Seminar in Computer Architecture

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu™ and Kiyoung Choi
Seoul National University 'Carnegie Mellon University

2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture
(ISCA), Portland, OR, USA, 2015

Presented by: Georg Streich

Paper

 J. Ahn, S. Yoo, O. Mutlu and K. Chol, "PIM-enabled instructions:
A low-overhead, locality-aware processing-in-memory
architecture,” 2015 ACM/IEEE 42nd Annual International

Symposium on Computer Architecture (ISCA), Portland, OR,
USA, 2015 [paper] [presentation]

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn Sungjoo Yoo Onur Mutlu! Kiyoung Choi
junwhan@snu.ac.kr, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University TCarnegie Mellon University

https://ieeexplore.ieee.org/abstract/document/7284077
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf

Problem

 Memory accesses are among the largest bottlenecks in both
execution speed and energy efficiency for many applications
today

* Some applications can mitigate this bottleneck by exploiting
spatial and temporal data locality through the cache hierarchy
(e.g. optimized matrix multiplication)

* Other applications, like graph algorithms, don’t exhibit much
data locality

PageRank Algorithm

——p» parallel_for (v: graph.vertices) {
2 v.pagerank = 1.0 / graph.num vertices;
3 v.next pagerank = 0.15 / graph.num vertices;
4}
5 count = 0;

—— > do {

—— 7 pp parallel_for (v: graph.vertices) {
8 delta = 0.85 * v.pagerank / v.out degree;
—— 95— for (w: v.successors) {
—+4—— P atomic w.next pagerank += delta;

11 }
12 k;
13 diff = 0.0;
14 parallel_for (v: graph.vertices) {

15 atomic diff += abs(v.next pagerank - v.pagerank);
16 v.pagerank = v.next pagerank;

17 v.next pagerank = 0.15 / graph.num vertices;

18 }

19 } while (++count < max iteration && diff > e);

Figure 1: Pseudocode of parallel PageRank computation.

Only one atomic add
operation is applied to
fetched value

Memory accesses don't have
much spatial, temporal
locality

Memory access cannot be
amortized

Problem

* We have to bring computation closer to the memory in order to
make these types of algorithms more efficient

 New manufacturing technologies (3D stacking) enable us to
combine memory and logic in a cost effective way

- Enables sensible processing in memory (PIM) hardware
— This technically allows us to do what we want

* How do we enable applications to use this technology?

Goals

* Make new hardware manufacturing capabilities accessible to

applications
* Enable applications to use PIM

* Make PIM usable through the traditional sequential programming

model

* Do this with minor modifications to existing systems

Key Mechanism

* Add simple PIM enabled instructions (PEISs) to existing instruction sets
via ISA extensions

— These instructions then can be executed on a computation unit
close to the memory

* Make PEIs work almost seamlessly alongside normal instructions
 PEIls can be used via intrinsics
* A smart compiler could emit PEls at the right places

 Much like vector instructions

Challenges

* For seamless execution of PEIls promises of memory model need to be kept
- Atomicity
- Cache coherency
* PEls should use the existing virtual memory abstraction
» Execution of PEIs should be scheduled in a sensible way
- Performance of PEIs should be on par with normal execution for all workloads

- Doing PIM when we have good data locality can increase memory
communication overhead

- We want to execute PEIs on-chip in that case

Locality-Aware Execution

* PageRank on graphs with
Increasing size (y-axis) o2p Grutelast

[—
soc-Slashdot0811 0
* PIM decreases performance mmeronoos | |
. . frwiki-2013 Il
for small input sizes |
. soc-LiveJournall |
* Implementation should be fournab2008 | | E— | |
. —20% 0 +20% +40% +60%
aware Of thIS Speedup
Figure 2: Performance improvement with an in-memory
° N eed |Ocal |ty'aware atomic addition operation used for the PageRank algorithm.

execution

Key ldeas

* Bring computation closer to the data with PIM
* Integrate PIM into the existing programming model via PEIs

e Make PEls usable for all workloads

10

Implementation

11

PEI Interface

for (v: graph.vertices) {

X = weight * v.rank;

for (w: v.successors) {
—» atomic w.next_rank += X;

}

Main Memory

12

PEI Interface

for (v: graph.vertices) {
X = weight * v.rank;

for (w: v.successors) {
—— P __pim_add(&w.next_rank, x); CPU Main Memory

}

* Depending on our algorithm different instructions could be
useful (__pim_min, _ pim_and, etc.)

