Digital Design \& Computer Arch.

Lecture 7: Hardware Description
Languages and Verilog

Prof. Onur Mutlu

ETH Zürich
Spring 2021
18 March 2021

Required Readings (This Week)

- Hardware Description Languages and Verilog
- H\&H Chapter 4 in full
- Timing and Verification
- H\&H Chapters 2.9 and $3.5+$ (start Chapter 5)
- By tomorrow, make sure you are done with
- P\&P Chapters 1-3 + H\&H Chapters 1-4

Required Readings (Next Week)

- Von Neumann Model, LC-3, and MIPS
- P\&P, Chapter 4, 5
- H\&H, Chapter 6
- P\&P, Appendices A and C (ISA and microarchitecture of LC-3)
- H\&H, Appendix B (MIPS instructions)
- Programming
- P\&P, Chapter 6
- Recommended: Digital Building Blocks
- H\&H, Chapter 5
- Hardware Description Languages
- Implementing Combinational Logic (in Verilog)
- Implementing Sequential Logic (in Verilog)
- The Verilog slides constitute a tutorial. We will not cover all.
- All slides will be beneficial for your labs.

Aside: Implementing Logic Functions Using Memory

Recall: A Bigger Memory Array (4 locations X 3 bits)

Memory-Based Lookup Table Example

- Memory arrays can also perform Boolean Logic functions
- 2^{N}-location M -bit memory can perform any N -input, M -output function
- Lookup Table (LUT): Memory array used to perform logic functions
- Each address: row in truth table; each data bit: corresponding output value

Lookup Tables (LUTs)

- LUTs are commonly used in FPGAs
- To enable programmable/reconfigurable logic functions
- To enable easy integration of combinational and sequential logic

Figure 5.59 LE configuration for two functions of up to four inputs each

Read H\&H Chapter 5.6.2

Hardware Description Languages \& Verilog

2017: Intel Kaby Lake

https://en.wikichip.org/wiki/intel/microarchitectures/kaby lake

- 64-bit processor
- 4 cores, 8 threads
- 14-19 stage pipeline
- 3.9 GHz clock freq.
- 1.75B transistors
- In ~47 years, about 1,000,000-fold growth in transistor count and performance!

2021: Apple M1

- 4 High-Perf GP Cores
- 4 Efficient GP Cores
- 8-Core GPU
- 16-Core Neural Engine
- Lots of Cache
- Many Caches
- 8x Memory Channels
- 16B transistors

2019: Cerebras Wafer Scale Engine

Cerebras WSE
1.2 Trillion transistors $46,225 \mathrm{~mm}^{2}$

- The largest ML accelerator chip
- 400,000 cores

Largest GPU
21.1 Billion transistors
$815 \mathrm{~mm}^{2}$
NVIDIA TITAN V https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
htspg thypyw.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/ 12

How to Deal with This Complexity?

- Hardware Description Languages!
- Needs and wants:
- Ability to specify complex designs
- ... and to simulate their behavior (functional \& timing)
- ... and to synthesize (automatically design) portions of it
- have an error-free path to implementation
- Hardware Description Languages enable all of the above
- Languages designed to describe and specify hardware
- There are similarly-featured HDLs (e.g., Verilog, VHDL, ...)
- if you learn one, it is not hard to learn another
- mapping between languages is typically mechanical, especially for the commonly used subset

Hardware Description Languages

- Two well-known hardware description languages
- Verilog
- Developed in 1984 by Gateway Design Automation
- Became an IEEE standard (1364) in 1995
- More popular in US
- VHDL (VHSIC Hardware Description Language)
- Developed in 1981 by the US Department of Defense
- Became an IEEE standard (1076) in 1987
- More popular in Europe
- We will use Verilog in this course

Hardware Design Using HDL

Principle: Hierarchical Design

- Design a hierarchy of modules
- Predefined "primitive" gates (AND, OR, ...)
- Simple modules are built by instantiating these gates (components like MUXes)
- Complex modules are built by instantiating simple modules, ...
- Hierarchy controls complexity
- Analogous to the use of function/method abstraction in programming
- Complexity is a BIG deal
- In real world, how big is the size of a module (that is described in HDL and then synthesized to gates)?
https://techreport.com/review/21987/intel
-core-i7-3960x-processor

Top-Down Design Methodology

- We define the top-level module and identify the sub-modules necessary to build the top-level module
- Subdivide the sub-modules until we come to leaf cells
- Leaf cell: circuit components that cannot further be divided (e.g., logic gates, cell libraries)

Bottom-Up Design Methodology

- We first identify the building blocks that are available to us
- Build bigger modules, using these building blocks
- These modules are then used for higher-level modules until we build the top-level module in the design

Defining a Module in Verilog

- A module is the main building block in Verilog
- We first need to define:
- Name of the module
- Directions of its ports (e.g., input, output)
- Names of its ports
- Then:
- Describe the functionality of the module

Implementing a Module in Verilog

A Question of Style

- The following two codes are functionally identical

```
module test ( a, b, y );
    input a;
    input b;
    output y;
endmodule
```


port name and direction declaration can be combined

What If We Have Multi-bit Input/Output?

