RAMBleed Reading Bits in Memory Without Accessing Them

Andrew Kwong S Daniel Genkin Daniel Gruss Yuval Yarom

§ University of Michigan \$ Graz University of Technology \$ University of Adelaide and Data61

In Proceedings of the <u>41st Annual IEEE Symposium on Security & Privacy</u> (**S&P**), Oakland, CA, May 2020

Presented by: Arno Esterhammer

Slide Credit: Onur Mutlu, Andrew Kwong

RAMBleed

- Based on Rowhammer, formerly used to write bits
- Paper shows how to read bits using Rowhammer

How?

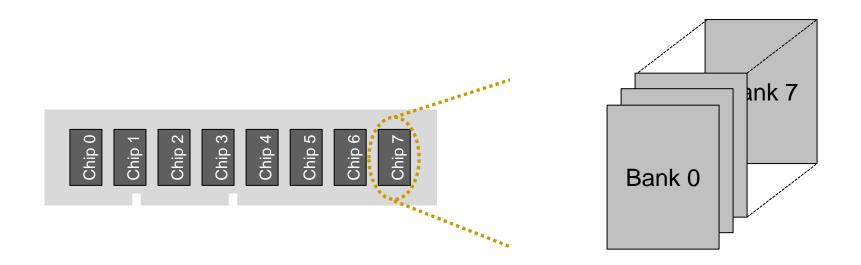
- Find flippable bits in memory
- Layout victim data as desired
- Hammer rows & Infer bits of the secret

Even ECC memory is affected

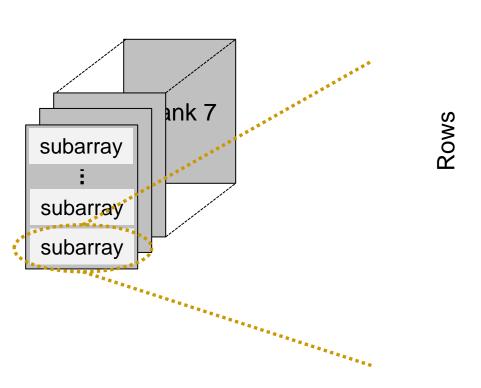
Outline

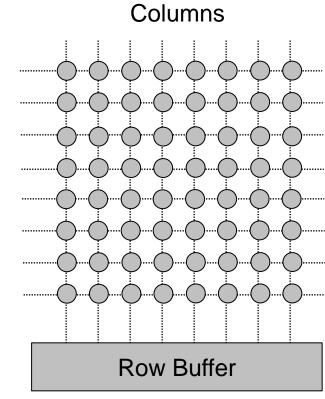
- Background, Problem, Goal
- Novelty, Key Approaches and Ideas
- Mechanisms
- Key Results: Methodology and Evaluation

- Strengths and Weaknesses
- Thoughts and Ideas / Discussion Starters
- Takeaways

