Digital Design & Computer Arch.

Lecture 8: Timing and Verification

Prof. Onur Mutlu

ETH Zlrich
Spring 2021
19 March 2021

Required Readings (This Week)

Hardware Description Languages and Verilog
o H&H Chapter 4 in full

Timing and Verification
o H&H Chapters 2.9 and 3.5 + (start Chapter 5)

By tomorrow, make sure you are done with
o P&P Chapters 1-3 + H&H Chapters 1-4

Required Readings (Next Week)

Von Neumann Model, LC-3, and MIPS

o P&P, Chapter 4, 5

o H&H, Chapter 6

o P&P, Appendices A and C (ISA and microarchitecture of LC-3)
o H&H, Appendix B (MIPS instructions)

Programming
o P&P, Chapter 6

Recommended: Digital Building Blocks
o H&H, Chapter 5

What Will We Learn Today?

Timing in combinational circuits

o Propagation delay and contamination delay
o Glitches

Timing in sequential circuits
o Setup time and hold time
o Determining how fast a circuit can operate

Circuit Verification

o How to make sure a circuit works correctly
o Functional verification

o Timing verification

Tradeotts in Circuit Design

Circuit Design is a Tradeott Between:

Area
o Circuit area is proportional to the cost of the device

Speed / Throughput
o We want faster, more capable circuits

Power / Energy
o Mobile devices need to work with a limited power supply
o High performance devices dissipate more than 100W/cm?

Design Time
o Designers are expensive in time and money
o The competition will not wait for you

Requirements and Goals Depend On Application

Circuit Timing

Until now, we investigated logical functionality

What about timing?

o How fast is a circuit?

o How can we make a circuit faster?

o What happens if we run a circuit too fast?

A design that is logically correct can still fail because of
real-world implementation issues!

Part 1:
Combinational Circuit Timing

Digital LLogic Abstraction

= "Digital logic” is a convenient abstraction
o Output changes immediately with the input

10

Combinational Circuit Delay

= In reality, outputs are delayed from inputs
o Transistors take a finite amount of time to switch

Aoy

—»| delay €«——

time >

Real Inverter Delay Example

00 05 10 15 20 25 30 35 40 45
Time (ns)

Image source: Sandoval-Ibarra, F., and E. S. Hernandez-Bernal. "Ring CMOS NOT-based oscillators:

Analysis and design." Journal of applied research and technology, 2008.

12

Circuit Delay and Its Variation

Delay is fundamentally caused by
o Capacitance and resistance in a circuit
o Finite speed of light (not so fast on a nanosecond scale!)

Anything affecting these quantities can change delay:
o Rising (i.e., 0 -> 1) vs. falling (i.e., 1 -> 0) inputs

o Different inputs have different delays

o Changes in environment (e.g., temperature)

o Aging of the circuit

We have a range of possible delays from input to output

13

Delays trom Input to Output

Contamination delay (t_;): delay until Y starts changing
Propagation delay (t,,): delay until Y finishes changing

Example Circuit

’;:[@]7\/

Effect of Changing Input ‘A’

:‘7

D

b
Y

N

Time >

/

Cross-hatching
means value is changing 14

Calculating Long/Short Paths

= We care about both the /ongest and shortest paths in a
circuit (we will see why later in the lecture)

Critical Path
A nl
B n2
C
D —h Y
Short Path
= Critical (Longest) Path: tha =264 anp + tod or

= Shortest Path: ta =t anp

15

Example t 4 for a Real NAND-2 Gate

1A[] HVee

1BE@ 4B

1YE 4A

2A &94‘/

2BE§ 3B

2Y [i]3A

GND 7] ligav
Symbol |Parameter Conditions 25°C —40 °C to +125 °C |Unit
Min Typ Max Max Max
(85°C) |(125°C)

74HCO00
tpd propagation delay |[nA, nB to nY; see Figure 6 |

VCC =20V

ns

VCC =45V

ns

Vee =50V, C|_ =15 pF

ns

Veec=6.0V

ns

= Heavy dependence on voltage and temperature!

Source: Nexperia 2-input NAND (74HCO00) Datasheet, Section 10

16

Example Worst-Case t

= Two different implementations of a 4:1 multiplexer

Gate Delays Implementation 1 Implementation 2
S, S
Gate tpd (PS) Si S %7 ?Z
NOT 30 Vv
2-input AND 60 Do == B
3-input AND 80 Dy
4-input OR 90 De

tristate (A to Y) 50
tristate (enable to Y) 35 d

Out

JUU

tpd_sy= rpd_INV + rpd_ANDS + rpd_OFM rpd_sy= god_INV + rpd_ANDQ + rpd_TFII_SY
=30 ps+80 ps+90 ps =30 ps +60 ps + 35 ps
(a) ’<_m—>’ . €125 p3
tod dy=TIod AND3 *+ bod ORa tod dy=1lpd TRI_AY

= Different designs lead to very different delays

17

Disclaimer: Calculating Long/Short Paths

It's not always this easy to determine the long/short paths!
o Not all input transitions affect the output
o Can have multiple different paths from an input to output

In reality, circuits are not all built equally
o Different instances of the same gate have different delays
o Wires have nonzero delay (increasing with length)

o Temperature/voltage affect circuit speeds
Not all circuit elements are affected the same way
Can even change the critical path!