- You can also define multi-bit Input/Output (Bus)
- [range_end : range_start]
- Number of bits: range_end - range_start + 1
- Example:

| input $[31: 0]$ | a; | // a[31], | a[30] .. a[0] |
| :--- | :--- | :--- | :--- | :--- |
| output [15:8] | b1; | // b1[15], b1[14] | b1[8] |
| output [7:0] | b2; | // b2[7], b2[6]... b2[0] | |
| input | c; | // single signal | |

- a represents a 32-bit value, so we prefer to define it as: [31:0] a
- It is preferred over [0:31] a which resembles arraydefinition
- It is good practice to be consistent with the representation of multi-bit signals, i.e., always [31:0] or always [0:31]

Manipulating Bits

- Bit Slicing
- Concatenation
- Duplication

Basic Syntax

- Verilog is case sensitive
- SomeName and somename are not the same!
- Names cannot start with numbers:
- 2 good is not a valid name
- Whitespaces are ignored

```
// Single line comments start with a //
/* Multiline comments
    are defined like this */
```


Two Main Styles of HDL Implementation

- Structural (Gate-Level)
- The module body contains gate-level description of the circuit
- Describe how modules are interconnected
- Each module contains other modules (instances)
- ... and interconnections between those modules
- Describes a hierarchy of modules defined as gates
- Behavioral
- The module body contains functional description of the circuit
- Contains logical and mathematical operators
- Level of abstraction is higher than gate-level
- Many possible gate-level realizations of a behavioral description
- Many practical designs use a combination of both

Structural (Gate-Level) HDL

Structural HDL: Instantiating a Module

Schematic of module "top" that is built from two instances of module "small"

Structural HDL Example

- Module Definitions in Verilog

Structural HDL Example

- Defining wires (module interconnections)

Structural HDL Example

- The first instantiation of the "small" module

Structural HDL Example

- The second instantiation of the "small" module

Structural HDL Example

- Short form of module instantiation

Structural HDL Example (II)

- Verilog supports basic logic gates as predefined primitives
- These primitives are instantiated like modules except that they are predefined in Verilog and do not need a module definition

Behavioral HDL

Recall: Two Main Styles of HDL Implementation

- Structural (Gate-Level)
- The module body contains gate-level description of the circuit
- Describe how modules are interconnected
- Each module contains other modules (instances)
- ... and interconnections between those modules
- Describes a hierarchy of modules defined as gates
- Behavioral
- The module body contains functional description of the circuit
- Contains logical and mathematical operators
- Level of abstraction is higher than gate-level
- Many possible gate-level realizations of a behavioral description
- Many practical designs use a combination of both

Behavioral HDL: Defining Functionality

```
module example (a, b, c, y);
        input a;
    input b;
    input c;
    output y;
// here comes the circuit description
assign y = ~a & ~b & ~c |
```

endmodule

Behavioral HDL: Schematic View

A behavioral implementation still models a hardware circuit!

Bitwise Operators in Behavioral Verilog

```
module gates(input [3:0] a, b,
    output [3:0] y1, y2, y3, y4, y5);
    /* Five different two-input logic
        gates acting on 4 bit buses */
    assign y1 = a & b; // AND
    assign y2 = a | b; // OR
    assign y3 = a ^ b; // XOR
    assign y4 = ~(a & b); // NAND
    assign y5 = ~(a | b); // NOR
```

endmodule

Bitwise Operators: Schematic View

Reduction Operators in Behavioral Verilog

```
module and8(input [7:0] a,
output y);
assign y = &a;
// &a is much easier to write than
// assign y = a[7] & a[6] & a[5] & a[4] &
// a[3] & a[2] & a[1] & a[0];
```

endmodule

Reduction Operators: Schematic View

Conditional Assignment in Behavioral Verilog

```
module mux2(input [3:0] d0, d1,
    input s,
    output [3:0] y);
    assign y = s ? d1 : d0;
    // if (s) then y=d1 else y=d0;
```

endmodule

- ? : is also called a ternary operator as it operates on three inputs:
- S
- d 1
- dO

Conditional Assignment: Schematic View

More Complex Conditional Assignments

```
module mux4(input [3:0] d0, d1, d2, d3
    input [1:0] s,
    output [3:0] y);
    assign y = s[1] ? ( s[0] ? d3 : d2)
        : ( s[0] ? d1 : d0);
    // if (s1) then
    // if (s0) then y=d3 else y=d2
// else
// if (s0) then y=d1 else y=d0
```

endmodule

Even More Complex Conditional Assignments

```
module mux4(input [3:0] d0, d1, d2, d3
                input [1:0] s,
                output [3:0] y);
    assign y = (s == 2'b11) ? d3 :
        (s == 2'b10) ? d2 :
        (s == 2'b01) ? d1 :
        d0;
// if (s = "11") then y= d3
// else if (s = "10") then y= d2
// else if (s = "01") then y= d1
// else y= d0
endmodule
```


Precedence of Operations in Verilog

Highest

How to Express Numbers ?

