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Paper

● J. Ahn, S. Yoo, O. Mutlu and K. Choi, ”PIM-enabled instructions: 
A low-overhead, locality-aware processing-in-memory 
architecture,” 2015 ACM/IEEE 42nd Annual International 
Symposium on Computer Architecture (ISCA), Portland, OR, 
USA, 2015 [paper] [presentation]

https://ieeexplore.ieee.org/abstract/document/7284077
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf
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Problem

● Memory accesses are among the largest bottlenecks in both 
execution speed and energy efficiency for many applications 
today

● Some applications can mitigate this bottleneck by exploiting 
spatial and temporal data locality through the cache hierarchy 
(e.g. optimized matrix multiplication)

● Other applications, like graph algorithms, don’t exhibit much 
data locality
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PageRank Algorithm

● Only one atomic add 
operation is applied to 
fetched value

● Memory accesses don’t have 
much spatial, temporal 
locality

● Memory access cannot be 
amortized 
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Problem

● We have to bring computation closer to the memory in order to 
make these types of algorithms more efficient

● New manufacturing technologies (3D stacking) enable us to 
combine memory and logic in a cost effective way

– Enables sensible processing in memory (PIM) hardware

– This technically allows us to do what we want

● How do we enable applications to use this technology?
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Goals

● Make new hardware manufacturing capabilities accessible to 

applications

● Enable applications to use PIM

● Make PIM usable through the traditional sequential programming 

model

● Do this with minor modifications to existing systems
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Key Mechanism

● Add simple PIM enabled instructions (PEIs) to existing instruction sets 
via ISA extensions

– These instructions then can be executed on a computation unit 
close to the memory

● Make PEIs work almost seamlessly alongside normal instructions

● PEIs can be used via intrinsics

● A smart compiler could emit PEIs at the right places

● Much like vector instructions
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Challenges

● For seamless execution of PEIs promises of memory model need to be kept

– Atomicity

– Cache coherency

● PEIs should use the existing virtual memory abstraction

● Execution of PEIs should be scheduled in a sensible way

– Performance of PEIs should be on par with normal execution for all workloads

– Doing PIM when we have good data locality can increase memory 
communication overhead

– We want to execute PEIs on-chip in that case
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Locality-Aware Execution

● PageRank on graphs with 
increasing size (y-axis)

● PIM decreases performance 
for small input sizes

● Implementation should be 
aware of this

● Need locality-aware 
execution
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Key Ideas

● Bring computation closer to the data with PIM

● Integrate PIM into the existing programming model via PEIs

● Make PEIs usable for all workloads
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Implementation
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PEI Interface

for (v: graph.vertices) {

x = weight * v.rank;

for (w: v.successors) {

atomic w.next_rank += x;

}

}

CPU Main Memory

w.next_rank
64 bytes

w.next_rank

64 bytes
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PEI Interface

for (v: graph.vertices) {

x = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, x);

}

}

● Depending on our algorithm different instructions could be 
useful (__pim_min, __pim_and, etc.)

● PEIs can have input, output operands

● PEIs can only operate on one cache-block at a time

CPU Main Memory

w.next_rank8 bytes

x

x

0 bytes
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Architecture Overview

● Architecture has two main tasks

– Enable execution of PEIs

– Schedule the execution of PEIs in sensible way

● Paper implements PIM alongside hybrid memory cube (HMC) 
technology

– Adaptable to other memory technologies
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3D Stacking Technology

● Stack of separate silicon dies, including memory 
and logic dies

● Dies are vertically connected by through silicon 
vias (TSV)

● On-chip communication over TSV much more 
efficient than between individual chips

● Multiple competing products

– Hybrid memory cube (HMC) (discontinued)

– High bandwidth memory (HBM)

– Newer DDR standards, e.g. DDR5

● Host-memory communication via packet based 
protocol in case of HMC
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Architecture Overview

● Two components (PCU, PMU) are introduced

– PIM computation unit (PCU) responsible for 
execution of PEIs

– One PCU for every HMC vault and every 
host processor core 

– PIM management unit (PMU) responsible for 
scheduling PEIs

– Single PMU placed near the last level cache

– PMU is shared between the cores
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PEI Execution

● PEIs are issued to host-side PCU by host-processor 
core

● PCU then talks to PMU to manage the execution of 
that PEI

● PEIs can be either scheduled on host-side or 
memory-side PCU

● PEI is executed

● Results are passed back to the host-processor 
through host-side PCU

● PMU needs to ensure

– Atomicity

– Cache coherence

– Locality-aware execution
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Atomicity

● Atomicity only between PEIs, but not 
between PEIs and normal instructions

– Assume memory location is 
accessed many times by PEI 
operation before and after a normal 
instruction has to access it

– Paper introduces pfence instruction 
to separate PEIs and normal 
instructions, stops execution until 
all PEIs have completed
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Atomicity

● Atomicity PEIs executed on the memory-side can be handled by DRAM-
controller

– Controller can schedule all memory instructions for PEI as inseparable 
group

● Atomicity of host-side PEIs is harder

– PEIs only access individual cache blocks

– Could have a reader-writer lock for every cache block

– Too expensive, so we conservatively approximate this using what the 
paper calls the PIM directory
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PIM Directory

● Located inside the PMU

● Contains a number of hardware 
based reader-writer locks, each 
responsible for multiple cache 
blocks