Designers assume “worst-case” conditions and run many
statistical simulations to balance yield/performance

18

Combinational Timing Summary

Circuit outputs change some time after the inputs change
o Caused by finite speed of light (not so fast on a ns scale!)
o Delay is dependent on inputs, environmental state, etc.

The range of possible delays is characterized by:
o Contamination delay (t.4): minimum possible delay
o Propagation delay (t,q): maximum possible delay

Delays change with:
o Circuit design (e.g., topology, materials)
o Operating conditions

19

Output Glitches

20

Glitches

Glitch: one input transition causes multiple output transitions

Circuit initial state

s
Ba

Glitches

= Glitch: one input transition causes multiple output transitions

s
B

1->7?

22

Glitches

= Glitch: one input transition causes multiple output transitions

Slow path (3 gates)

1->0
1->7?

Fast path (2 gates)

23

Glitches

= Glitch: one input transition causes multiple output transitions

Slow path (3 gates)

1->0
1->0->1

Fast path (2 gates)

24

Glitches

= Glitch: one input transition causes multiple output transitions

Slow path (3 gates)

Fast path (2 gates)

Time

25

Avoiding Glitches Using K-Maps

Glitches are visible in K-maps
o Recall: K-maps show the results of a change in a single input
o A glitch occurs when moving between prime implicants

(A) 0 AB
(B) 1->0
(Y)1->0->1
(C) 1 BC
Y _ AB
o\ 00 01 11 10

Y=AB+BC
26

Avoiding Glitches Using K-Maps

= We can fix the issue by adding in the consensus term
o Ensures no transition between different prime implicants

(A) 0
(B) 1->0
c 1
4 AB
00 01 11

1 _@ L O) 1) ° No dependenceon B

Y Pl — - => itch!
AC Y=AB+BC+AC No glitch

27

Avoiding Glitches

Q: Do we always care about glitches?

o Fixing glitches is undesirable
More chip area
More power consumption
More design effort

o The circuit is eventually guaranteed to converge to the
right value regardless of glitchiness

A: No, not always!

o If we only care about the long-term steady state output,
we can safely ignore glitches

o Up to the designer to decide if glitches matter in their
application

28

Part 2:
Sequential Circuit Timing

29

Recall: D Flip-Flop

Flip-flop samples D at the active clock edge
o It outputs the sampled value to Q
o It “stores” the sampled value until the next active clock edge

CLK

The D flip-flop is made from combinational elements
D, Q, CLK all have timing requirements!

30

D Flip-Flop Input Timing Constraints

D must be stable when sampled (i.e., at active clock edge)

|
| | |
D XA 000KKK
D ¢ <« >
i tsetup |thold i

t

a

Setup time (t.y,,): time before the clock edge that data
must be stable (i.e. not changing)

Hold time (t,,,4): time after the clock edge that data must
be stable

Aperture time (t,): time around clock edge that data
must be stable (t, = terup T thoid)

31

Violating Input Timing: Metastability

If D is changing when sampled, metastability can occur
o Flip-flop output is stuck somewhere between ‘1’ and ‘0’
o Output eventually settles non-deterministically

Example Timing Violations (NAND RS Latch)

CLK

Q = Non-deterministic
.\, Convergence 9 ;"
Metas ta bility M e Y P R .. Vp— ...,._..,."

Source: W. J. Dally, Lecture notes for EE108A, Lecture 13: Metastability and
Synchronization Failure (When Good Flip-Flops go Bad) 11/9/2005.

Flip-Flop Output Timing

I
CLK CLK m
|

Q

Contamination delay clock-to-q (t.): earliest time after
the clock edge that Q starts to change (i.e., is unstable)

Propagation delay clock-to-q (t,.,): latest time after the
clock edge that Q stops changing (i.e., is stable)

33

Recall: Sequential System Design

CLK

+

R1

CLK

%7

+

R2

= Multiple flip-flops are connected with combinational logic

= Clock runs with period 7, (cycle time)

= Must meet timing requirements for both R1 and R2!