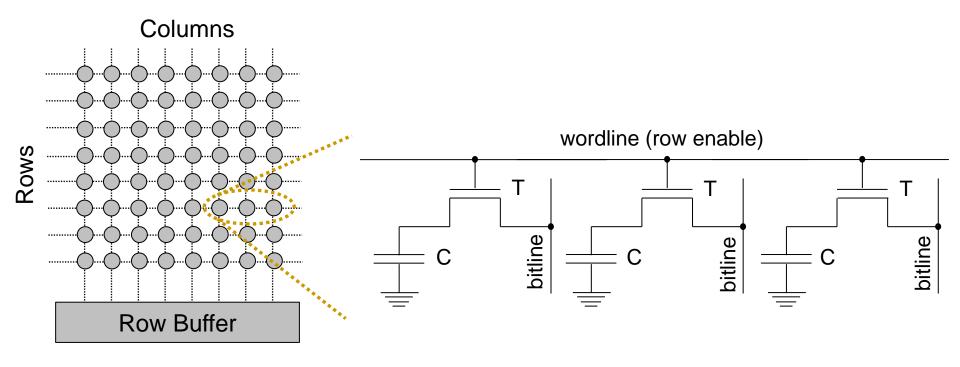

Outline

Background, Problem, Goal

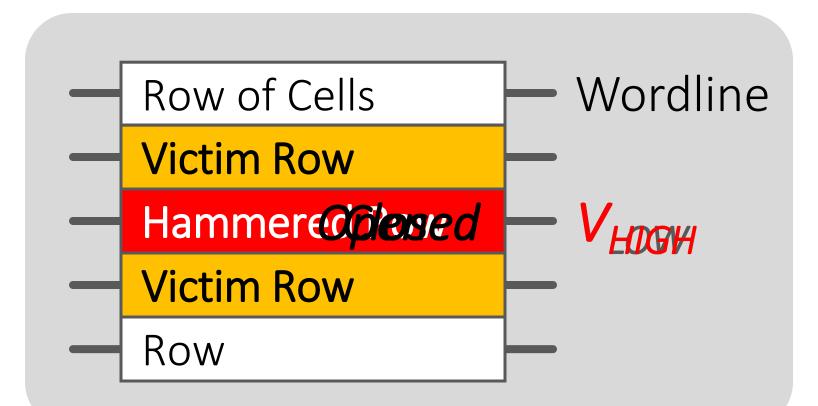

- Novelty, Key Approaches and Ideas
- Mechanisms
- Key Results: Methodology and Evaluation


- Strengths and Weaknesses
- Thoughts and Ideas / Discussion Starters
- Takeaways

Recap: DRAM

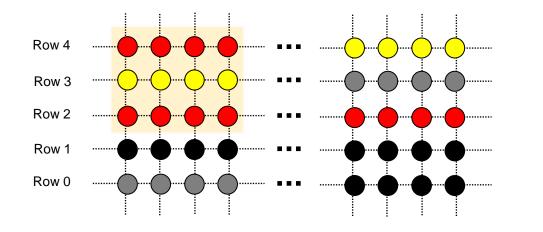


Recap: DRAM



2D Array of Cells

Recap: Rowhammer


Disturbance errors due to repeatedly reading same row

Animation: Onur Mutlu, Presentation on RowHammer

Problem

- DRAM is a highly shared resource
- Note: different security domains located in neighboring rows
- In combination with Rowhammer poses security risk

Use Rowhammer to read secret data

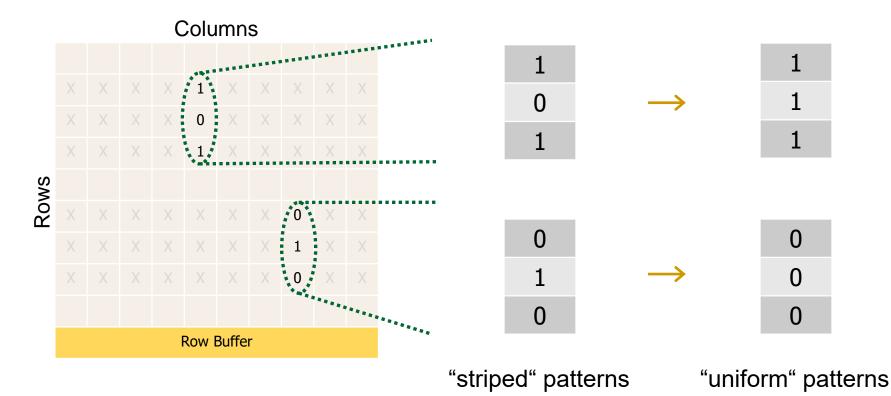
How?

- Find memory locations vulnerable to bitflips
- Intelligently place victim data inside memory
- Hammer rows & Infer bits of the secret

Results

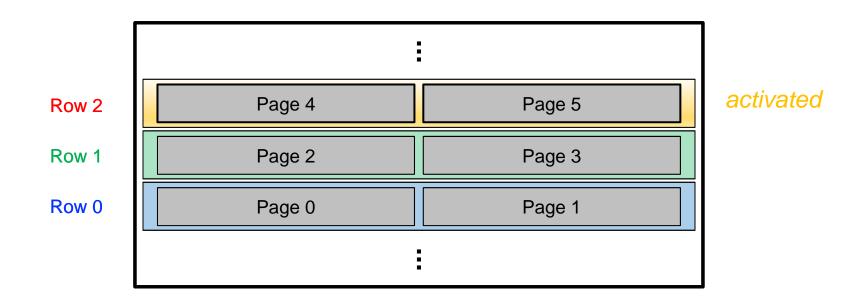
- End-to-End attack on Open SSH Server
 - Desktop machine (without ECC)
 - Server machine (with ECC)

