
RAMBleed

Reading Bits in Memory Without

Accessing Them

Andrew Kwong§ Daniel Genkin§ Daniel Gruss ‡ Yuval Yarom †

§University of Michigan ‡ Graz University of Technology
† University of Adelaide and Data61

In Proceedings of the

41st Annual IEEE Symposium on Security & Privacy (S&P), Oakland, CA, May 2020

Presented by: Arno Esterhammer

Slide Credit: Onur Mutlu, Andrew Kwong

http://www.microarch.org/micro44/
http://www.ieee-security.org/TC/SP2020/index.html

Executive Summary

◼ RAMBleed

❑ Based on Rowhammer, formerly used to write bits

❑ Paper shows how to read bits using Rowhammer

◼ How?

❑ Find flippable bits in memory

❑ Layout victim data as desired

❑ Hammer rows & Infer bits of the secret

◼ Even ECC memory is affected

2

Outline

◼ Background, Problem, Goal

◼ Novelty, Key Approaches and Ideas

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Strengths and Weaknesses

◼ Thoughts and Ideas / Discussion Starters

◼ Takeaways

3

Outline

◼ Background, Problem, Goal

◼ Novelty, Key Approaches and Ideas

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Strengths and Weaknesses

◼ Thoughts and Ideas / Discussion Starters

◼ Takeaways

4

C
h
ip

 0

C
h
ip

 1

C
h
ip

 2

C
h
ip

 3

C
h
ip

 4

C
h
ip

 5

C
h
ip

 6

C
h
ip

 7

Recap: DRAM

5

Bank 7

Bank 0

Recap: DRAM

6

Columns

R
o
w

s
Row Buffer

2D Array of Cells

Bank 7

subarray

subarray

subarray

Recap: DRAM

7

Columns

R
o
w

s

Row Buffer

C C C

T T T

wordline (row enable)

b
it
lin

e

b
it
lin

e

b
it
lin

e

Recap: Rowhammer

8

Animation: Onur Mutlu, Presentation on RowHammer

◼ Disturbance errors due to repeatedly reading same row

Row of Cells

Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row

Hammered RowOpenedClosed

https://www.youtube.com/redirect?redir_token=QUFFLUhqbHQ4emxfbEF2LTZmODRsRXRrc1Q0OEtlUW9Ud3xBQ3Jtc0tuOGtCMElHY2dMWGNMN21xWUxZdkpneWRBYWI4WjhySTI2SUdEazV0clhQVi1RTG4xaUpsWHdSUTN0NmZyVktwVWc5WTNNbXJVclZjQm5mcUJkdm1oU0laTTVkY2wyMlh1MmdpbFZtR3MtTENLVVVTaw%3D%3D&q=https%3A%2F%2Fsafari.ethz.ch%2Farchitecture%2Ffall2019%2Flib%2Fexe%2Ffetch.php%3Fmedia%3Donur-comparch-fall2019-lecture4b-rowhammer-afterlecture.pptx&event=video_description&v=ET5jjYhAV6k

◼ DRAM is a highly shared resource

◼ Note: different security domains located in neighboring
rows

◼ In combination with Rowhammer poses security risk

Problem

9

Row 0

Row 1

Row 2

Row 3

Row 4

Application, e.g. OpenSSHOperating System UnusedUnprivileged user

Goal of the Paper

10

◼ Use Rowhammer to read secret data

◼ How?

❑ Find memory locations vulnerable to bitflips

❑ Intelligently place victim data inside memory

❑ Hammer rows & Infer bits of the secret

◼ Results

❑ End-to-End attack on Open SSH Server

◼ Desktop machine (without ECC)

◼ Server machine (with ECC)

Outline

◼ Background, Problem, Goal

◼ Novelty, Key Approaches and Ideas

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Strengths and Weaknesses

◼ Thoughts and Ideas / Discussion Starters

◼ Takeaways

11

X X X X 1 X X X X X

X X X X 0 X X X X X

X X X X 1 X X X X X

X X X X X X X 0 X X

X X X X X X X 1 X X

X X X X X X X 0 X X

Row Buffer

X X X X 1 X X X X X

X X X X 0 X X X X X

X X X X 1 X X X X X

X X X X X X X 0 X X

X X X X X X X 1 X X

X X X X X X X 0 X X

Row Buffer

Observation

12

◼ Bit-flips in Rowhammer

❑ Dependent on orientation of bit (i.e. 1 to 0 or 0 to 1)

❑ also depend on neighboring bits!

