
 1

Seminar in Computer Architecture

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu† and Kiyoung Choi
Seoul National University †Carnegie Mellon University

2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture

(ISCA), Portland, OR, USA, 2015

Presented by: Georg Streich

 2

Paper

● J. Ahn, S. Yoo, O. Mutlu and K. Choi, ”PIM-enabled instructions:
A low-overhead, locality-aware processing-in-memory
architecture,” 2015 ACM/IEEE 42nd Annual International
Symposium on Computer Architecture (ISCA), Portland, OR,
USA, 2015 [paper] [presentation]

https://ieeexplore.ieee.org/abstract/document/7284077
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15-talk.pdf

 3

Problem

● Memory accesses are among the largest bottlenecks in both
execution speed and energy efficiency for many applications
today

● Some applications can mitigate this bottleneck by exploiting
spatial and temporal data locality through the cache hierarchy
(e.g. optimized matrix multiplication)

● Other applications, like graph algorithms, don’t exhibit much
data locality

 4

PageRank Algorithm

● Only one atomic add
operation is applied to
fetched value

● Memory accesses don’t have
much spatial, temporal
locality

● Memory access cannot be
amortized

 5

Problem

● We have to bring computation closer to the memory in order to
make these types of algorithms more efficient

● New manufacturing technologies (3D stacking) enable us to
combine memory and logic in a cost effective way

– Enables sensible processing in memory (PIM) hardware

– This technically allows us to do what we want

● How do we enable applications to use this technology?

 6

Goals

● Make new hardware manufacturing capabilities accessible to

applications

● Enable applications to use PIM

● Make PIM usable through the traditional sequential programming

model

● Do this with minor modifications to existing systems

 7

Key Mechanism

● Add simple PIM enabled instructions (PEIs) to existing instruction sets
via ISA extensions

– These instructions then can be executed on a computation unit
close to the memory

● Make PEIs work almost seamlessly alongside normal instructions

● PEIs can be used via intrinsics

● A smart compiler could emit PEIs at the right places

● Much like vector instructions

 8

Challenges

● For seamless execution of PEIs promises of memory model need to be kept

– Atomicity

– Cache coherency

● PEIs should use the existing virtual memory abstraction

● Execution of PEIs should be scheduled in a sensible way

– Performance of PEIs should be on par with normal execution for all workloads

– Doing PIM when we have good data locality can increase memory
communication overhead

– We want to execute PEIs on-chip in that case

 9

Locality-Aware Execution

● PageRank on graphs with
increasing size (y-axis)

● PIM decreases performance
for small input sizes

● Implementation should be
aware of this

● Need locality-aware
execution

 10

Key Ideas

● Bring computation closer to the data with PIM

● Integrate PIM into the existing programming model via PEIs

● Make PEIs usable for all workloads

 11

Implementation

 12

PEI Interface

for (v: graph.vertices) {

x = weight * v.rank;

for (w: v.successors) {

atomic w.next_rank += x;

}

}

CPU Main Memory

w.next_rank
64 bytes

w.next_rank

64 bytes

 13

PEI Interface

for (v: graph.vertices) {

x = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, x);

}

}

● Depending on our algorithm different instructions could be
useful (__pim_min, __pim_and, etc.)

● PEIs can have input, output operands

● PEIs can only operate on one cache-block at a time

CPU Main Memory

w.next_rank8 bytes

x

x

0 bytes

 14

Architecture Overview

● Architecture has two main tasks

– Enable execution of PEIs

– Schedule the execution of PEIs in sensible way

● Paper implements PIM alongside hybrid memory cube (HMC)
technology

– Adaptable to other memory technologies

 15

3D Stacking Technology

● Stack of separate silicon dies, including memory
and logic dies

● Dies are vertically connected by through silicon
vias (TSV)

● On-chip communication over TSV much more
efficient than between individual chips

● Multiple competing products

– Hybrid memory cube (HMC) (discontinued)

– High bandwidth memory (HBM)

– Newer DDR standards, e.g. DDR5

● Host-memory communication via packet based
protocol in case of HMC

 16

Architecture Overview

● Two components (PCU, PMU) are introduced

– PIM computation unit (PCU) responsible for
execution of PEIs

– One PCU for every HMC vault and every
host processor core

– PIM management unit (PMU) responsible for
scheduling PEIs

– Single PMU placed near the last level cache

– PMU is shared between the cores

 17

PEI Execution

● PEIs are issued to host-side PCU by host-processor
core

● PCU then talks to PMU to manage the execution of
that PEI

● PEIs can be either scheduled on host-side or
memory-side PCU

● PEI is executed

● Results are passed back to the host-processor
through host-side PCU

● PMU needs to ensure

– Atomicity

– Cache coherence

– Locality-aware execution

 18

Atomicity

● Atomicity only between PEIs, but not
between PEIs and normal instructions

– Assume memory location is
accessed many times by PEI
operation before and after a normal
instruction has to access it

– Paper introduces pfence instruction
to separate PEIs and normal
instructions, stops execution until
all PEIs have completed

 19

Atomicity

● Atomicity PEIs executed on the memory-side can be handled by DRAM-
controller

– Controller can schedule all memory instructions for PEI as inseparable
group

● Atomicity of host-side PEIs is harder

– PEIs only access individual cache blocks

– Could have a reader-writer lock for every cache block

– Too expensive, so we conservatively approximate this using what the
paper calls the PIM directory

 20

PIM Directory

● Located inside the PMU

● Contains a number of hardware
based reader-writer locks, each
responsible for multiple cache
blocks

