about the current trend and the future - will the number
of bugs in new CPUs increase?

® Or will the CPU designers learn from their mistakes and
produce less design bugs?

e Can't fix everything with microcode patches?

® Complex ISA instructions are sometimes implemented using
architectural microcode instructions

® These can nowadays be patched to avoid some bugs

® Think about the bugs you have seen: Are logic bugs directly
tied to specific instructions?

® What about modern CPU security vulnerabilities (e.g.
Spectre)?
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Discussion

® |s it okay to concentrate on Logic Design Bugs and ignoring

Algorithmic/Timing ones?

® Are the bugs in other categories really more likely to be found

before the processor is sold?

® How could one detect Algorithmic Bugs without too many

False Positives?

® Can you apply tactics from algorithm verification? Invariants

for algorithms in hardware?
® Actually papers investigating this exist

SPECS: A Lightweight Runtime Mechanism for
Protecting Software from Security-Critical Processor Bugs

Matthew Hicks Cynthia Sturton Samuel T. King Jonathan M. Smith
University of Michigan University of North Twitter, Inc. University of Pennsylvania
mdhicks@umich.edu Carolina at Chapel Hill sking@twitter.com jms@cis.upenn.edu

csturton@cs.unc.edu
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