Outline

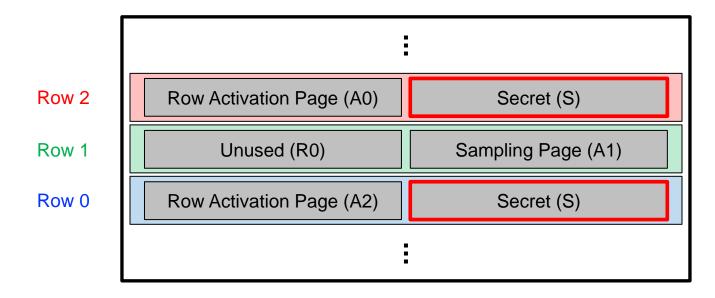

- Background, Problem, Goal
- Novelty, Key Approaches and Ideas
- Mechanisms
- Key Results: Methodology and Evaluation

- Strengths and Weaknesses
- Thoughts and Ideas / Discussion Starters
- Takeaways

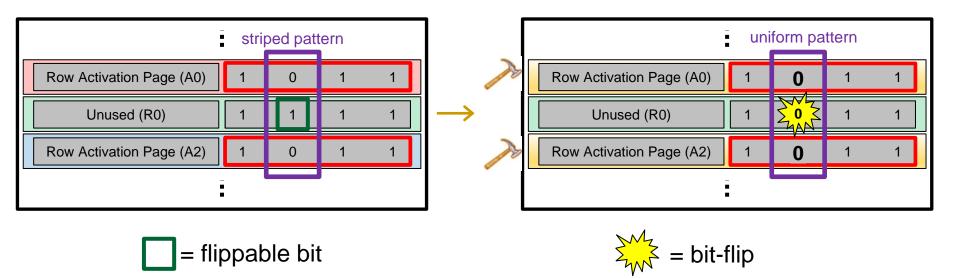
Observation


Bit-flips in Rowhammer

- Dependent on orientation of bit (i.e. 1 to 0 or 0 to 1)
- also depend on neighboring bits!

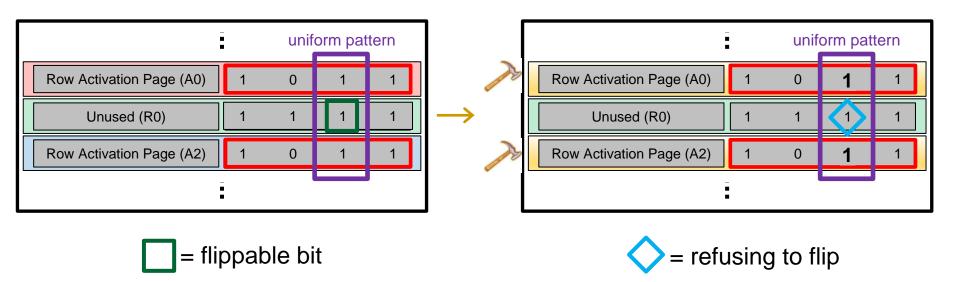

Observation

- DRAM banks operate on resolution of a row
 typically 8KB
- 2 pages per row
- Access to one page \rightarrow activates another page



Idea – Combining these Observations

- Layout the memory in the following way
 - Sampling Page in between two identical copies of Secret
 - Activation of A0 and A2 also triggers copies of S
 - Thereby hammering A1
- No access permissions needed for pages S

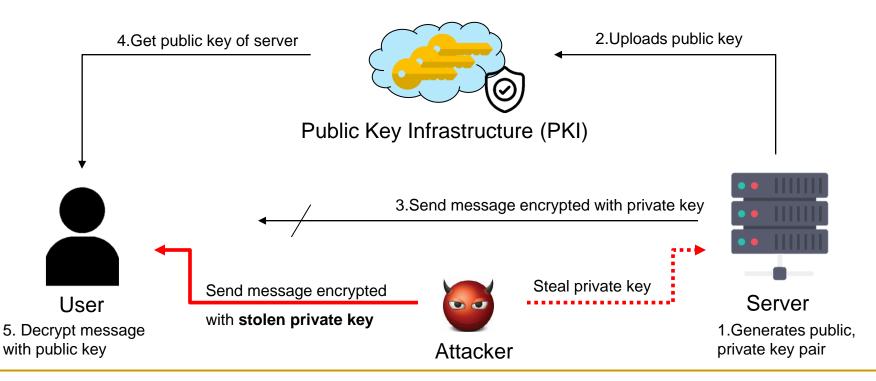


Example: Inferring Bits (1)