● PCU requests read, write access 
for each PEI

● PEI is scheduled when cache 
block is available
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Cache Coherence

● Host-side PCUs share the L1-cache with the 
host processor

– Don’t need to think about cache coherence 
for them

● Values accessed by memory-side PCUs might 
be stale, there could be a modified versions of 
them in cache

– Before execution PMU requests invalidation 
for writer PEIs and write back for reader PEIs

– This is not too bad, as this only needs to be 
done in infrequent cases, we expect PEIs to 
be executed on the host if it’s values are in 
cache
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Locality-Aware Execution

● If PEI has high data locality it should be scheduled 
on the host-side PCU

● Generally cache blocks that are in cache have high 
locality, we can use this information to our benefit

● Paper introduces locality monitor

– A lot like tag array of the last level cache

– Locality monitor mostly mirrors last-level cache-
policy, but

● Also updates entries that get accessed by 
PEIs multiple times

● Only store partial tags (xor folded) as we can 
allow some amount of errors here as this is 
only a heuristic
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Virtual Memory Support

● PEIs issued by host-processor

– PEIs use virtual addresses

– Addresses can be translated by TLB 

like normal

● PCUs operate only on physical addresses

– No need to translate addresses on the 

memory side



  24

Results
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Results

● Evaluation on different input 
sizes

● Locality-Aware execution is 
always on par normal 
execution (Host-Only)

● As expected PIM improves 
performance mainly for large 
input sizes
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Takeaways

● Integration of PIM into the sequential programming model

● Locality-aware execution of PIM operations

● Does this with small modifications to existing systems
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Questions?



  28

Strengths

● Minimal support implementation of PIM that fits into the existing programming model

● Using it would only require small modifications to existing applications or the use of a PEI 
enabled compiler

● Works with inputs of all sizes. In contrast to e.g. GPU programming where programmers or a 
runtime need to decide if the cost of offloading computation to the GPU is worth it

● Pragmatic solution

– Avoids a lot of complexity by restricting PEIs to single cache blocks while still providing 
massive improvements for a lot of applications

– Doesn’t try to implement locality monitoring, read-write access control exactly but makes a 
good trade off between allowing false-positives and an efficient implementation

● Adaptable to other memory technologies (e.g. DDR, HBM, PCM)
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Weaknesses

● Architecture does not support general purpose computation in PCUs

● PEIs can operate only on single cache blocks

– Cannot request values that live in different cache blocks

– Prevents some applications from effectively using this

● Requires modifications to the host-processor

● Memory and processor need to integrate with each other for this to work

● Requires the programmer or compiler to insert PEIs
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Related Works
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CAIRO

● Hadidi, Ramyad, et al. "CAIRO: A compiler-assisted technique for enabling instruction-level offloading of 
processing-in-memory." ACM Transactions on Architecture and Code Optimization (TACO) 14.4 (2017): 1-25.         
[link]

● Proposes a compile-time technique for detecting instructions for which it is viable and beneficial to be offloaded to 
in memory computation

● Instruction selection process

– Detects instructions, groups of instructions that are eligible to be offloaded
● Existing atomic read-modify-write (RMW) operations
● Chains of load-compute-store instructions

– Approximates speedup, cost of offloading instructions
● Measures some machine-dependent constant factors using a micro benchmark
● Then evaluates instructions using that

● Both for CPU and GPU hosts

https://dl.acm.org/doi/10.1145/3155287
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GraphPIM

● L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar and H. Kim, "GraphPIM: Enabling Instruction-Level 
PIM Offloading in Graph Computing Frameworks," 2017 IEEE International Symposium on 
High Performance Computer Architecture (HPCA), Austin, TX, USA, 2017, pp. 457 [link]

● PIM for graph computing workloads

● Identifies two major performance bottlenecks in current graph algorithm implementations

– Irregular memory accesses

– Use of atomic operations

– PIM can help with both

● Automatically uses PIM for suitable atomic instructions

– No work needs to be done by programmer or compiler

https://ieeexplore.ieee.org/abstract/document/7920847
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Opportunistic Computing in GPU Architectures 

● A. Pattnaik et al., "Opportunistic Computing in GPU Architectures," 2019 ACM/IEEE 46th Annual 
International Symposium on Computer Architecture (ISCA), Phoenix, AZ, USA, 2019, pp. 210-223.     
[link]

● Memory hierarchy of GPUs is different from that of traditional CPU, DRAM based systems

– Multiple last-level caches

– Data can be on a number of GPU nodes

● Opportunistic near data computation (NDC) for GPUs

– Not only wants to optimize memory-chip, but also, on-chip communication overhead

– Can offload computation to last-level caches and also different GPU nodes

● Also identifies load-compute-store instruction chains

● Deals with instructions that require data from multiple different last-level caches

https://ieeexplore.ieee.org/abstract/document/8980334
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Discussion
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Would it make sense to combine this approach 
with processing using memory (PUM) ideas like 

AMBIT?
Do they face the same challenges?
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How does this compare with the hardware that 
was recently released by Samsung?

In which ways is this different, similar?
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How big is the limitation of PEIs only being able 
to access single cache blocks?

Are there applications that would benefit from accessing 
multiple cache blocks?
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What other applications might benefit from this?
What applications could benefit from PIM in general?
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