> N' Bxx 8' b0000_0001

- (N) Number of bits
- Expresses how many bits will be used to store the value
- (B) Base
- Can be b (binary), h (hexadecimal), d (decimal), o (octal)
- (xx) Number
- The value expressed in base
- Can also have X (invalid) and Z (floating), as values
- Underscore _ can be used to improve readability

Number Representation in Verilog

Verilog	Stored Number	Verilog	Stored Number
4'b1001	1001	4'd5	0101
8'b1001	00001001	12'hFA3	111110100011
8'b0000_1001	00001001	8'o12	00001010
8'bxX0X1zZ1	XXOX 1 ZZ1	4'h7	0111
'b01	0000 .. 0001	12'h0	000000000000
	32 bits (default)		

Reminder: Floating Signals (Z)

- Floating signal: Signal that is not driven by any circuit
- Open circuit, floating wire
- Also known as: high impedance, hi-Z, tri-stated signals

```
module tristate_buffer(input [3:0] a,
                        input en,
    output [3:0] y);
    assign y = en ? a : 4'bz;
endmodule
```


Tri-State Buffer

- A tri-state buffer enables gating of different signals onto a wire

Figure 2.40 Tristate buffer

- Floating signal (Z): Signal that is not driven by any circuit
- Open circuit, floating wire

Example: Use of Tri-State Buffers

- Imagine a wire connecting the CPU and memory
- At any time only the CPU or the memory can place a value on the wire, both not both
- You can have two tri-state buffers: one driven by CPU, the other memory; and ensure at most one is enabled at any time

Example Design with Tri-State Buffers

Another Example

Truth Table for AND with Z and X

AND		A			
		0	1	z	x
	0	0	0	0	0
	1	0	1	X	x
B	z	0	x	X	X
	x	0	x	X	x

What Happens with HDL Code?

- Synthesis

- Modern tools are able to map synthesizable HDL code into low-level cell libraries \rightarrow netlist describing gates and wires
- They can perform many optimizations
- ... however they can not guarantee that a solution is optimal
- Mainly due to computationally expensive placement and routing algorithms
- Most common way of Digital Design these days
- Simulation
- Allows the behavior of the circuit to be verified without actually manufacturing the circuit
- Simulators can work on structural or behaviora/ HDL

Recall This "example"

```
module example (a, b, c, y);
        input a;
    input b;
    input c;
    output y;
// here comes the circuit description
assign y = ~a & ~b & ~c |
    a & ~b & ~c |
    a & ~b & c;
endmodule
```


Synthesizing the "example"

Simulating the "example"

Now:

800 ns

What We Have Seen So Far

- Describing structural hierarchy with Verilog
- Instantiate modules in an other module
- Describing functionality using behavioral modeling
- Writing simple logic equations
- We can write AND, OR, XOR, ...
- Multiplexer functionality
- If ... then ... else
- We can describe constants
- But there is more...

More Verilog Examples

- We can write Verilog code in many different ways
- Let's see how we can express the same functionality by developing Verilog code
- At a low-level of abstraction
- Poor readability
- More optimization opportunities (especially for low-level tools)
- At a high-level of abstraction
- Better readability
- Limited optimization opportunities

Comparing Two Numbers

- Defining your own gates as new modules
- We will use our gates to show the different ways of implementing a 4-bit comparator (equality checker)

An XNOR gate

```
module MyXnor (input A, B,
                        output Z);
    assign Z = ~(A ^ B ); //not XOR
    endmodule
```


An AND gate

```
module MyAnd (input A, B,
                                    output Z);
    assign Z = A & B; // AND
endmodule
```


Gate-Level Implementation

```
module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
    output eq);
    wire c0, c1, c2, c3, c01, c23;
MyXnor i0 (.A(a0), .B(b0), .Z(c0) ); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1) ); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2) ); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3) ); // XNOR
MyAnd haha (.A(c0), .B(c1), .Z(c01) ); // AND
MyAnd hoho (.A(c2), .B(c3), .Z(c23) ); // AND
MyAnd bubu (.A(c01), .B(c23), .Z(eq) ); // AND
endmodule
```


Using Logical Operators

```
module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
    output eq);
    wire c0, c1, c2, c3, c01, c23;
MyXnor i0 (.A(a0), .B(b0), .Z(c0) ); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1) ); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2) ); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3) ); // XNOR
assign c01 = c0 & c1;
assign c23 = c2 & c3;
assign eq = c01 & c23;
endmodule
```