... infer that bit of Secret was 0 at this location

Example: Inferring Bits (2)

... infer that bit of Secret was 1 at this location

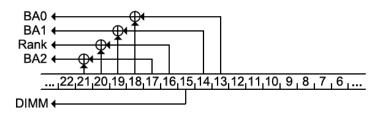

Types of RAMBleed

2 types presented in the paper

SSH (Secure Shell)

- cryptographic network protocol
- Uses RSA crypto system
 - Public key, Private key
- used for authentication (signing)

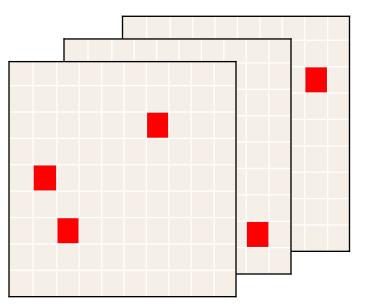
Outline


- Background, Problem, Goal
- Novelty, Key Approaches and Ideas
- Mechanisms
- Key Results: Methodology and Evaluation

- Strengths and Weaknesses
- Thoughts and Ideas / Discussion Starters
- Takeaways

Reversing the Mapping

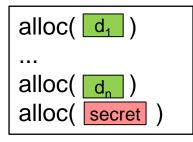
- DRAMA by Pessl et al
 - Able to reverse lower 22 bits of physical address
 - Need 2MB of contiguous physical memory


Physical Address Space	2 MB	

- Exhaust Small blocks of Linux
- Buddy Allocator
 - Until bigger blocks are served
- /proc/pagetypeinfo
 - to track available blocks

Memory Templating

- Scan the memory
 - Search for bits than can be flipped
- Take 3 consecutive rows and hammer
 - Remember for later, if a flip is observed

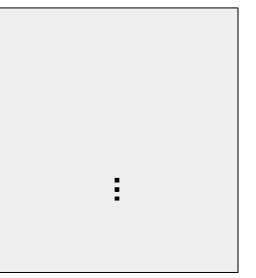


Frame Feng Shui

- Placing victim pages in desired physical location
- Exploiting Linux Page Frame Cache
 - Frames stored in FILO manner
 - □ i.e. returns most recently deallocated page on request
- Done in 3 phases
 - □ 1. Dummy allocations → allocate n pages (n = #pages before secret)
 - □ 2. Deallocation → choose target page & unmap it, unmap n pages from step 1
 - □ 3. Triggering the victim \rightarrow e.g. by initiating an SSH connection
- Now secret is at the intended page
- Hammer until enough bits are recovered
 - □ ~66% bits suffice for SSH keys

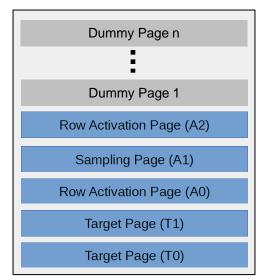
Frame Feng Shui - Visualization

Victim Pseudo Code

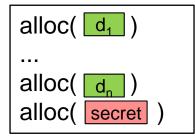


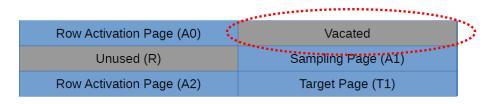
Row Activation Page (A0)	Target Page (T0)
Unused (R)	Sampling Page (A1)
Row Activation Page (A2)	Target Page (T1)