34

Ensuring Correct Sequential Operation

= Need to ensure correct input timing on R2

= Specifically, D2 must be stable:

C{_K

0 at least toe, before the clock edge
o at least until .4 after the clock edge

+

=

R1

¢

|
CLK ,{
|
|
: | !
D O R
H—N<—>i
i tsetup |thold i

t

a

35

Ensuring Correct Sequential Operation

= This means there is both a minimum and maximum

delay between two flip-flops Potential
o CL too fast -> R2 t,;,,4 Violation

o CL too slow -> R2 tg,, Violation Rz GETLD

VIOLATION!
CLK Cll_K
==
(a) R1 R2
» T q
CLK \ y
| |
o1 | |
| |
D2 | |
i > ¢]
(b) tHOLD tSE TUP

36

Setup Time Constraint

= Safe timing depends on the maximum delay from R1 to R2
= The input to R2 must be stable at least £.,, before the clock edge.

CILK CILK

+£[0]]%7/_1;

Setup Time Constraint

= Safe timing depends on the maximum delay from R1 to R2
= The input to R2 must be stable at least £.,, before the clock edge.

38

Setup Time Constraint

= Safe timing depends on the maximum delay from R1 to R2
= The input to R2 must be stable at least £.,, before the clock edge.

CILK CILK

Qi D2
7] = T >t + g

Setup Time Constraint

= Safe timing depends on the maximum delay from R1 to R2
= The input to R2 must be stable at least £.,, before the clock edge.

CILK CLK

501[]DZ; ‘f
i © i Tc > tpcq + tpd + tsetup

Setup Time Constraint

= Safe timing depends on the maximum delay from R1 to R2
= The input to R2 must be stable at least £.,, before the clock edge.

CLK CLK Wasted work
l £Q1[]D2 I / \
7 © 7 Tc > tpcq + tpd + tsetup
H_J
1 T R2 Useful work
I : >
CLK \ y—
| . |
Q1 : : (: Sequencing overhead:
D2 | e | amount of time wasted |
It |t Tt each cycle due to sequencing
€ > P p element timing requirements

41

Constraint and Design Performance

Setup
Critical Path
SIDLVA
B n2
C
:)
Shzrt Path

= Critical path: path with the longest t4
Tc > tpcq + tpd + 1:setup

= Overall design performance is determined by the critical path t,4
o Determines the minimum clock period (i.e., max operating frequency)
o If the critical path is too long, the design will run slowly

o If critical path is too short, each cycle will do very little useful work
= i.e., most of the cycle will be wasted in sequencing overhead

42

Hold Time Constraint

= Safe timing depends on the minimum delay from R1 to R2
= D2 (i.e., R2 input) must be stable for at least &4 after the clock edge

Must not change until
t, . after the clock

CLK CLK
+ﬁ’£i‘[¢ 2]t

R1 R2
|

CLK r \ o
| |
Q1 : X :
D2 | XIOOOCOCOO |
| |
|tccq tcd |
I tFald I
L |

43

Hold Time Constraint

= Safe timing depends on the minimum delay from R1 to R2
= D2 (i.e., R2 input) must be stable for at least &4 after the clock edge

CILK CILK
_ M. Qf D2, M, teeq Tt
R1 R2
| |
CLK \ Y
| |
QL T XX |
| |
D2 | I
L | |
| |
| |
| |

44

Hold Time Constraint

= Safe timing depends on the minimum delay from R1 to R2

= D2 (i.e., R2 input) must be stable for at least &4 after the clock edge

ClLK

]%

R2

CLK
—— 7—[¢
R1
CLK ‘; \
Q1
D2

tccq + tcd > thold

45

Hold Time Constraint

Safe timing depends on the minimum delay from R1 to R2
D2 (i.e., R2 input) must be stable for at least &,,,4 after the clock edge

CILK ClLK
e 7&[0]]% s tccq + tcd > thold
R1 R2
| | ted > thowd - tccq
CLK \ |8
QL 1 XX \
We need to have a minimum

combinational delay!

| |
| |
| |
D2 | XK l
| |
| |
| |
| |

46

Hold Time Constraint

Safe timing depends on the minimum delay from R1 to R2
D2 (i.e., R2 input) must be stable for at least &,,,4 after the clock edge

CLK CLK
I I

e 7&[0]]% s tccq + tcd > thold

R1 R2

| | ted > thowd - tccq

CLK \ |8

1
2 ey Does NOT depend on T/

Very hard to fix t,,44 Violations after
manufacturing- must modify circuits!