1

0

1

X X X X 1 X X X X X

X X X X 0 X X X X X

X X X X 1 X X X X X

X X X X X X X 0 X X

X X X X X X X 1 X X

X X X X X X X 0 X X

Row Buffer

Columns

R
o

w
s

1

1

1

0

1

0

0

0

0

“striped“ patterns “uniform“ patterns

Flipping Bits in Memory Without Accessing Them, Kim et al

https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

Row 1

Row 2

Row 0

Page 4 Page 5

Page 2 Page 3

Page 0 Page 1

Observation

13

◼ DRAM banks operate on resolution of a row

❑ typically 8KB

◼ 2 pages per row

◼ Access to one page → activates another page

activated

Row 1

Row 2

Row 0

Page 4 Page 5

Page 2 Page 3

Page 0 Page 1

Idea – Combining these Observations

14

◼ Layout the memory in the following way

❑ Sampling Page in between two identical copies of Secret

❑ Activation of A0 and A2 also triggers copies of S

❑ Thereby hammering A1

◼ No access permissions needed for pages S

Row 1

Row 2

Row 0

Row Activation Page (A0) Secret (S)

Unused (R0) Sampling Page (A1)

Row Activation Page (A2) Secret (S)

Example: Inferring Bits (1)

15

Row Activation Page (A0) Secret (S)

Unused (R0) Sampling Page (A1)

Row Activation Page (A2) Secret (S)

Row Activation Page (A0) 1 0 1 1

Unused (R0) 1 1 1 1

Row Activation Page (A2) 1 0 1 1

= flippable bit

0

= bit-flip

… infer that bit of Secret was 0 at this location

1 0 1 1

1 1 1 1

1 0 1 1

0

0

striped pattern uniform pattern

= refusing to flip

Example: Inferring Bits (2)

16

Row Activation Page (A0) Secret (S)

Unused (R0) Sampling Page (A1)

Row Activation Page (A2) Secret (S)

Row Activation Page (A0) 1 0 1 1

Unused (R0) 1 1 1 1

Row Activation Page (A2) 1 0 1 1

= flippable bit

… infer that bit of Secret was 1 at this location

1 0 1 1

1 1 1 1

1 0 1 1

1

1

uniform pattern uniform pattern

Types of RAMBleed

17

◼ 2 types presented in the paper

Double-sided RAMBleed

Single-sided RAMBleed

SSH (Secure Shell)

18

◼ cryptographic network protocol

◼ Uses RSA crypto system

❑ Public key, Private key

◼ used for authentication (signing)

Public Key Infrastructure (PKI)

Server
1.Generates public,

private key pair

2.Uploads public key

User

3.Send message encrypted with private key

4.Get public key of server

5. Decrypt message

with public key Attacker

Steal private keySend message encrypted

with stolen private key

Outline

◼ Background, Problem, Goal

◼ Novelty, Key Approaches and Ideas

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Strengths and Weaknesses

◼ Thoughts and Ideas / Discussion Starters

◼ Takeaways

19

◼ Exhaust Small blocks of Linux
Buddy Allocator

❑ Until bigger blocks are served

◼ /proc/pagetypeinfo

❑ to track available blocks

Reversing the Mapping

20

Physical Address Space

◼ DRAMA by Pessl et al

❑ Able to reverse lower 22 bits of
physical address

❑ Need 2MB of contiguous physical
memory

2 MB

C
h
ip

 0

C
h
ip

 1

C
h
ip

 2

C
h
ip

 3

C
h
ip

 4

C
h
ip

 5

C
h
ip

 6

C
h
ip

 7

Virtual Address Space 2 MB

https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_pessl.pdf

Memory Templating

21

◼ Scan the memory

❑ Search for bits than can be flipped

◼ Take 3 consecutive rows and hammer

❑ Remember for later, if a flip is observed

Frame Feng Shui

22

◼ Placing victim pages in desired physical location

◼ Exploiting Linux Page Frame Cache

❑ Frames stored in FILO manner

❑ i.e. returns most recently deallocated page on request

◼ Done in 3 phases

❑ 1. Dummy allocations → allocate n pages

(n = #pages before secret)

❑ 2. Deallocation → choose target page & unmap it, unmap n

pages from step 1

❑ 3. Triggering the victim → e.g. by initiating an SSH connection

◼ Now secret is at the intended page

◼ Hammer until enough bits are recovered

❑ ~66% bits suffice for SSH keys

Frame Feng Shui - Visualization

23

Victim Pseudo Code

Victim Page Frames Attacker Page FramesPage Frame Cache

stack-like data structure

Dummy Page 1

Dummy Page n

alloc()

...

alloc()

alloc()

d1

dn

secret

alloc()

...

alloc()

alloc()

d1

dn

secret

Frame Feng Shui - Visualization

24

Victim Pseudo Code

Victim Page Frames Attacker Page FramesPage Frame Cache

stack-like data structure

Dummy Page n

Dummy Page 1

secret

d1

dn

alloc()

...

alloc()

alloc()

d1

dn

secret

Frame Feng Shui - Visualization

25

Victim Pseudo Code

Victim Page Frames Attacker Page FramesPage Frame Cache

stack-like data structure

Dummy Page 1

Dummy Page n

secret

dn

d1

Attack (Summary)

26

◼ Find flippable bits

❑ Reverse engineer the mapping (virt. → phys. → DIMM add.)