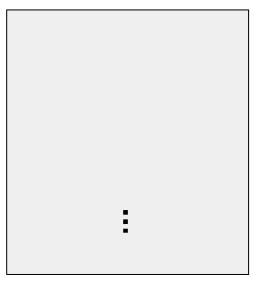
Victim Page Frames


		-
		1

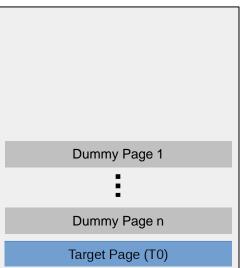
Page Frame Cache

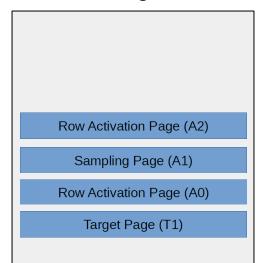

stack-like data structure

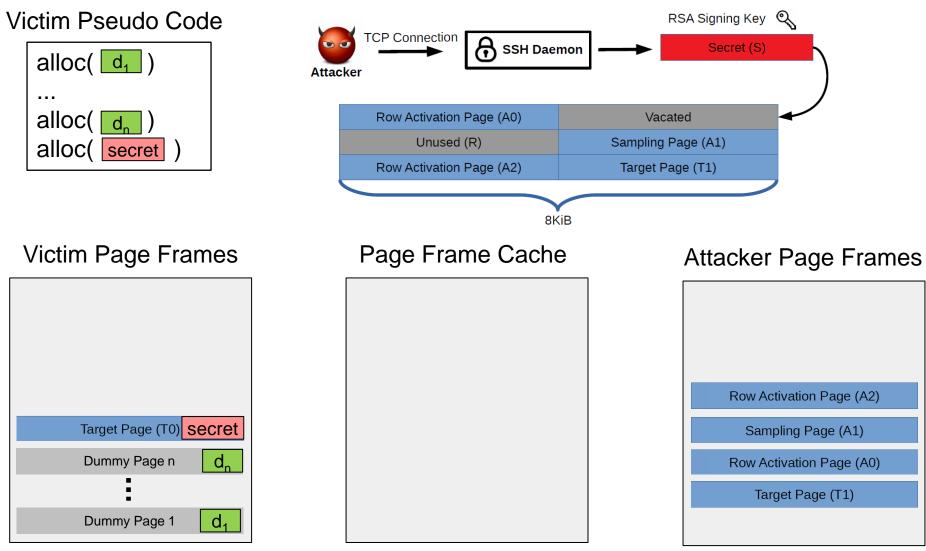

Attacker Page Frames


Frame Feng Shui - Visualization

Victim Pseudo Code




Victim Page Frames

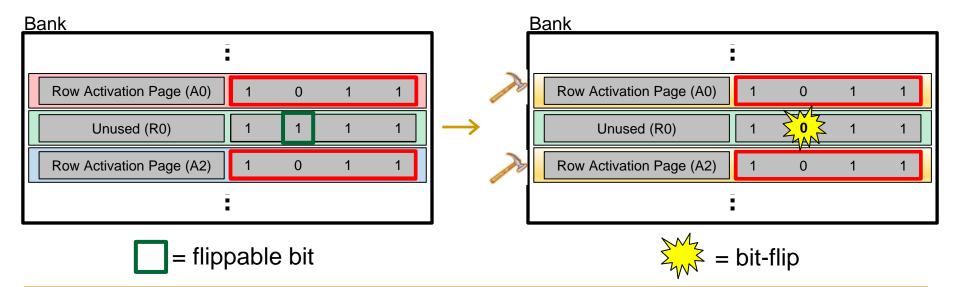


Attacker Page Frames

Frame Feng Shui - Visualization

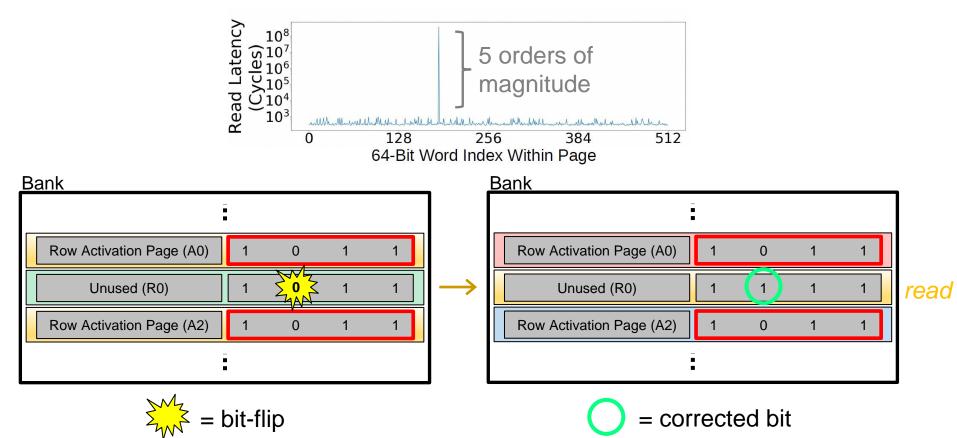
stack-like data structure

Attack (Summary)