| |
| |
| |
D2 | XK l l
| |
| |
| |
| |

47

Sequential Timing Summary

tecq/ tocq clock-to-q delay (contamination/propagation)
tea/ tog combinational logic delay (contamination/propagation)
teetup time that FF inputs must be stable before next clock edge
thold time that FF inputs must be stable after a clock edge
T, clock period
CLK CLK
A oA
R1 R2
| | < wl
CLK \ | CLK y
Q1 : WYX : Q1 : ‘ :
SRR (0 P 05 G
ooy oo | ey o e
|
|

| 1:hold

48

Example: Timing Analysis

CLK CLK

‘|VA Timing Characteristics
:>_ tecq =30 ps
S5 |
theq =50 ps
SN X WX
IYIe J L tsetup =60 ps
_ED Y' Y th0|d =70 PS
2 [toa =35 ps
t ., = S)
pd S |: tcd =25 Ps
tcd =
Check setup time constraints: Check hold time constraints:
Tc > tpcq + tpd + tsetup tccq + tcd > thold ?
T.>
fmax = 1/7-C =

49

Example: Timing Analysis

CLK ClK _. . < 4:
_[Timing Characteristics
tecq =30 ps
1B
7 theq =50 ps
x [Y1x
—<7C []_ tsetup =60 Ps
_ED Y' Y th0|d =70 PS
% thq =35 ps
t,q =3 x35ps =105 ps 5|t = 25 ps
tcd =
Check setup time constraints: Check hold time constraints:

T.> thegttatt tecq T tod > thold ?

setup
T.>
fmax = 1/Tc =

50

Example: Timing Analysis

CLK CLK « . o 2.
_F7A Timing Characteristics

D— tecq =30 ps

=50 ps

tocq

tsetup =60 ps

thow ~ =70ps
% thq =35 ps
t,s =3 x35ps =105 ps g{tw’ = 25 ps
t.y=25ps
Check setup time constraints: Check hold time constraints:

T.> thegttatt tecq T tod > thold ?

setup
T.>
fmax = 1/Tc =

51

Example: Timing Analysis

CLK CLK L o
_[7|A Timing Characteristics
- tccq =30 Ps

V1B tpd
1 tocq =50 ps
x [1x
—<7C []_ tsetup =60 Ps
_ED Y MY thow ~ =70ps
Q _
setup & fod =35ps
t,s =3 x35ps =105 ps 5t - 25 ps

t.y=25ps
Check setup time constraints:
Tc > tpcq + tpd + tsetup

T.>(50+ 105+ 60) ps =215 ps
frnax = 1/T.= 4.65 GHz

Check hold time constraints:

tccq + tcd > thold ?

52

Example: Timing Analysis

CLK CLK o o
_[]L Timing Characteristics

DS 0
N71B

tccq
al }_l theq =50 ps

I jC]3< tewp = 60PS
. D tcd Y thow ~ =70ps
_r—' % thq =35 ps
t,s =3 x35ps =105 ps g{tw = 25 ps
t.y=25ps
Check setup time constraints: Check hold time constraints:

T.> thegttatt tecq T tod > thold ?

setup
T.>(50+ 105+ 60) ps =215 ps (30+ 25)ps >70 ps ?
frox= 1/T.= 4.65 GHz

53

Example: Timing Analysis

CLK CLK « e o g
Timing Characteristics

i
:>_ tecq =30 ps
theq =50 ps
x [Y1x
Pc SN []_ tews =60ps

> Y'MY thold =70 ps
E 2 [toa =35 ps
t,s =3 x35ps =105 ps g{ta’ = 25 ps
t.y=25ps
Check setup time constraints: Check hold time constraints:
T.>t o+t + toup tecq * teg > thota 7 P‘\\
T.>(50+ 105+ 60) ps =215 ps (30+ 25)ps>70ps ? ?

fnax = 1/T.= 4.65 GHz 54

Example: Fixing Hold Time Violation

Add buffers to the short paths:

CLK

tcd

Check setup time constraints:

T.>t, +t+t
T.>
fe=

Timing Characteristics
tecq =30 ps

t =50 ps

pcq

tsetup =60 ps

thow ~ =70ps
2 [toa =35 ps
o
g_ |: tcd =25 Ps

Check hold time constraints:

tccq + tcd > thold ?

55

Example: Fixing Hold Time Violation

Add buffers to the short paths:

CLK CLK
YA
e |
i Yl
- R il
N
gk - 7

t,s =3 x35ps =105 ps
t.;=2x25ps=>50ps

Check setup time constraints:
T, >ttty + toep

T.>
fe=

Timing Characteristics

tecq =30 ps
theq =50 ps
tsetup =60 ps
thow ~ =70ps
2 [toa =35 ps
(@)
g_ tcd =25 Ps

Check hold time constraints:

tccq + tcd > thold ?