* PEIs can have input, output operands

* PEls can only operate on one cache-block at a time

13

Architecture Overview

e Architecture has two main tasks
- Enable execution of PEIs
— Schedule the execution of PEIs in sensible way

* Paper implements PIM alongside hybrid memory cube (HMC)
technology

- Adaptable to other memory technologies

14

3D Stacking Technology

Stack of separate silicon dies, including memory
and logic dies

Dies are vertically connected by through silicon
vias (TSV)

On-chip communication over TSV much more
efficient than between individual chips

Multiple competing products

- Hybrid memory cube (HMC) (discontinued)
- High bandwidth memory (HBM)

- Newer DDR standards, e.g. DDR5

Host-memory communication via packet based
protocol in case of HMC

15

Architecture Overview

* Two components (PCU, PMU) are introduced

PIM computation unit (PCU) responsible for
execution of PEls

One PCU for every HMC vault and every
host processor core

PIM management unit (PMU) responsible for
scheduling PEIs

Single PMU placed near the last level cache
PMU is shared between the cores

Host Processor

Out-Of-Order
Core

PCU

L1 Cache

L2 Cache

PMU

Last-Level
Cache

PIM
Directory

Locality
Monitor

HMC Controller

HMC

Crossbar Network

PCU

PCU

PCU

DRAM
Controller

DRAM
Controller

DRAM
Controller

Proposed PEI Architecture

16

PEI| Execution

* PEls are issued to host-side PCU by host-processor
core

* PCU then talks to PMU to manage the execution of
that PEI

* PElIls can be either scheduled on host-side or
memory-side PCU

* PEIl is executed

* Results are passed back to the host-processor
through host-side PCU

* PMU needs to ensure
- Atomicity
- Cache coherence
- Locality-aware execution

Host Processor

Out-Of-Order
Core

PCU

L1 Cache

L2 Cache

PMU

Last-Level
Cache

PIM
Directory

Locality
Monitor

HMC Controller

HMC

Crossbar Network

PCU

PCU

PCU

DRAM
Controller

DRAM
Controller

DRAM
Controller

Proposed PEI Architecture

17

Atomicity

* Atomicity only between PEIls, but not

parallel_for (v: graph.vertices) {

1
between PEIs and normal instructions 3 ypaseren = 10/ oreen o ertaces:
- Assume memory location is s count = 0;
accessed many times by PEI 7 “oarallel for (v: graph.vertices) {
operation before and after a normal : o B v pagerank / V.out_degree;
Instruction has to access it Tie - atomdc w.next_pagerank += delta;
- Paper introduces pfence instruction 1 difr - 0.0;
to separate PEls and normal 5 atomic diff +o sbo(v.next pagersnk - v.pagerank);
InStI’UCtIOI’]S, Stops exeCUtlon untll {{’j x:E:Eiiggge;mningﬁggf’r;?;;h.num_vertices;
a” PEIS have ComDIEtEd {g } t};rhile (++count < max_iteration && diff = e);

Figure 1: Pseudocode of parallel PageRank computation.

18

Atomicity

* Atomicity PEIs executed on the memory-side can be handled by DRAM-
controller
— Controller can schedule all memory instructions for PEI as inseparable

group
* Atomicity of host-side PEls is harder
- PEls only access individual cache blocks
- Could have a reader-writer lock for every cache block

- Too expensive, so we conservatively approximate this using what the
paper calls the PIM directory

19

PIM Directory

 Located inside the PMU

 Contains a number of hardware
based reader-writer locks, each
responsible for multiple cache
blocks

 PCU requests read, write access
for each PEI

 PEI is scheduled when cache
block is available

XOR-Hash

Address —-®7

(Inexact, but Conservative)

Reader-writer lock #0
Reader-writer lock #1
Reader-writer lock #2

Reader-writer lock #N-1

Host Processor

Out-Of-Order | 2
Core

L1 Cach
L2 Cache
Last-Level

PCU

HMC Controller

I HMC

DR
PCU Controller

PCU Controller

Crossbar Network

PCU Controller

Proposed PEI Architecture

20

Cache Coherence

* Host-side PCUs share the L1-cache with the
host processor

- Don’t need to think about cache coherence
for them

» Values accessed by memory-side PCUs might
be stale, there could be a modified versions of
them in cache

- Before execution PMU requests invalidation
for writer PEls and write back for reader PEIs

— This is not too bad, as this only needs to be
done in infrequent cases, we expect PEIs to
be executed on the host if it's values are in
cache