- Find flippable bits
 - □ Reverse engineer the mapping (virt. \rightarrow phys. \rightarrow DIMM add.)
 - Memory Templating
- Layout Memory by (ab-)using
 - Linux Buddy Allocator
 - □ Linux Page Frame Cache → Frame Feng Shui
- Hammer & Infer bits
- As soon as enough bits could be retrieved
 - Makes use of redundancy present in SSH-keys
 - Use a variant of Heninger-Shacham Technique to obtain full SSH-key

ECC memory

- ECC (Error-Correcting-Codes)
- Used in server machines to ensure data integrity
- Originally to correct rare bit-flips by cosmic radiation
- Usually only able to correct 1 error and detect 2 errors (SECDED)
- Corrected when read


Example: Inferring Bits on ECC Memory

After hammering bit flip occurs

Example: Inferring Bits on ECC Memory

- After hammering bit flip occurs
- But gets correct when reading
- Takes 100.000s of cycles to correct \rightarrow observable

Outline

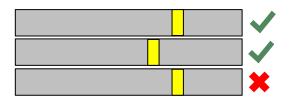
- Background, Problem, Goal
- Novelty, Key Approaches and Ideas
- Mechanisms
- Key Results: Methodology and Evaluation

- Strengths and Weaknesses
- Thoughts and Ideas / Discussion Starters
- Takeaways

Results (1)

- Two experiments
 - Desktop machine
 - Server machine

(without ECC) (with ECC)


- Online Phase
 - Need to read from ~4200 usable bits
 - Reading at 0.31 bits/second
 - With 82% accuracy on desktop machine (73% on server)
- Almost 4h to obtain the full key

Results (2)

- Memory templating
 - □ 84k bits (empirically chosen) \rightarrow 4200 usable bits
 - a 41 bitflips/min
 - □ 34h to find 84k flips
- Usable bits
 - □ 3/16 of bits are at position of secret key \rightarrow ~15750 bits

□ Get rid of duplicate locations \rightarrow ~4200 useful bits

Executive Summary

- RAMBleed
 - Based on Rowhammer, formerly used to write bits (breach for integrity)
 - Paper shows how to read bits using Rowhammer i.e. it breaks confidentiality
- How?
 - Find flippable bits in memory
 - Layout victim data as desired
 - Hammer rows & Infer secret
- Even ECC memory is affected

Outline

- Background, Problem, Goal
- Novelty, Key Approaches and Ideas
- Mechanisms
- Key Results: Methodology and Evaluation

Strengths & Weaknesses

Thoughts and Ideas / Discussion Starters

Takeaways

Strengths of the Paper

- New interesting way of using Rowhammer
 Use it as a read side channel
- Proof of Concept by a realistic Example
 - description of End-to-End attack
 - On commonly used software (Ubuntu + OpenSSH)
- Contribution
 - Combines findings of lots of prior works
 - And extended it to obtain new attack

Weaknesses/Limitations of the Paper

- Were prior Rowhammer exploits not also a way of breaking confidentiality?
- Are servers that susceptible to that attack?
 Might be hard to predict the scheduling of threads
- Victim needs to be operating very predictably (e.g. #pages allocated before secret, ...)
- Limited to secret data which has redundancy in it
- Modest Bit-Rate for reading bits
- Does not consider multi-processor setup

Outline

- Background, Problem, Goal
- Novelty, Key Approaches and Ideas
- Mechanisms
- Key Results: Methodology and Evaluation

- Strengths and Weaknesses
- Thoughts and Ideas / Discussion Starters
- Takeaways

Thoughts and Ideas/Discussion Starters

- Ways of mitigating RAMBleed?
- Possible Mitigations
 - HW
 - Increasing Refresh Intervals
 - TRR (Target Row Refresh) proposed by vendors
 - <u>PARA</u> (Probabilistic Adjacent Row Activation)
 - SW
 - Encryption = e.g. enclaves in SGX
 - 0-ing out data
 - Probabilistic Memory Allocator

Thoughts and Ideas/Discussion Starters

- Compilation of data to less susceptible bit-patterns?
- Is it necessary to isolate different security domains?