56

Example: Fixing Hold Time Violation

Add buffers to the short paths:

Timing Characteristics

tecq =30 ps
theq =50 ps
tetup = 60Ps
thow ~ =70ps
-, tsetup % thq =35 ps
»d =3 X35 ps =105 ps g{tcd = 25 ps
t.y=2X25ps=50ps
Check setup time constraints: Check hold time constraints:

T.> thegttatt tecq T tod > thold ?

setup

T.>(50+ 105+ 60) ps =215 ps
f.=1/T.= 4.65 GHz

57

Example: Fixing Hold Time Violation

Add buffers to the short paths:

CLK CLK
YA
e |
i Yl
- R il
N
gk - 7

t,s =3 x35ps =105 ps

t.;=2x25ps=>50ps

Check setup time constraints:

Tc > tpcq + tpd + tsetup

T.>(50+ 105+ 60) ps =215 ps

fo= UT Q85 GH)

Note: no change
to max frequency!

Timing Characteristics

tecq =30 ps
theq =50 ps
tsetup =60 ps
thow ~ =70ps
2 [toa =35 ps
(@)
g_ tcd =25 Ps

Check hold time constraints:

tccq + tcd > thold ?

58

Example: Fixing Hold Time Violation

Add buffers to the short paths:
Timing Characteristics

CLK CLK
| tecq =30 ps
theq =50 ps
tccq tetup = 60Ps
thow ~ =70ps
2 [toa =35 ps
t,s =3 x35ps =105 ps g{tcd = 25 ps

t.y=2X25ps=50ps
Check setup time constraints: Check hold time constraints:

T.> thegttatt tecq T tod > thold ?

setup

T.>(50+ 105+ 60) ps =215 ps (30+50)ps >70ps ?
f.=1/T.= 4.65 GHz

59

Example: Fixing Hold Time Violation

Add buffers to the short paths:

CLK

A

5

C

CLK

XI

D

N

T

t,s =3 x35ps =105 ps

t.;=2x25ps=>50ps

Check setup time constraints:

Tc>tpcq+tpd+t

setup

T.>(50+ 105+ 60) ps =215 ps

f.=1/T.= 4.65 GHz

Timing Characteristics

tecq =30 ps
theq =50 ps
tsetup =60 ps
thow ~ =70ps
2 [toa =35 ps
(@)
g_ tcd =25 Ps

Check hold time constraints:

tccq + tcd > thold ?

(30+50)ps >70ps ? Q

b5

60

Clock Skew

= To make matters worse, clocks have delay too!
o The clock does not reach all parts of the chip at the same time!

= Clock skew: time difference between two clock edges

— D0 O
CLOCK A ok
SOURCE A
] a
Long, slow > Clk
g, 7

clock path

Qutput
Logic

Clock Source _ [1 [T LI LI
Point 4 [LI 1L LI 1T

Point B _ U LI LI LI

—_—p| le—

clock skew

61

Clock Skew Example

Example of the Alpha 21264 clock skew spatial distribution

P. E. Gronowski+, "High-performance Microprocessor Design," JSSC'98.

é?ﬁ, #‘_ fé}.\h %%

FEY

¢§ ,,s\“\ i‘f /’!g%;;b}&

1& ANy
:9 t}mgﬁ fs:;;ﬂ:.,, = E
ZAN

q, e g\ s
%s W&"—’

62

Clock Skew: Setup Time Revisited

Safe timing requires considering the worst-case skew
o Clock arrives at R2 before R1
o Leaves as little time as possible for the combinational logic

C{_K ClLK
 [MLQ1f D2, [V],
7 7 L (E J 7 7
R1 R2
. T, . : : .
< > Signal must arrive at D2 earfier

CLK1444A; AARAY /777:

CLK2/TTT 2 NS /777~ This effectively increases tgey,p:
.l : 3 Tc > tpcq + tpd + tsetup + tskew

D2 \)
> PN Tt +t+t.

<> < > <P + + :
heq toa tsotup fskew (o pcq pd setup, effective

63

Clock Skew: Hold Time Revisited

Safe timing requires considering the worst-case skew

o Clock arrives at R2 after R1

o Increases the minimum required delay for the combinational logic

C{_K ClLK
MLQ1(102, V],
7 7 L (E J 7 7

R1 R2

CLK1/T]T NN g
cLk2/77] NN [T
01:‘/&@(|

D2 | X
tccq i tcd

tskew

Signal must arrive at D2 /faten

This effectively increases
tcd + tccq > + 1:skew

\ J
Y

tcd + tccq > thold, effective

64

Clock Skew: Summary

= Skew effectively increases both tge,, and tyqq
o Increased sequencing overhead
o i.e., less useful work done per cycle

= Designers must keep skew to a minimum
o Requires intelligent “clock network” across a chip
o Goal: clock arrives at all locations at roughly the same time

(b) Q (c) i (d) Driving () g

| Crosslink o 2 free” | B

? | 5 8
i v 7 \Global | =

< 0l Ay | “ = \= mesh S o 2o

v| 1000 ¥ T T | = B Local : Vawir i+
%”-; — & = Trees ; p 722 :/ o

iy 3 Ol5 0] % o %)

00 0O 3 psne i b b dO4as)3

Source: Abdelhadi, Ameer, et al. "Timing-driven variation-aware nonuniform clock mesh synthesis." GLSVLSI'10.