Eliminating Intermediate Signals

```
module compare (input a0, a1, a2, a3, b0, b1, b2, b3,
    output eq);
    wire c0, c1, c2, c3;
MyXnor i0 (.A(a0), .B(b0), .Z(c0) ); // XNOR
MyXnor i1 (.A(a1), .B(b1), .Z(c1) ); // XNOR
MyXnor i2 (.A(a2), .B(b2), .Z(c2) ); // XNOR
MyXnor i3 (.A(a3), .B(b3), .Z(c3) ); // XNOR
// assign c01 = c0 & c1;
// assign c23 = c2 & c3;
// assign eq = c01 & c23;
assign eq = c0 & c1 & c2 & c3;
```

endmodule

Multi-Bit Signals (Bus)

```
module compare (input [3:0] a, input [3:0] b,
    output eq);
    wire [3:0] c; // bus definition
MyXnor i0 (.A(a[0]), .B(b[0]), .Z(c[0]) ); // XNOR
MyXnor i1 (.A(a[1]), .B(b[1]), .Z(c[1]) ); // XNOR
MyXnor i2 (.A(a[2]), .B(b[2]), .Z(c[2]) ); // XNOR
MyXnor i3 (.A(a[3]), .B(b[3]), .Z(c[3]) ); // XNOR
assign eq = &c; // short format
```

endmodule

Bitwise Operations

```
module compare (input [3:0] a, input [3:0] b,
    output eq);
    wire [3:0] c; // bus definition
// MyXnor i0 (.A(a[0]), .B(b[0]), .Z(c[0]) );
// MyXnor i1 (.A(a[1]), .B(b[1]), .Z(c[1]) );
// MyXnor i2 (.A(a[2]), .B(b[2]), .Z(c[2]) );
// MyXnor i3 (.A(a[3]), .B(b[3]), .Z(c[3]) );
assign c = ~(a ^ b); // XNOR
assign eq = &c; // short format
endmodule
```


Highest Abstraction Level: Comparing Two Numbers

```
module compare (input [3:0] a, input [3:0] b,
    output eq);
// assign c = ~(a ^ b); // XNOR
// assign eq = &c; // short format
assign eq = (a == b) ? 1 : 0; // really short
endmodule
```


Writing More Reusable Verilog Code

- We have a module that can compare two 4-bit numbers
- What if in the overall design we need to compare:
- 5-bit numbers?
- 6-bit numbers?
- \mathbf{N}-bit numbers?
- Writing code for each case looks tedious
- What could be a better way?

Parameterized Modules

In Verilog, we can define module parameters

```
module mux2
    #(parameter width = 8) // name and default value
        (input [width-1:0] d0, d1,
        input s,
        output [width-1:0] y);
    assign y = s ? d1 : d0;
endmodule
```

We can set the parameters to different values when instantiating the module

Instantiating Parameterized Modules

```
module mux2
    #(parameter width = 8) // name and default value
        (input [width-1:0] d0, d1,
        input s,
        output [width-1:0] y);
    assign y = s ? d1 : d0;
endmodule
```


What About Timing?

- It is possible to define timing relations in Verilog. BUT:
- These are ONL Y for simulation
- They CAN NOT be synthesized
- They are used for modeling delays in a circuit

```
`timescale 1ns/1ps
module simple (input a, output z1, z2);
assign #5 z1 = ~a; // inverted output after 5ns
assign #9 z2 = a; // output after 9ns
endmodule
```

More to come later today!

Good Practices

- Develop/use a consistent naming style
- Use MSB to LSB ordering for buses
- Use " $a[31: 0]$ ", not " $a[0: 31$]"
- Define one module per file
- Makes managing your design hierarchy easier
- Use a file name that equals module name
- e.g., module TryThis is defined in a file called TryThis.v
- Always keep in mind that Verilog describes hardware

Summary (HDL for Combinational Logic)

- We have seen an overview of Verilog
- Discussed structural and behavioral modeling
- Studied combinational logic constructs

Implementing Sequential Logic Using Verilog

Combinational + Memory $=$ Sequential

Sequential Logic in Verilog

- Define blocks that have memory
- Flip-Flops, Latches, Finite State Machines
- Sequential Logic state transition is triggered by a "CLOCK" signal
- Latches are sensitive to level of the signal
- Flip-flops are sensitive to the transitioning of signal
- Combinational HDL constructs are not sufficient to express sequential logic
- We need new constructs:
- always
- posedge/negedge

The "always" Block

```
always @ (sensitivity list) statement;
```

Whenever the event in the sensitivity list occurs, the statement is executed

Example: D Flip-Flop

- posedge defines a rising edge (transition from 0 to 1).
- Statement executed when the clk signal rises (posedge of clk)
- Once the clk signal rises: the value of d is copied to q

Example: D Flip-Flop

```
module flop(input clk,
    input [3:0] d,
    output reg [3:0] q);
        2lways @ (posedge clk)
        q <= d;
        // pronounced "q gets d"
endmodule
```

- assign statement is not used within an always block
- <= describes a non-blocking assignment
- We will see the difference between blocking assignment and non-blocking assignment soon

Example: D Flip-Flop

```
module flop(input clk,
input [3:0] d,
    output reg [3:0] q);
    always @ (posedge clk)
    q <= d; // pronounced "q gets d"
endmodule
```