❑ Memory Templating

◼ Layout Memory by (ab-)using

❑ Linux Buddy Allocator

❑ Linux Page Frame Cache → Frame Feng Shui

◼ Hammer & Infer bits

◼ As soon as enough bits could be retrieved

❑ Makes use of redundancy present in SSH-keys

❑ Use a variant of Heninger-Shacham Technique to obtain full
SSH-key

ECC memory

27

◼ ECC (Error-Correcting-Codes)

◼ Used in server machines to ensure data integrity

◼ Originally to correct rare bit-flips by cosmic radiation

◼ Usually only able to correct 1 error and detect 2 errors
(SECDED)

◼ Corrected when read

Example: Inferring Bits on ECC Memory

28

◼ After hammering bit flip occurs

Bank

Row Activation Page (A0) Secret (S)

Unused (R0) Sampling Page (A1)

Row Activation Page (A2) Secret (S)

Bank

Row Activation Page (A0) 1 0 1 1

Unused (R0) 1 1 1 1

Row Activation Page (A2) 1 0 1 1

= flippable bit

0

= bit-flip

1 0 1 1

1 1 1 1

1 0 1 1

Example: Inferring Bits on ECC Memory

29

◼ After hammering bit flip occurs

◼ But gets correct when reading

◼ Takes 100.000s of cycles to correct → observable

5 orders of

magnitude

Bank

Row Activation Page (A0) 1 0 1 1

Unused (R0) 1 1 1 1

Row Activation Page (A2) 1 0 1 1

= corrected bit

read

Bank

Row Activation Page (A0) 1 0 1 1

Unused (R0) 1 1 1 1

Row Activation Page (A2) 1 0 1 1

0

= bit-flip

Outline

◼ Background, Problem, Goal

◼ Novelty, Key Approaches and Ideas

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Strengths and Weaknesses

◼ Thoughts and Ideas / Discussion Starters

◼ Takeaways

30

Results (1)

31

◼ Two experiments

❑ Desktop machine (without ECC)

❑ Server machine (with ECC)

◼ Online Phase

❑ Need to read from ~4200 usable bits

❑ Reading at 0.31 bits/second

❑ With 82% accuracy on desktop machine
(73% on server)

◼ Almost 4h to obtain the full key

◼ Memory templating

❑ 84k bits (empirically chosen) → 4200 usable bits

❑ 41 bitflips/min

❑ 34h to find 84k flips

◼ Usable bits

❑ 3/16 of bits are at position of secret key → ~15750 bits

❑ Get rid of duplicate locations → ~4200 useful bits

Results (2)

32

secret

Executive Summary

◼ RAMBleed

❑ Based on Rowhammer, formerly used to write bits
(breach for integrity)

❑ Paper shows how to read bits using Rowhammer
i.e. it breaks confidentiality

◼ How?

❑ Find flippable bits in memory

❑ Layout victim data as desired

❑ Hammer rows & Infer secret

◼ Even ECC memory is affected

33

Outline

◼ Background, Problem, Goal

◼ Novelty, Key Approaches and Ideas

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Strengths & Weaknesses

◼ Thoughts and Ideas / Discussion Starters

◼ Takeaways

34

Strengths of the Paper

◼ New interesting way of using Rowhammer

❑ Use it as a read side channel

◼ Proof of Concept by a realistic Example

❑ description of End-to-End attack

❑ On commonly used software (Ubuntu + OpenSSH)

◼ Contribution

❑ Combines findings of lots of prior works

❑ And extended it to obtain new attack

35

Weaknesses/Limitations of the Paper

◼ Were prior Rowhammer exploits not also a way of breaking
confidentiality?

◼ Are servers that susceptible to that attack?

❑ Might be hard to predict the scheduling of threads

◼ Victim needs to be operating very predictably (e.g. #pages
allocated before secret, …)

◼ Limited to secret data which has redundancy in it

◼ Modest Bit-Rate for reading bits

◼ Does not consider multi-processor setup
36

Outline

◼ Background, Problem, Goal

◼ Novelty, Key Approaches and Ideas

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Strengths and Weaknesses

◼ Thoughts and Ideas / Discussion Starters

◼ Takeaways

37

◼ Ways of mitigating RAMBleed?