65

Part 3:
Circuit Verification

66

How Do You Know That A Circuit Works?

You have designed a circuit
o Is it functionally correct?

o Even if it is logically correct, does the hardware meet all
timing constraints?

How can you test for:
o Functionality?
o Timing?

Answer: simulation tools!

o Formal verification tools (e.g., SAT solvers)
o HDL timing simulation (e.g., Vivado)

o Circuit simulation (e.g., SPICE)

67

Testing Large Digital Designs

Testing can be the most time consuming design stage
o Functional correctness of all logic paths
o Timing, power, etc. of all circuit elements

Unfortunately, low-level (e.q., circuit) simulation is much
slower than high-level (e.g., HDL, C) simulation

Solution: we split responsibilities:

o 1) Check only functionality at a high level (e.g., C, HDL)
(Relatively) fast simulation time allows high code coverage
Easy to write and run tests

o 2) Check only timing, power, etc. at low level (e.g., circuit)
No functional testing of low-level model

Instead, test functional equivalence to high-level model
o Hard, but easier than testing logical functionality at this level

Adapted from "CMOS VLSI Design 4e; Neil H. E. Weste and David Money Harris ©2011 Pearson 68

Testing Large Digital Designs

We have tools to handle different levels of verification

o Logic synthesis tool guarantees equivalence of high-level logic
and synthesized circuit-level description

o Timing verification tools check all circuit timings
o Design rule checks ensure that physical circuits are buildable

Our job as a logic designer is to:
o Provide functional tests for logical correctness of the design
o Provide timing constraints (e.qg., desired operating frequency)

Tools and/or circuit engineers will decide if it can be built!

Adapted from "CMOS VLSI Design 4e; Neil H. E. Weste and David Money Harris ©2011 Pearson 69

Part 4:

Functional Verification

/0

Functional Verification

Goal: check logical correctness of the design

Physical circuit timing (e.9., tsetup/thoia) 1S typically ignored
o May implement simple checks to catch obvious bugs
o We'll discuss timing verification later in this lecture

There are two primary approaches
o Logic simulation (e.g., C/C++/Verilog test routines)
o Formal verification techniques

In this course, we will use Verilog for functional verification

Testbench-Based Functional Testing

Testbench: a module created specifically to test a design
o Tested design is called the “device under test (DUT)”

Test Output
Pattern S1—Lp Checking

Generator Logic

Testbench

Testbench provides inputs (test patterns) to the DUT
o Hand-crafted values

o Automatically generated (e.g., sequential or random values)
Testbench checks outputs of the DUT against:

o Hand-crafted values

o A “golden design” that is known to be bug-free

Testbench-Based Functional Testing

A testbench can be:

o HDL code written to test other HDL modules
o Circuit schematic used to test other circuit designs

The testbench is not designed for hardware synthesis!
o Runs in simulation only

HDL simulator (e.g., Vivado simulator)

SPICE circuit simulation
o Testbench uses simulation-only constructs

E.g., “wait 10ns”

E.g., ideal voltage/current source

Not suitable to be physically built!

/3

Common Verilog Testbench Types

Input/Output .
Testbench Error Checking

Simple Manual Manual
Self-Checking Manual Automatic
Automatic Automatic Automatic

Example DUT

We will walk through different types of testbenches to test
a module that implements the logic function:

y=(b-c)+ (a:b)

// performs y = ~b & ~c | a & ~b
module sillyfunction(input a, b, c,
output v) ;

wire b n, c n;
wire ml, m2;

not not b(b n, b);
not not c(c n, c);

and minterml (ml, b n, ¢ n);

and minterm2 (m2, a, b n);

or out func(y, ml, m2);
endmodule

Usetul Verilog Syntax for Testbenching

module example syntax();

reg

ay

// like “always” block, but runs only once at sim start

initial

begin

end

a = 0; // set value of reg: use blocking assignments
#10; // wait (do nothing) for 10 ns
a = 1;

Sdisplay (“printf () style message!"); // print message

endmodule

76

Simple Testbench

77

Simple Testbench

module testbenchl () ;
b,

// No inputs, outputs

reg // Manually assigned

// Manually checked

a, C;

wire y;

// instantiate device under test

sillyfunction dut (.a(a), .b(b),
// apply hardcoded inputs one at a time

initial begin

a=0; b=20; c=20; #10; // apply inputs,
c = 1; #10; // apply inputs,
b =1; ¢ = 0; #10; // etc etc..
c = 1; #10;
a=1; b =20; c = 0; #10;
end
endmodule

walt 10ns

walt 10ns

/8

Simple Testbench: Output Checking

Most common method is to look at waveform diagrams
o Thousands of signals over millions of clock cycles
o Too many to just printf()!