● PCU requests read, write access
for each PEI

● PEI is scheduled when cache
block is available

 21

Cache Coherence

● Host-side PCUs share the L1-cache with the
host processor

– Don’t need to think about cache coherence
for them

● Values accessed by memory-side PCUs might
be stale, there could be a modified versions of
them in cache

– Before execution PMU requests invalidation
for writer PEIs and write back for reader PEIs

– This is not too bad, as this only needs to be
done in infrequent cases, we expect PEIs to
be executed on the host if it’s values are in
cache

 22

Locality-Aware Execution

● If PEI has high data locality it should be scheduled
on the host-side PCU

● Generally cache blocks that are in cache have high
locality, we can use this information to our benefit

● Paper introduces locality monitor

– A lot like tag array of the last level cache

– Locality monitor mostly mirrors last-level cache-
policy, but

● Also updates entries that get accessed by
PEIs multiple times

● Only store partial tags (xor folded) as we can
allow some amount of errors here as this is
only a heuristic

 23

Virtual Memory Support

● PEIs issued by host-processor

– PEIs use virtual addresses

– Addresses can be translated by TLB

like normal

● PCUs operate only on physical addresses

– No need to translate addresses on the

memory side

 24

Results

 25

Results

● Evaluation on different input
sizes

● Locality-Aware execution is
always on par normal
execution (Host-Only)

● As expected PIM improves
performance mainly for large
input sizes

 26

Takeaways

● Integration of PIM into the sequential programming model

● Locality-aware execution of PIM operations

● Does this with small modifications to existing systems

 27

Questions?

 28

Strengths

● Minimal support implementation of PIM that fits into the existing programming model

● Using it would only require small modifications to existing applications or the use of a PEI
enabled compiler

● Works with inputs of all sizes. In contrast to e.g. GPU programming where programmers or a
runtime need to decide if the cost of offloading computation to the GPU is worth it

● Pragmatic solution

– Avoids a lot of complexity by restricting PEIs to single cache blocks while still providing
massive improvements for a lot of applications

– Doesn’t try to implement locality monitoring, read-write access control exactly but makes a
good trade off between allowing false-positives and an efficient implementation

● Adaptable to other memory technologies (e.g. DDR, HBM, PCM)

 29

Weaknesses

● Architecture does not support general purpose computation in PCUs

● PEIs can operate only on single cache blocks

– Cannot request values that live in different cache blocks

– Prevents some applications from effectively using this

● Requires modifications to the host-processor

● Memory and processor need to integrate with each other for this to work

● Requires the programmer or compiler to insert PEIs

 30

Related Works

 31

CAIRO

● Hadidi, Ramyad, et al. "CAIRO: A compiler-assisted technique for enabling instruction-level offloading of
processing-in-memory." ACM Transactions on Architecture and Code Optimization (TACO) 14.4 (2017): 1-25.
[link]

● Proposes a compile-time technique for detecting instructions for which it is viable and beneficial to be offloaded to
in memory computation

● Instruction selection process

– Detects instructions, groups of instructions that are eligible to be offloaded
● Existing atomic read-modify-write (RMW) operations
● Chains of load-compute-store instructions

– Approximates speedup, cost of offloading instructions
● Measures some machine-dependent constant factors using a micro benchmark
● Then evaluates instructions using that

● Both for CPU and GPU hosts

https://dl.acm.org/doi/10.1145/3155287

 32

GraphPIM

● L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar and H. Kim, "GraphPIM: Enabling Instruction-Level
PIM Offloading in Graph Computing Frameworks," 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), Austin, TX, USA, 2017, pp. 457 [link]

● PIM for graph computing workloads

● Identifies two major performance bottlenecks in current graph algorithm implementations

– Irregular memory accesses

– Use of atomic operations

– PIM can help with both

● Automatically uses PIM for suitable atomic instructions

– No work needs to be done by programmer or compiler

https://ieeexplore.ieee.org/abstract/document/7920847

 33

Opportunistic Computing in GPU Architectures

● A. Pattnaik et al., "Opportunistic Computing in GPU Architectures," 2019 ACM/IEEE 46th Annual
International Symposium on Computer Architecture (ISCA), Phoenix, AZ, USA, 2019, pp. 210-223.
[link]

● Memory hierarchy of GPUs is different from that of traditional CPU, DRAM based systems

– Multiple last-level caches

– Data can be on a number of GPU nodes

● Opportunistic near data computation (NDC) for GPUs

– Not only wants to optimize memory-chip, but also, on-chip communication overhead

– Can offload computation to last-level caches and also different GPU nodes

● Also identifies load-compute-store instruction chains

● Deals with instructions that require data from multiple different last-level caches

https://ieeexplore.ieee.org/abstract/document/8980334

 34

Discussion

 35

Would it make sense to combine this approach
with processing using memory (PUM) ideas like

AMBIT?
Do they face the same challenges?

 36

How does this compare with the hardware that
was recently released by Samsung?

In which ways is this different, similar?

 37

How big is the limitation of PEIs only being able
to access single cache blocks?

Are there applications that would benefit from accessing
multiple cache blocks?

 38

What other applications might benefit from this?
What applications could benefit from PIM in general?

 39

Seminar in Computer Architecture

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware
Processing-in-Memory Architecture

Junwahn Ahn, Sungjoo Yoo, Onur Mutlu† and Kiyoung Choi
Seoul National University †Carnegie Mellon University

2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture

(ISCA), Portland, OR, USA, 2015

Presented by: Georg Streich

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