◼ Possible Mitigations

❑ HW

◼ Increasing Refresh Intervals

◼ TRR (Target Row Refresh) proposed by vendors

◼ PARA (Probabilistic Adjacent Row Activation)

❑ SW

◼ Encryption = e.g. enclaves in SGX

◼ 0-ing out data

◼ Probabilistic Memory Allocator

38

Thoughts and Ideas/Discussion Starters

https://people.inf.ethz.ch/omutlu/pub/RowHammer-TopPick-in-HW-Embedded-Security_2018.pdf

◼ Compilation of data to less susceptible bit-patterns?

◼ Is it necessary to isolate different security domains?

39

Thoughts and Ideas/Discussion Starters

Outline

◼ Background, Problem, Goal

◼ Novelty, Key Approaches and Ideas

◼ Mechanisms

◼ Key Results: Methodology and Evaluation

◼ Strengths and Weaknesses

◼ Thoughts and Ideas / Discussion Starters

◼ Takeaways

40

Conflicting Trends

41

◼ Challenges for DRAM

❑ Capacity

◼ More capacitors on less space

◼ Disturbance between them increases

❑ Power Consumption

◼ More Capacity → increases energy for refresh

◼ Less Energy for refresh by intelligent refresh (RAIDR, …)

❑ …

◼ These trends worsen the breach posed by Rowhammer and
in turn RAMBleed

Extensions & Follow-Up Work

◼ Can this idea be improved s.t. higher bit-rates can be
achieved?

◼ Can this idea be evaluated on other OSs, HW?

◼ Where to solve the problem?

❑ HW level?

◼ Ways to speed up ECC memory? (e.g. on-die ECC)

❑ Involve higher levels in abstraction hierarchy?

◼ E.g. better mapping from virtual to physical address space

◼ Solutions specifically tailored to RAMBleed

42

RAMBleed

Reading Bits in Memory Without

Accessing Them

Andrew Kwong§ Daniel Genkin§ Daniel Gruss ‡ Yuval Yarom †

§University of Michigan ‡ Graz University of Technology
† University of Adelaide and Data61

In Proceedings of the

41st Annual IEEE Symposium on Security & Privacy (S&P), Oakland, CA, May 2020

Presented by: Arno Esterhammer

Slide Credit: Onur Mutlu, Andrew Kwong

http://www.microarch.org/micro44/
http://www.ieee-security.org/TC/SP2020/index.html

Backup Slides

44

Recap: Rowhammer

45

Double-sided RH One-location RHSingle-sided RH

Figure: Paper on RAMBleed

* Daniel Gruss et al, Another Flip in the Wall of Rowhammer Defenses

◼ 3 types of Rowhammer*

https://web.eecs.umich.edu/~genkin/papers/another-flip-rowhammer.pdf

Potential Problem: Memory Scrambling

46

◼ Memory Scrambling

❑ To mitigate cold boot attacks

❑ Avoid circuit damage due to resonant frequency

◼ Is not a problem for RAMBleed because striped patterns
stay striped patterns even after scrambling [15]

◼ PRNG seed stays the same until machine is up

Linux Buddy Allocator (LBA)

47

◼ Kernel stores memory in physically consecutive blocks

❑ Arranged by order: nth order = 4096 * 2^n bytes

◼ Kernel maintains free-lists for blocks from order 0-10

◼ LBA tries to serve requests using smallest available blocks

❑ If not possible → split the next smallest one into two “buddy”

halves

◼ User space requests only allows order 0 requests

❑ E.g. 16 KiB → LBA treats as 4 requests

Memory Massaging

48

◼ Need to get 2MiB of phys. contiguous memory

◼ Phase 1 → exhaust small blocks

❑ Until less than 2MiB of free space is available in order <10

◼ 2 Requests for 2MiB

❑ LBA needs to split order 10 block (=4MiB)

◼ After 1st request

❑ there is more than 2MiB left of the split order 10 block

◼ The 2nd request results in phys. contiguous memory

❑ Because the next 2 MiB are served in-order

Reversing Physical Address Bits

49

◼ Need to find out physical addresses of same-bank pages

◼ 2 MiB block from 2nd request might not be aligned on 2MiBs

◼ Use row-buffer timing side channel to find out offset

◼ Distance pattern uniquely identifies offset

Evaluation Environment

50

◼ Non-ECC Setup

❑ HP Prodesk 600, Ubuntu 18.04, i5-4570 CPU

❑ 2 Axiom DDR3 4GB 1333 MHz non-ECC DIMMs

◼ ECC Setup

❑ Supermicro X10SLL-F motherboard

❑ BIOD version 3.0a

❑ With Intel Xeon E3-1270 v3 CPU

❑ 2 Kingston 8GB 1333Mhz ECC DIMMs