{testbench TENTH. .. ey
[restbenchOMES. .. I—I I
ftestbench) TEMS. ..

ftestbenchiCLK

ftestbenchfRESET

ftestbench)sTRTS. ..
4 Itesthench/GEsR

falblfGsR

time
Manually check that output is correct at all times

79

Simple Testbench

Pros:
o Easy to design
o Can easily test a few, specific inputs (e.g., corner cases)

Cons:
o Not scalable to many test cases

o Outputs must be checked manually outside of the simulation
E.g., inspecting dumped waveform signals
E.g., printf() style debugging

80

Self-Checking Testbench

81

Selt-Checking Testbench

module testbench?2 () ;
reg a, b, c;

wire y;

sillyfunction dut(.a(a), .b(b), c(c),
initial begin
#10; // apply input,

a=0; b=20; ¢c=0;
)

if (y !'== 1) $display("000 failed.");
c = 1; #10;
if (y !'== 0) $display("001 failed.");
b =1; ¢ = 0; #10;
if (y !'== 0) $display("010 failed.");
end
endmodule

wait 10ns
// check result

82

Selt-Checking Testbench

Pros:

o Still easy to design

o Still easy to test a few, specific inputs (e.g., corner cases)
o Simulator will print whenever an error occurs

Cons:
o Still not scalable to millions of test cases

o Easy to make an error in hardcoded values
You make just as many errors writing a testbench as actual code
Hard to debug whether an issue is in the testbench or in the DUT

83

Selt-Checking Testbench using Testvectors

Write testvector file
o List of inputs and expected outputs

o Can create vectors manually or automatically using an
already verified, simpler “"golden model” (more on this later)

Example file:

$ cat testvectors.tv
000 1
001 _©
010 0

011_0

101 1 = input_output
110_0
111 0

84

Testbench with Testvectors Design

Use a “clock signal” for assigning inputs, reading outputs
o Test one testvector each “clock cycle”

Clock cycle

—

T T

Apply input Check outputs
onrisingedge on falling edge

S, S

III

Note: “clock signal” simply separates inputs from outputs
o Allows us to observe the inputs/outputs in waveform diagrams
o Not used for checking physical circuit timing (e.g., tsetup/thold)
o We'll discuss dircuit timing verification later in this lecture

85

Testbench Example (1/5):

Signal Declarations

= Declare signals to hold internal state

module testbench3 () ;

reg clk, reset; // clock and reset are internal
reg a, b, c, yexpected; // values from testvectors
wire & // output of circuit

reg [31:0] vectornum, errors; // bookkeeping variables

reg [3:0] testvectors[10000:0];

// instantiate device under test
sillyfunction dut(.a(a), .b(b),

// array of testvectors

H&H Section 4.9, Example 4.39

86

Testbench Example (2/5): Clock Generation

// generate clock

always // no sensitivity list, so it always executes
begin
clk = 1; #5; clk = 0; #5; // 10ns period
end

87

Testbench Example (3/5): Read Testvectors into Array

// at start of test, load vectors and pulse reset

initial // Only executes once
begin
$readmemb ("example.tv", testvectors); // Read vectors
vectornum = 0; errors = 0; // Initialize
reset = 1; #27; reset = 0; // Apply reset wait
end

// Note: Sreadmemh reads testvector files written 1in

// hexadecimal

88

Testbench Example (4/5): Assign Inputs/Outputs

// apply test vectors on rising edge of clk
always @ (posedge clk)
begin

{a, b, ¢, yexpected} = testvectors|[vectornum];
end

Apply {a, b, ¢} inputs on the rising edge of the clock

Get yexpected for checking the output on the falling edge

Rising/falling edges are chosen only by convention
o You can use any part of the clock signal
o Your H+H textbook uses this convention

Testbench Example (5/5): Check Outputs

always ((negedge clk)

begin
if (~reset) // don’t test during reset
begin
if (y !== yexpected)
begin
Sdisplay("Error: inputs = %b", {a, b, c});
Sdisplay (" outputs = %$b (%b exp)", vy, yexpected) ;
errors = errors + 1;
end
// increment array index and read next testvector
vectornum = vectornum + 1;
if (testvectors[vectornum] === 4'bx)
begin
S$display("%d tests completed with %d errors",
vectornum, errors):;
Sfinish; // End simulation
end
end
end

90

Selt-Checking Testbench with Testvectors

Pros:

o Still easy to design

o Still easy to test a few, specific inputs (e.g., corner cases)
o Simulator will print whenever an error occurs

o No need to change hardcoded values for different tests

Cons:
o May be error-prone depending on source of testvectors

o More scalable, but still limited by reading a file

Might have many more combinational paths to test than will fit in
memory

91

Automatic Testbench

92

Golden Models

A golden model represents the ideal circuit behavior
o Must be developed, and might be difficult to write
o Can be done in C, Perl, Python, Matlab or even in Verilog

For our example circuit:

module golden model (input a, b, c,
output v) ;

assign y = ~b & ~¢c | a & ~b;// high-level abstraction
endmodule

Simpler than our earlier gate-level description

o Golden model is usually easier to design and understand
o Golden model is much easier to verify

93

Automatic Testbench

The DUT output is compared against the golden model

Outputs

Test
Pattern
Generation

Golden p—
Model [

Testbench

Challenge: need to generate inputs to the designs
o Sequential values to cover the entire input space?
o Random values?