- Assigned variables need to be declared as reg
- The name reg does not necessarily mean that the value is a register (It could be, but it does not have to be)
- We will see examples later

Asynchronous and Synchronous Reset

- Reset signals are used to initialize the hardware to a known state
- Usually activated at system start (on power up)
- Asynchronous Reset
- The reset signal is sampled independent of the clock
- Reset gets the highest priority
- Sensitive to glitches, may have metastability issues
- Will be discussed in Lecture 8
- Synchronous Reset
- The reset signal is sampled with respect to the clock
- The reset should be active long enough to get sampled at the clock edge
- Results in completely synchronous circuit

D Flip-Flop with Asynchronous Reset

```
\begin{tabular}{|c|c|c|c|}
\hline module flop_ar & ```
(input
    input
    input
    output reg
``` & \[
\begin{aligned}
& {[3: 0]} \\
& {[3: 0]}
\end{aligned}
\] & \\
\hline
\end{tabular}
 always@ (posedge clk, negedge reset)
 begin
 if (reset == 0) q <= 0; // when reset
 else q <= d; // when clk
 end
endmodule
```

- In this example: two events can trigger the process:
- A rising edge on clk
- A falling edge on reset


## D Flip-Flop with Asynchronous Reset

```
module flop_ar (input clk,
 input reset,
 input [3:0] d,
 output reg [3:0] q);
 always @ (posedge clk, negedge reset)
 begin
 If (reset == 0) q <= 0; // when reset
 else qus q <= d; // when clk
endmodule
```

- For longer statements, a begin-end pair can be used
- To improve readability
- In this example, it was not necessary, but it is a good idea


## D Flip-Flop with Asynchronous Reset

```
module flop_ar (input % clk,
 always @ (posedge clk, negedge reset)
 begin
 if (reset == 0) q<= 0; // when reset
 end
endmodule
```

- First reset is checked: if reset is $0, q$ is set to 0 .
- This is an asynchronous reset as the reset can happen independently of the clock (on the negative edge of reset signal)
- If there is no reset, then regular assignment takes effect


## D Flip-Flop with Synchronous Reset

```
module flop_sr (input clk,
 input reset,
 input [3:0] d,
 output reg [3:0] q);
 always @ (posedge clk)
 if (reset == '0') q <= 0; // when reset
 else q <= d; // when clk
 end
endmodule
```

- The process is sensitive to only clock
- Reset happens only when the clock rises. This is a synchronous reset


## D Flip-Flop with Enable and Reset

```
module flop_en_ar (input clk,
 input reset,
 input en,
 input [3:0] d,
 output reg [3:0] q);
 always @ (posedge clk, negedge reset)
 begin
 if (nocot == '0') q <= 0; // when reset
 else if (en) q <= d; // when en AND clk
 end
endmodule
```

- A flip-flop with enable and reset
- Note that the en signal is not in the sensitivity list
- q gets d only when clk is rising and en is 1


## Example: D Latch

```
module latch (input clk,
input [3:0] d,
output reg [3:0] q);
always @ (clk, d)
 if (clk) q <= d; // latch is transparent when
 // clock is 1
endmodule
```


## Summary: Sequential Statements So Far

- Sequential statements are within an always block
- The sequential block is triggered with a change in the sensitivity list
- Signals assigned within an always must be declared as reg
- We use <= for (non-blocking) assignments and do not use assign within the always block.


## Basics of always Blocks

```
module example (input clk,
 input [3:0] d,
 output reg [3:0] q);
 wire [3:0] normal;
always @ (posedge clk)
 special <= d; // first FF array
 assign normal = ~ special; // simple assignment
 always @ (posedge clk)
 q <= normal; // second FF array
endmodule
```

You can have as many always blocks as needed
Assignment to the same signal in different always blocks is not allowed!

## Why Does an always Block Remember?

```
module flop (input clk,
 input [3:0] d,
 output reg [3:0] q);
 always @ (posedge clk)
 begin
 q <= d; // when clk rises copy d to q
 end
endmodule
```

- This statement describes what happens to signal q
- ... but what happens when the clock is not rising?
- The value of $q$ is preserved (remembered)


## An always Block Does NOT Always Remember

module comb	$\begin{aligned} & \hline \text { (input } \\ & \text { input } \quad[3: 0] \\ & \text { output reg }[3: 0] \end{aligned}$	inv, data, result);
always @ if (inv) else	(inv, data)   result <= ~data; result <= data;	// trigger with inv, data   // result is inverted data   // result is data
endmodule		

- This statement describes what happens to signal result
- When inv is 1 , result is $\sim$ data
- When inv is not 1 , result is data
- The circuit is combinational (no memory)
- result is assigned a value in all cases of the if .. else block, always


## always Blocks for Combinational Circuits

- An always block defines combinational logic if:
- All outputs are always (continuously) updated

1. All right-hand side signals are in the sensitivity list

- You can use always @* for short

2. All left-hand side signals get assigned in every possible condition of if .. else and case blocks

- It is easy to make mistakes and unintentionally describe memorizing elements (latches)
- Vivado will most likely warn you. Make sure you check the warning messages
- Always blocks allow powerful combinational logic statements
- if .. else
- case


## Sequential or Combinational?

