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Problem

 Memory accesses are among the largest bottlenecks in both
execution speed and energy efficiency for many applications
today

* Some applications can mitigate this bottleneck by exploiting
spatial and temporal data locality through the cache hierarchy
(e.g. optimized matrix multiplication)

* Other applications, like graph algorithms, don’t exhibit much
data locality



PageRank Algorithm

——p» parallel_for (v: graph.vertices) {
2 v.pagerank = 1.0 / graph.num vertices;
3 v.next pagerank = 0.15 / graph.num vertices;
4}
5 count = 0;

—— > do {

—— 7 pp parallel_for (v: graph.vertices) {
8 delta = 0.85 * v.pagerank / v.out degree;
—— 95— for (w: v.successors) {
—+4—— P atomic w.next pagerank += delta;

11 }
12 k;
13 diff = 0.0;
14 parallel_for (v: graph.vertices) {

15 atomic diff += abs(v.next pagerank - v.pagerank);
16 v.pagerank = v.next pagerank;

17 v.next pagerank = 0.15 / graph.num vertices;

18 }

19 } while (++count < max iteration && diff > e);

Figure 1: Pseudocode of parallel PageRank computation.

Only one atomic add
operation is applied to
fetched value

Memory accesses don't have
much spatial, temporal
locality

Memory access cannot be
amortized



Problem

* We have to bring computation closer to the memory in order to
make these types of algorithms more efficient

 New manufacturing technologies (3D stacking) enable us to
combine memory and logic in a cost effective way

- Enables sensible processing in memory (PIM) hardware
— This technically allows us to do what we want

* How do we enable applications to use this technology?



Goals

* Make new hardware manufacturing capabilities accessible to

applications
* Enable applications to use PIM

* Make PIM usable through the traditional sequential programming

model

* Do this with minor modifications to existing systems



Key Mechanism

* Add simple PIM enabled instructions (PEISs) to existing instruction sets
via ISA extensions

— These instructions then can be executed on a computation unit
close to the memory

* Make PEIs work almost seamlessly alongside normal instructions
 PEIls can be used via intrinsics
* A smart compiler could emit PEls at the right places

 Much like vector instructions



Challenges

* For seamless execution of PEIls promises of memory model need to be kept
- Atomicity
- Cache coherency
* PEls should use the existing virtual memory abstraction
» Execution of PEIs should be scheduled in a sensible way
- Performance of PEIs should be on par with normal execution for all workloads

- Doing PIM when we have good data locality can increase memory
communication overhead

- We want to execute PEIs on-chip in that case



Locality-Aware Execution
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Key ldeas

* Bring computation closer to the data with PIM
* Integrate PIM into the existing programming model via PEIs

e Make PEls usable for all workloads
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Implementation

11



PEI Interface

for (v: graph.vertices) {

X = weight * v.rank;

for (w: v.successors) {
—» atomic w.next_rank += X;

}

Main Memory
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PEI Interface

for (v: graph.vertices) {
X = weight * v.rank;

for (w: v.successors) {
—— P __pim_add(&w.next_rank, x); CPU Main Memory

}

* Depending on our algorithm different instructions could be
useful (__pim_min, _ pim_and, etc.)

* PEIs can have input, output operands

* PEls can only operate on one cache-block at a time
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Architecture Overview

e Architecture has two main tasks
- Enable execution of PEIs
— Schedule the execution of PEIs in sensible way

* Paper implements PIM alongside hybrid memory cube (HMC)
technology

- Adaptable to other memory technologies
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3D Stacking Technology

Stack of separate silicon dies, including memory
and logic dies

Dies are vertically connected by through silicon
vias (TSV)

On-chip communication over TSV much more
efficient than between individual chips

Multiple competing products

- Hybrid memory cube (HMC) (discontinued)
- High bandwidth memory (HBM)

- Newer DDR standards, e.g. DDR5

Host-memory communication via packet based
protocol in case of HMC
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Architecture Overview

* Two components (PCU, PMU) are introduced

PIM computation unit (PCU) responsible for
execution of PEls

One PCU for every HMC vault and every
host processor core

PIM management unit (PMU) responsible for
scheduling PEIs

Single PMU placed near the last level cache
PMU is shared between the cores
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PEI| Execution

* PEls are issued to host-side PCU by host-processor
core

* PCU then talks to PMU to manage the execution of
that PEI

* PElIls can be either scheduled on host-side or
memory-side PCU

* PEIl is executed

* Results are passed back to the host-processor
through host-side PCU

* PMU needs to ensure
- Atomicity
- Cache coherence
- Locality-aware execution
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Atomicity

* Atomicity only between PEIls, but not

parallel_for (v: graph.vertices) {

1
between PEIs and normal instructions 3 ypaseren = 10/ oreen o ertaces:
- Assume memory location is s count = 0;
accessed many times by PEI 7 “oarallel for (v: graph.vertices) {
operation before and after a normal : o B v pagerank / V.out_degree;
Instruction has to access it Tie - atomdc w.next_pagerank += delta;
- Paper introduces pfence instruction 1 difr - 0.0;
to separate PEls and normal 5 atomic diff +o sbo(v.next pagersnk - v.pagerank);
InStI’UCtIOI’]S, Stops exeCUtlon untll {{’j x:E:Eiiggge;mningﬁggf’r;?;;h.num_vertices;
a” PEIS have ComDIEtEd {g } t};rhile (++count < max_iteration && diff = e);

Figure 1: Pseudocode of parallel PageRank computation.