Automatic Testbench: Code

module testbenchl () ;
// wvariable declarations, clock, etc.

// 1lnstantiate device under test
sillyfunction dut (a, b, ¢, y dut);
golden model gold (a, b, ¢, y gold);

// instantiate test pattern generator

test pattern generator tgen (a, b, ¢, clk);

// check if y dut is ever not equal to y gold
always (@ (negedge clk)

begin
if(y dut !== y gold)
Sdisplay(...)
end
endmodule

95

Automatic Testbench

Pros:
o Output checking is fully automated
o Could even compare timing using a golden timing model

o Highly scalable to as much simulation time as is feasible
Leads to high coverage of the input space

o Better separation of roles
Separate designers can work on the DUT and the golden model

DUT testing engineer can focus on important test cases
instead of output checking

Cons:
o Creating a correct golden model may be (very) difficult
o Coming up with good testing inputs may be difficult

96

However, Even with Automatic Testing...

How long would it take to test a 32-bit adder?
o In such an adder there are 64 inputs = 264 possible inputs

o If you test one input in 1ns, you can test 102 inputs per
second

or 8.64 x 1014 inputs per day
or 3.15 x 1017 inputs per year

o we would still need 58.5 years to test all possibilities

Brute force testing is not feasible for most circuits!
o Need to prune the overall testing space
o E.g., formal verification methods, choosing ‘important cases’

Verification is a hard problem

97

Part 5:
Timing Verification

98

Timing Verification Approaches

High-level simulation (e.g., C, Verilog)
o Can model timing using “#x" statements in the DUT
o Useful for hierarchical modeling

Insert delays in FF's, basic gates, memories, etc.
High level design will have some notion of timing

o Usually not as accurate as real circuit timing

Circuit-level timing verification
o Need to first synthesize your design to actual circuits
No one general approach- very design flow specific

Your FPGA/ASIC/etc. technology has special tool(s) for this
o E.g., Xilinx Vivado (what you're using in lab)
o E.g., Synopsys/Cadence Tools (for VLSI design)

99

The Good News

= Tools will try to meet timing for you!
o Setup times, hold times
o Clock skews

a ...

= They usually provide a ‘timing report’ or ‘timing summary’
o Worst-case delay paths
o Maximum operation frequency
o Any timing errors that were found

100

The Bad News

The tool can fail to find a solution

o Desired clock frequency is too aggressive

Can result in setup time violation on a particularly long path
o Too much logic on clock paths

Introduces excessive clock skew

o Timing issues with asynchronous logic
The tool will provide (hopefully) helpful errors
o Reports will contain paths that failed to meet timing

o Gives a place from where to start debugging

Q: How can we fix timing errors?

101

Meeting Timing Constraints

Unfortunately, this is often a manual, iterative process

o Meeting strict timing constraints (e.g., high performance
designs) can be tedious

Can try synthesis/place-and-route with different options
o Different random seeds
o Manually provided hints for place-and-route

Can manually optimize the reported problem paths
o Simplify complicated logic

a Split up long combinational logic paths

o Recall: fix hold time violations by adding more logic!

102

Meeting Timing Constraints: Principles

Let’s go back to the fundamentals

Clock cycle time is determine by the maximum logic delay we
can accommodate without violating timing constraints

Good design principles
o Critical path design: Minimize the maximum logic delay
- Maximizes performance

o Balanced design: Balance maximum logic delays across different
parts of a system (i.e., between different pairs of flip flops)
- No bottlenecks + minimizes wasted time

o Bread and butter design: Optimize for the common case, but
make sure non-common-cases do not overwhelm the design

- Maximizes performance for realistic cases
103

Lecture Summary

Timing in combinational circuits

o Propagation delay and contamination delay
o Glitches

Timing in sequential circuits
o Setup time and hold time
o Determining how fast a circuit can operate

Circuit Verification

o How to make sure a circuit works correctly
o Functional verification

o Timing verification

104

Digital Design & Computer Arch.

Lecture 8: Timing and Verification

Prof. Onur Mutlu

ETH Zlrich
Spring 2021
19 March 2021