```
wire enable, data;
reg out_a, out_b;
always @ (*) begin
 out_a = 1'b0;
 if(enable) begin
 out a = data;
 end
 No assignment for ~enable
```

```
wire enable, data;
reg out_a, out_b;
always @ (data) begin
 out_a = 1'b0;
 out b = 1'b0;
 if enable) begin
 out_a = data;
 out_b = data;
 end
end Not in the sensitivity list
```

Sequential
Sequential

## The always Block is NOT Always Practical/Nice

```
reg [31:0] result;
wire [31:0] a, b, comb;
wire sel,
always @ (a, b, sel) // trigger with a, b, sel
 if (sel) result <= a; // result is a
 else result <= b; // result is b
assign comb = sel ? a : b;
```

- Both statements describe the same multiplexer
- In this case, the always block is more work


## always Block for Case Statements (Handy!)

```
module sevensegment (input [3:0] data,
 output reg [6:0] segments);
```

```
always @ (*) // * is short for all signals
```

always @ ( * ) // * is short for all signals
case (data) // case statement
case (data) // case statement
4'd0: segments = 7'b111_1110; // when data is 0
4'd1: segments = 7'b011_0000; // when data is 1
4'd2: segments = 7'b110_1101;
4'd3: segments = 7'b111_1001;
4'd4: segments = 7'b011_0011;
4'd5: segments = 7'b101_1011;
// etc etc
default: segments = 7'b000_0000; // required
endcase

```
endmodule

\section*{Summary: always Block}
- if . . else can only be used in always blocks
- The always block is combinational only if all regs within the block are always assigned to a signal
- Use the default case to make sure you do not forget an unimplemented case, which may otherwise result in a latch
- Use casex statement to be able to check for don't cares

\section*{Non-Blocking and Blocking Assignments}

\section*{Non-blocking (<=)}
```

always @ (a)
begin
a <= 2'b01;
b <= a;
// all assignments are made here
// b is not (yet) 2'b01
end

```
- All assignments are made at the end of the block
- All assignments are made in parallel, process flow is not-blocked

Blocking (=)
```

always @ (a)
begin
a = 2'b01;
a is 2'b01
b = a;
// b is now 2'b01 as well
end

```
- Each assignment is made immediately
- Process waits until the first assignment is complete, it blocks progress

\section*{Example: Blocking Assignment}
- Assume all inputs are initially ' 0 '
\[
\begin{aligned}
& \text { always @ (*) } \\
& \text { begin } \\
& \mathrm{p} \quad=\mathrm{a} \wedge \mathrm{~b} \text {; } \\
& / / \mathrm{p}=0 \quad 1 \\
& \mathrm{~g} \quad=\mathrm{a} \& \mathrm{~b} \text {; } \\
& / / \mathrm{g}=0 \quad 0 \\
& \mathrm{~s}=\mathrm{p}^{\wedge} \text { cin; } / / \mathrm{s}=0 \quad 1 \\
& \text { cout }=\mathrm{g} \mid(\mathrm{p} \& \mathrm{cin}) ; / / \text { cout }=0 \quad 0 \\
& \text { end }
\end{aligned}
\]
- If a changes to ' 1 '
- All values are updated in order

\section*{The Same Example: Non-Blocking Assignment}
- Assume all inputs are initially ' 0 '
```

always @ ( * )
begin
p <= a ^ b ;
// p = 0 1
g <= a \& b ; // g = 0 0
s <= p ^ cin ; // s = 0 0
cout <= g | (p \& cin) ; // cout = 0 0
end

```
- If a changes to ' 1 '
- All assignments are concurrent
- When \(s\) is being assigned, \(p\) is still 0

\section*{The Same Example: Non-Blocking Assignment}
- After the first iteration, p has changed to ' 1 ' as well
```

always @ ( * )
begin
l <rlol
end

```
- Since there is a change in \(p\), the process triggers again
- This time \(s\) is calculated with \(p=1\)

\section*{Rules for Signal Assignment}
- Use always @(posedge clk) and non-blocking assignments (<=) to model synchronous sequential logic
\[
\begin{aligned}
\text { always @ (posedge clk) } \\
\text { q <= d; // non-blocking }
\end{aligned}
\]
- Use continuous assignments (assign) to model simple combinational logic
\[
\text { assign } y=a \& b ;
\]

\section*{Rules for Signal Assignment (Cont.)}
- Use always @ (*) and blocking assignments (=) to model more complicated combinational logic.
- You cannot make assignments to the same signal in more than one always block or in a continuous assignment

\section*{Recall: Finite State Machines (FSMs)}
- Each FSM consists of three separate parts:
- next state logic
- state register
- output logic

\section*{Recall: Finite State Machines (FSMs) Comprise}
- Sequential circuits
- State register(s)
- Store the current state and
- Load the next state at the clock edge

- Combinational Circuits
- Next state logic
- Determines what the next state will be

- Output logic
- Generates the outputs

\section*{FSM Example 1: Divide the Clock Frequency by 3}

The output \(Y\) is HIGH for one clock cycle out of every 3. In other words, the output divides the frequency of the clock by 3.