Outline

- Background, Problem, Goal
- Novelty, Key Approaches and Ideas
- Mechanisms
- Key Results: Methodology and Evaluation

- Strengths and Weaknesses
- Thoughts and Ideas / Discussion Starters
- Takeaways

Conflicting Trends

- Challenges for DRAM
 - Capacity
 - More capacitors on less space
 - Disturbance between them increases
 - Power Consumption
 - More Capacity \rightarrow increases energy for refresh
 - Less Energy for refresh by intelligent refresh (RAIDR, ...)

• • • •

 These trends worsen the breach posed by Rowhammer and in turn RAMBleed

Extensions & Follow-Up Work

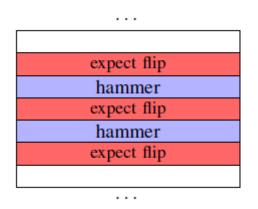
- Can this idea be improved s.t. higher bit-rates can be achieved?
- Can this idea be evaluated on other OSs, HW?
- Where to solve the problem?
 - HW level?
 - Ways to speed up ECC memory? (e.g. on-die ECC)
 - Involve higher levels in abstraction hierarchy?
 - E.g. better mapping from virtual to physical address space
 - Solutions specifically tailored to RAMBleed

RAMBleed Reading Bits in Memory Without Accessing Them

Andrew Kwong S Daniel Genkin Daniel Gruss Yuval Yarom

§ University of Michigan \$ Graz University of Technology \$ University of Adelaide and Data61

In Proceedings of the <u>41st Annual IEEE Symposium on Security & Privacy</u> (**S&P**), Oakland, CA, May 2020


Presented by: Arno Esterhammer

Slide Credit: Onur Mutlu, Andrew Kwong

Backup Slides

Recap: Rowhammer

3 types of Rowhammer*

nammer
expect flip
hammer
expect flip
hammer

hammer

expect flip
expect flip
expect flip
hammer
expect flip
expect flip
expect flip

Double-sided RH

Single-sided RH

One-location RH

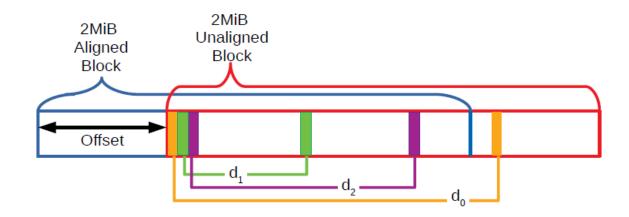
Figure: Paper on RAMBleed

* Daniel Gruss et al, Another Flip in the Wall of Rowhammer Defenses

Potential Problem: Memory Scrambling

- Memory Scrambling
 - To mitigate cold boot attacks
 - Avoid circuit damage due to resonant frequency
- Is not a problem for RAMBleed because striped patterns stay striped patterns even after scrambling [15]
- PRNG seed stays the same until machine is up

Linux Buddy Allocator (LBA)


- Kernel stores memory in physically consecutive blocks
 Arranged by order: nth order = 4096 * 2^n bytes
- Kernel maintains free-lists for blocks from order 0-10
- LBA tries to serve requests using smallest available blocks
 - □ If not possible → split the next smallest one into two "buddy" halves
- User space requests only allows order 0 requests
 - □ E.g. 16 KiB \rightarrow LBA treats as 4 requests

Memory Massaging

- Need to get 2MiB of phys. contiguous memory
- Phase 1 \rightarrow exhaust small blocks
 - □ Until less than 2MiB of free space is available in order <10
- 2 Requests for 2MiB
 - LBA needs to split order 10 block (=4MiB)
- After 1st request
 - there is more than 2MiB left of the split order 10 block
- The 2nd request results in phys. contiguous memory
 - Because the next 2 MiB are served in-order

Reversing Physical Address Bits

- Need to find out physical addresses of same-bank pages
- 2 MiB block from 2nd request might not be aligned on 2MiBs
- Use row-buffer timing side channel to find out offset
- Distance pattern uniquely identifies offset

Non-ECC Setup

- □ HP Prodesk 600, Ubuntu 18.04, i5-4570 CPU
- a 2 Axiom DDR3 4GB 1333 MHz non-ECC DIMMs

ECC Setup

- Supermicro X10SLL-F motherboard
- BIOD version 3.0a
- With Intel Xeon E3-1270 v3 CPU
- □ 2 Kingston 8GB 1333Mhz ECC DIMMs