18



Atomicity

* Atomicity PEIs executed on the memory-side can be handled by DRAM-
controller
— Controller can schedule all memory instructions for PEI as inseparable

group
* Atomicity of host-side PEls is harder
- PEls only access individual cache blocks
- Could have a reader-writer lock for every cache block

- Too expensive, so we conservatively approximate this using what the
paper calls the PIM directory
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PIM Directory

 Located inside the PMU

 Contains a number of hardware
based reader-writer locks, each
responsible for multiple cache
blocks

 PCU requests read, write access
for each PEI

 PEI is scheduled when cache
block is available
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Cache Coherence

* Host-side PCUs share the L1-cache with the
host processor

- Don’t need to think about cache coherence
for them

» Values accessed by memory-side PCUs might
be stale, there could be a modified versions of
them in cache

- Before execution PMU requests invalidation
for writer PEls and write back for reader PEIs

— This is not too bad, as this only needs to be
done in infrequent cases, we expect PEIs to
be executed on the host if it's values are in
cache
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Locality-Aware Execution

 If PEI has high data locality it should be scheduled
on the host-side PCU

* Generally cache blocks that are in cache have high
locality, we can use this information to our benefit

* Paper introduces locality monitor
- Alot like tag array of the last level cache

— Locality monitor mostly mirrors last-level cache-
policy, but
* Also updates entries that get accessed by
PEIls multiple times

* Only store partial tags (xor folded) as we can
allow some amount of errors here as this is
only a heuristic
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Virtual Memory Support

* PEls issued by host-processor
- PEIs use virtual addresses

— Addresses can be translated by TLB

like normal

 PCUs operate only on physical addresses

- No need to translate addresses on the

memory side
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Results
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Results

* Evaluation on different input
sizes

* Locality-Aware execution Is
always on par normal
execution (Host-Only)

* As expected PIM improves
performance mainly for large
Input sizes
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Figure 6: Speedup comparison under different input sizes.
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Takeaways

* |ntegration of PIM into the sequential programming model
* Locality-aware execution of PIM operations

* Does this with small modifications to existing systems
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Questions?
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Strengths

* Minimal support implementation of PIM that fits into the existing programming model

* Using it would only require small modifications to existing applications or the use of a PEI
enabled compiler

* Works with inputs of all sizes. In contrast to e.g. GPU programming where programmers or a
runtime need to decide if the cost of offloading computation to the GPU is worth it

* Pragmatic solution

— Avoids a lot of complexity by restricting PEls to single cache blocks while still providing
massive improvements for a lot of applications

- Doesn'’t try to implement locality monitoring, read-write access control exactly but makes a
good trade off between allowing false-positives and an efficient implementation

« Adaptable to other memory technologies (e.g. DDR, HBM, PCM)
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Weaknesses

Architecture does not support general purpose computation in PCUs

PEIs can operate only on single cache blocks
— Cannot request values that live in different cache blocks
- Prevents some applications from effectively using this

Requires modifications to the host-processor

Memory and processor need to integrate with each other for this to work

Requires the programmer or compiler to insert PEIs
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Related Works
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CAIRO

* Hadidi, Ramyad, et al. "CAIRO: A compiler-assisted technique for enabling instruction-level offloading of
processing-in-memory." ACM Transactions on Architecture and Code Optimization (TACO) 14.4 (2017): 1-25.

[link]

* Proposes a compile-time technique for detecting instructions for which it is viable and beneficial to be offloaded to
In memory computation

* Instruction selection process
- Detects instructions, groups of instructions that are eligible to be offloaded
» Existing atomic read-modify-write (RMW) operations
* Chains of load-compute-store instructions
- Approximates speedup, cost of offloading instructions
* Measures some machine-dependent constant factors using a micro benchmark
* Then evaluates instructions using that

* Both for CPU and GPU hosts
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https://dl.acm.org/doi/10.1145/3155287

GraphPIM

L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar and H. Kim, "GraphPIM: Enabling Instruction-Level
PIM Offloading in Graph Computing Frameworks," 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Austin, TX, USA, 2017, pp. 457 [link]

PIM for graph computing workloads

|dentifies two major performance bottlenecks in current graph algorithm implementations
- Irregular memory accesses

- Use of atomic operations

- PIM can help with both

Automatically uses PIM for suitable atomic instructions

- No work needs to be done by programmer or compiler
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https://ieeexplore.ieee.org/abstract/document/7920847

Opportunistic Computing in GPU Architectures

A. Pattnaik et al., "Opportunistic Computing in GPU Architectures," 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA), Phoenix, AZ, USA, 2019, pp. 210-223.
[link]

Memory hierarchy of GPUs is different from that of traditional CPU, DRAM based systems
- Multiple last-level caches
— Data can be on a number of GPU nodes

Opportunistic near data computation (NDC) for GPUs
- Not only wants to optimize memory-chip, but also, on-chip communication overhead
— Can offload computation to last-level caches and also different GPU nodes

Also identifies load-compute-store instruction chains

Deals with instructions that require data from multiple different last-level caches
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https://ieeexplore.ieee.org/abstract/document/8980334

Discussion
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Would it make sense to combine this approach

with processing using memory (PUM) ideas like
AMBIT?

Do they face the same challenges?
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Figure 4: Triple-row activation
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How does this compare with the hardware that
was recently released by Samsung?

In which ways is this different, similar?

<Available instruction list for FIM operation>

Type CMD Description
r . -
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Bandwidth Memory with Al Processing = e " P8 ey an 20
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NOP Do nothing
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Korea on February 17, 2021 Audio Share EXIT Exit instruction
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- P . - ey pr— 256 DQ for
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How big Is the limitation of PEIs only being able
to access single cache blocks?

Are there applications that would benefit from accessing
multiple cache blocks?
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What other applications might benefit from this?
What applications could benefit from PIM in general?
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