\section*{Implementing FSM Example 1: Definitions}
```

module divideby3FSM (input clk,
input reset,
output q);
reg [1:0] state, nextstate;
parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;

```
- We define state and nextstate as 2-bit reg
- The parameter descriptions are optional, it makes reading easier

\section*{Implementing FSM Example 1: State Register}

// state register
always @ (posedge clk, posedge reset)
if (reset) state <= 50 ;
else state <= nextstate;
- This part defines the state register (memorizing process)
- Sensitive to only clk, reset
- In this example, reset is active when it is '1' (active-high)

\section*{Implementing FSM Example 1: Next State Logic}

```

// next state logic
always @ (*)
case (state)
S0: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = S0;
default: nextstate = S0;
endcase

```

\section*{Implementing FSM Example 1: Output Logic}

- In this example, output depends only on state
- Moore type FSM

\section*{Implementation of FSM Example 1}
```

module divideby3FSM (input clk, input reset, output q);
reg [1:0] state, nextstate;
parameter S0 = 2'b00; parameter S1 = 2'b01; parameter S2 = 2'b10;
always @ (posedge clk, posedge reset) // state register
if (reset) state <= S0;
else state <= nextstate;
always @ (*)
// next state logic
case (state)
S0: nextstate = S1;
S1: nextstate = S2;
S2: nextstate = S0;
default: nextstate = S0;
endcase
assign q = (state == S0); // output logic
endmodule

```

\section*{FSM Example 2: Smiling Snail}
- Alyssa P. Hacker has a snail that crawls down a paper tape with 1 's and 0 's on it
- The snail smiles whenever the last four digits it has crawled over are 1101
- Design Moore and Mealy FSMs of the snail's brain

\section*{Implementing FSM Example 2: Definitions}
```

module SmilingSnail (input clk,
input reset,
input number,
output smile);
reg [1:0] state, nextstate;
parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;
parameter S3 = 2'b11;

```


\section*{Implementing FSM Example 2: State Register}
```

// state register
always @ (posedge clk, posedge reset)
if (reset) state <= S0;
else state <= nextstate;

```
- This part defines the state register (memorizing process)
- Sensitive to only clk, reset
- In this example reset is active when ' 1 ' (active-high)

\section*{Implementing FSM Example 2: Next State Logic}
```

// next state logic
always @ (*)
case (state)
S0: if (number) nextstate = S1;
else nextstate = S0;
S1: if (number) nextstate = S2;
else nextstate = S0;
S2: if (number) nextstate = S2;
else nextstate = S3;
S3: if (number) nextstate = S1;
else nextstate = S0;
default: nextstate = S0;
endcase

```


\section*{Implementing FSM Example 2: Output Logic}
```

// output logic
assign smile = (number \& state == S3);

```
- In this example, output depends on state and input - Mealy type FSM
- We used a simple combinational assignment

\section*{Implementation of FSM Example 2}
```

module SmilingSnail (input clk,
input reset,
input number,
output smile);
reg [1:0] state, nextstate;
parameter S0 = 2'b00;
parameter S1 = 2'b01;
parameter S2 = 2'b10;
parameter S3 = 2'b11;
// state register
always @ (posedge clk, posedge
reset)
if (reset) state <= S0;

```
always @ (*) // next state logic
 case (state)
 S0: if (number)
 nextstate = S1;
 else nextstate = S0;
 S1: if (number)
 nextstate = S2;
 else nextstate = S0;
 S2: if (number)
 nextstate = S2;
 else nextstate = S3;
 S3: if (number)
 nextstate = S1;
 else nextstate = S0;
 default: nextstate = S0;
 endcase
 // output logic
assign smile \(=\) (number \& state==S3);
endmodule

\section*{What Did We Learn?}
- Basics of describing sequential circuits in Verilog
- The always statement
- Needed for defining memorizing elements (flip-flops, latches)
- Can also be used to define combinational circuits
- Blocking vs Non-blocking statements
- = assigns the value immediately
- <= assigns the value at the end of the block
- Describing FSMs in Verilog
- Next state logic
- State assignment
- Output logic