Host Processor

Out-Of-Order
Core

PCU

L1 Cache

L2 Cache

PMU

Last-Level
Cache

PIM
Directory

Locality
Monitor

HMC Controller

HMC

Crossbar Network

PCU

PCU

PCU

DRAM
Controller

DRAM
Controller

DRAM
Controller

Proposed PEI Architecture

21

Locality-Aware Execution

 If PEI has high data locality it should be scheduled
on the host-side PCU

* Generally cache blocks that are in cache have high
locality, we can use this information to our benefit

* Paper introduces locality monitor
- Alot like tag array of the last level cache

— Locality monitor mostly mirrors last-level cache-
policy, but
* Also updates entries that get accessed by
PEIls multiple times

* Only store partial tags (xor folded) as we can
allow some amount of errors here as this is
only a heuristic

Partial Tag Array

Address I

Tag
Tag

Tag

Tag Tag | ... | Tag
Tag Tag - Tag ‘|:
Tag Tag - Tag

Host Processor

Out-Of-Order

Core

PCU

L

L1 Cache

Updated on
* Each LLC access

Hit: High locality

Miss: Low locality

* Each issue of a PIM operation to memory

L2 Cache
Last-Level
Cache

PMU
PIM

Directory

</LT> i

HMC Controller
Crosshar Network

Monitor

DRAM
PCU Controller

DRAM
PCU Controller

| DRAM
PCU Controller

Ss———

Proposed PEI Architecture

22

Virtual Memory Support

* PEls issued by host-processor
- PEIs use virtual addresses

— Addresses can be translated by TLB

like normal

 PCUs operate only on physical addresses

- No need to translate addresses on the

memory side

Host Processor

Out-Of-Order
Core

PCU

L1 Cache

L2 Cache

PMU

Last-Level
Cache

PIM
Directory

Locality
Monitor

HMC Controller

HMC
DRAM
PCU Controller
=
o
E DRAM
3 PCU Controller
©
o)
a
2
(@]
DRAM
PCU Controller

Proposed PEI Architecture

23

Results

24

Results

* Evaluation on different input
sizes

* Locality-Aware execution Is
always on par normal
execution (Host-Only)

* As expected PIM improves
performance mainly for large
Input sizes

[Host-Only @ PIM-Only B Locality-Aware

o L _
o o1al -
E 12 .
T 10| -
S

S oel| -
< o8l .

0.4

ATF BFS PR SP WCC HJ HG RP SC SVM GM
{a) Small inputs

U |- —
2 1.6
1.4 - -
g
o - -
g 1.2
=]
Z 10]
0.8

ATF BFS PR SP WCC HJ HG AP SC SVM GM
(b) Medium inputs
1.8

E 16 [~ -1
14 - —

g

[- -

E 1.2

g 1.0 - —
0.8

ATF BFS PR SP WCC HJ HG HP SC SVM GM
(c) Large inputs

Figure 6: Speedup comparison under different input sizes.

25

Takeaways

* |ntegration of PIM into the sequential programming model
* Locality-aware execution of PIM operations

* Does this with small modifications to existing systems

26

Questions?

27

Strengths

* Minimal support implementation of PIM that fits into the existing programming model

* Using it would only require small modifications to existing applications or the use of a PEI
enabled compiler

* Works with inputs of all sizes. In contrast to e.g. GPU programming where programmers or a
runtime need to decide if the cost of offloading computation to the GPU is worth it

* Pragmatic solution

— Avoids a lot of complexity by restricting PEls to single cache blocks while still providing
massive improvements for a lot of applications

- Doesn'’t try to implement locality monitoring, read-write access control exactly but makes a
good trade off between allowing false-positives and an efficient implementation

« Adaptable to other memory technologies (e.g. DDR, HBM, PCM)

28

Weaknesses

Architecture does not support general purpose computation in PCUs

PEIs can operate only on single cache blocks
— Cannot request values that live in different cache blocks
- Prevents some applications from effectively using this

Requires modifications to the host-processor

Memory and processor need to integrate with each other for this to work

Requires the programmer or compiler to insert PEIs

29

Related Works

30

CAIRO

* Hadidi, Ramyad, et al. "CAIRO: A compiler-assisted technique for enabling instruction-level offloading of
processing-in-memory." ACM Transactions on Architecture and Code Optimization (TACO) 14.4 (2017): 1-25.