\section*{Next Lecture:} Timing and Verification

\title{
Digital Design \& Computer Arch.
}

Lecture 7: Hardware Description
Languages and Verilog

\author{
Prof. Onur Mutlu
}

ETH Zürich
Spring 2021
18 March 2021

\section*{Logic Simplification:}

\section*{Karnaugh Maps (K-Maps)}

\section*{Karnaugh Maps are Fun...}
- A pictorial way of minimizing circuits by visualizing opportunities for simplification
- They are for you to study on your own...
- See Backup Slides
- Read H\&H Section 2.7
- Watch videos of Lectures 5 and 6 from 2019 DDCA course:
a https://youtu.be/OksOPeaOUjE?list=PL5Q2soXY2Zi8J58xLKBNF QFHRO3GrXxA9\&t=4570
a https://youtu.be/ozs18ARNG6s?list=PL5Q2soXY2Zi8J58xLKBN FQFHRO3GrXxA9\&t=220

\section*{Karnaugh Map Methods}

\footnotetext{
K-map adjacencies go "around the edges"
Wrap around from first to last column
Wrap around from top row to bottom row
}

\section*{Backup Slides on}

Karnaugh Maps (K-Maps)

\section*{Complex Cases}
- One example
\[
\text { Cout }=\bar{A} B C+A \bar{B} C+A B \bar{C}+A B C
\]
- Problem
- Easy to see how to apply Uniting Theorem...
- Hard to know if you applied it in all the right places...
- ...especially in a function of many more variables
- Question
- Is there an easier way to find potential simplifications?
- i.e., potential applications of Uniting Theorem...?
- Answer
- Need an intrinsically geometric representation for Boolean f()
- Something we can draw, see...

\section*{Karnaugh Map}
- Karnaugh Map (K-map) method
- K-map is an alternative method of representing the truth table that helps visualize adjacencies in up to 6 dimensions
- Physical adjacency \(\leftrightarrow\) Logical adjacency

2-variable K-map

3-variable K-map

4-variable K-map
\begin{tabular}{|c|c|c|c|c|}
\hline & 00 & 01 & 11 & 10 \\
\hline 00 & 0000 & 0001 & 0011 & 10 \\
\hline 01 & 0100 & 0101 & 0111 & 0110 \\
\hline 11 & 1100 & 1101 & 1111 & 1110 \\
\hline 10 & 1000 & 1001 & 1011 & 1010 \\
\hline
\end{tabular}

\section*{K-map Cover - 4 Input Variables}

\section*{Logic Minimization Using K-Maps}
- Very simple guideline:
- Circle all the rectangular blocks of 1's in the map, using the fewest possible number of circles
- Each circle should be as large as possible
- Read off the implicants that were circled
- More formally:
- A Boolean equation is minimized when it is written as a sum of the fewest number of prime implicants
- Each circle on the K-map represents an implicant
- The largest possible circles are prime implicants

\section*{K-map Rules}
- What can be legally combined (circled) in the K-map?
- Rectangular groups of size \(2^{\mathrm{k}}\) for any integer \(k\)
- Each cell has the same value (1, for now)
- All values must be adjacent
- Wrap-around edge is okay
- How does a group become a term in an expression?
- Determine which literals are constant, and which vary across group
- Eliminate varying literals, then AND the constant literals
- constant \(1 \rightarrow\) use \(\mathbf{X}\), constant \(0 \rightarrow\) use \(\bar{X}\)
- What is a good solution?
- Biggest groupings \(\rightarrow\) eliminate more variables (literals) in each term
- Fewest groupings \(\rightarrow\) fewer terms (gates) all together
- OR together all AND terms you create from individual groups

\section*{K-map Example: Two-bit Comparator}

Design Approach:
Write a 4-Variable K-map for each of the 3 output functions
\begin{tabular}{llll|lll}
A & B & C & D & F1 & F2 & F3 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1 & 0 & 0
\end{tabular}

\section*{K-map Example: Two-bit Comparator (2)}

\section*{K-map Example: Two-bit Comparator (3)}

\section*{K-maps with "Don't Care"}
- Don't Care really means I don't care what my circuit outputs if this appears as input
- You have an engineering choice to use DON'T CARE patterns intelligently as 1 or 0 to better simplify the circuit

\section*{Example: BCD Increment Function}

BCD (Binary Coded Decimal) digits
- Encode decimal digits 0-9 with bit patterns \(0000_{2}-1001_{2}\)
- When incremented, the decimal sequence is \(0,1, \ldots, 8,9,0,1\)
\(\left.\begin{array}{llll|llll}A & B & C & D & W & X & Y & Z \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & X & X & X & X \\ 1 & 0 & 1 & 1 & X & X & X & X \\ 1 & 1 & 0 & 0 & X & X & X & X \\ 1 & 1 & 0 & 1 & X & X & X & X \\ 1 & 1 & 1 & 0 & X & X & X & X \\ 1 & 1 & 1 & 1 & X & X & X & X\end{array}\right]\)

These input patterns should never be encountered in practice (hey -- it's a BCD number!) So, associated output values are
"Don't Cares"

\section*{K-map for BCD Increment Function}

\section*{K-map Summary}
- Karnaugh maps as a formal systematic approach for logic simplification
- 2-, 3-, 4-variable K-maps
- K-maps with "Don't Care" outputs
- H\&H Section 2.7```