[link]

* Proposes a compile-time technique for detecting instructions for which it is viable and beneficial to be offloaded to
In memory computation

* Instruction selection process
- Detects instructions, groups of instructions that are eligible to be offloaded
» Existing atomic read-modify-write (RMW) operations
* Chains of load-compute-store instructions
- Approximates speedup, cost of offloading instructions
* Measures some machine-dependent constant factors using a micro benchmark
* Then evaluates instructions using that

* Both for CPU and GPU hosts

31

https://dl.acm.org/doi/10.1145/3155287

GraphPIM

L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar and H. Kim, "GraphPIM: Enabling Instruction-Level
PIM Offloading in Graph Computing Frameworks," 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Austin, TX, USA, 2017, pp. 457 [link]

PIM for graph computing workloads

|dentifies two major performance bottlenecks in current graph algorithm implementations
- Irregular memory accesses

- Use of atomic operations

- PIM can help with both

Automatically uses PIM for suitable atomic instructions

- No work needs to be done by programmer or compiler

32

https://ieeexplore.ieee.org/abstract/document/7920847

Opportunistic Computing in GPU Architectures

A. Pattnaik et al., "Opportunistic Computing in GPU Architectures," 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA), Phoenix, AZ, USA, 2019, pp. 210-223.
[link]

Memory hierarchy of GPUs is different from that of traditional CPU, DRAM based systems
- Multiple last-level caches
— Data can be on a number of GPU nodes

Opportunistic near data computation (NDC) for GPUs
- Not only wants to optimize memory-chip, but also, on-chip communication overhead
— Can offload computation to last-level caches and also different GPU nodes

Also identifies load-compute-store instruction chains

Deals with instructions that require data from multiple different last-level caches

33

https://ieeexplore.ieee.org/abstract/document/8980334

Discussion

34

Would it make sense to combine this approach

with processing using memory (PUM) ideas like
AMBIT?

Do they face the same challenges?

o T Wop ! T Wpp +4 ! T
L ! J’_u._l_ 4
e 1= -
B B B
i 1 2wl 1
C L ----o» Cogt 4 ---------» C
0 i 1 . ol
16 256 1k 16
Woo (1] Won (2] 0 (5] Sat Uni ction Set Diff
- . X # El ut Set (N = 512k)
initial state amplification
Figure 1 form f set operations

Figure 4: Triple-row activation

35

How does this compare with the hardware that
was recently released by Samsung?

In which ways is this different, similar?

<Available instruction list for FIM operation>

Type CMD Description
r . -
Samsung Develops Industry’s First High 750 P76 sddifon
- A . Floating MUL FP16 multiplication
Bandwidth Memory with Al Processing = e " P8 ey an 20
Data Path MOVE Load or store data
POWQ r FILL Copy data from bank to GRFs
NOP Do nothing
) -) Control Path JUMP Jump instruction
Korea on February 17, 2021 Audio Share EXIT Exit instruction

Programmable Computing Unit Block
Execution Unit Register Group
- P . - ey pr— 256 DQ for
The new architecture will deliver over twice the system performance RAD:13) CEN pipeline | oy 3 [lgl’], GRFA {1 even ban
i 9 CA[1:5] Decoder [%3 =—(256b x 8entries) |
and reduce energy consumption by more than 70% ST ‘ ‘ £ Il—‘
EADD,PATH]MULLPATH SRF M
RD control master | | 1= I 2 S |[srAmio|’| —
WR control master [[| 5 EPA6Mult |, oo @ |(18b x Bentrles) |
: . : ACT control mester || "a | | Array e—=lg s o || s0aer
Samsung Electronics, the world leader in advanced memory technology. today announced that it has rets [] & (m‘e Mult\p\l!r!iﬂ | GRF_B odd bank
developed the industry’s first High Bandwidth Memory (HBM) integrated with artificial intelligence (Al) 3 v yMACMAD PATH | G e x Ssanne)
processing power — the HBM-PIM. The new processing-in-memory (PIM) architecture brings powerful Al pou_ciock| | £ FP1rEr£’dd ,‘,"?FFJTLE‘ == i SRF A
computing capabilities inside high-performance memory, to accelerate large-scale processing in data FiM-modk {FP16 adder x16) - B |(18b x Bentries)
centers, high performance computing (HPC) systems and Al-enabled mobile applications. e [NS TR TN : T
] CRF Sequencer l INSTRIO | ”|(32b x 32entries)

36

How big Is the limitation of PEIs only being able
to access single cache blocks?

Are there applications that would benefit from accessing
multiple cache blocks?

37

What other applications might benefit from this?
What applications could benefit from PIM in general?

38

Seminar in Computer Architecture

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwahn Ahn, Sungjoo Yoo, Onur Mutlu™ and Kiyoung Choi
Seoul National University 'Carnegie Mellon University

2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture
(ISCA), Portland, OR, USA, 2015

Presented by: Georg Streich

39

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

