
Self-Optimzing Memory 
Controllers: A Reinforcement 

Learning Approach
Engin Ipek1,2                 Onur Mutlu2                 José F. Martinez1                 Rich Carauana1 

1 Cornell University, Ithaca, NY 14850 USA 
2 Microsoft Research, Redmond, WA 98052 USA

Presented by Valery Fischer

International Symposium on Computer Architecture (ISCA) 2008



Summary

Problem & Goal

Key Ideas

Novelty

Mechanisms & Implementation

Results & Evaluation

Main Takeaways

Critique and Discussion

Strengths

Weaknesses

Thoughts

Discussion

2



Summary

3



Executive Summary

4



Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)



Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth 
presents an impediment to CMP scalability, also memory controllers are difficult to optimize with a fixed, rigid 
policy.



Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth 
presents an impediment to CMP scalability, also memory controllers are difficult to optimize with a fixed, rigid 
policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller



Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth 
presents an impediment to CMP scalability, also memory controllers are difficult to optimize with a fixed, rigid 
policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Key Ideas: Transforming the memory controller to a reinforcement learning (RL) agent, which finds the best 
scheduling policy for long-term performance



Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth 
presents an impediment to CMP scalability, also memory controllers are difficult to optimize with a fixed, rigid 
policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Key Ideas: Transforming the memory controller to a reinforcement learning (RL) agent, which finds the best 
scheduling policy for long-term performance

Evaluation: Test the new memory controller in different environments against the state-of-the-art best 
average access scheduling policy FR-FCFS



Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth 
presents an impediment to CMP scalability, also memory controllers are difficult to optimize with a fixed, rigid 
policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Key Ideas: Transforming the memory controller to a reinforcement learning (RL) agent, which finds the best 
scheduling policy for long-term performance

Evaluation: Test the new memory controller in different environments against the state-of-the-art best 
average access scheduling policy FR-FCFS

Results: An RL-based memory controller improves performance of parallel applications on a 4-core CMP by 
19% on average and DRAM bandwidth utilization by 22% compared to FR-FCFS
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Off-chip bandwidth scalability is limited

Off-chip bandwidth presents a serious impediment to CMP scalability

In practice only a fraction of the bandwidth can be used
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Key Ideas

Reinforcement Learning as a self-optimizing agent maps to a flexible, self-optimizing 
scheduler 

Make memory scheduling easier and more efficient 

Allows for flexible scheduling in multiple different workloads
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Key Idea: Design the memory controller as an RL agent whose goal is to learn an 
optimal memory scheduling policy via interaction with the system
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Exploration vs Exploitation: Agent must explore the environment enough to be able 
to make good decisions (exploration), but also follow and exploit a found strategy 
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Generalization: Agent must be able to generalize to act on such a big space of 
possible configurations

24



Challenges [2/2]

25



Challenges [2/2]

Implementation of the agent should not incur additional latency

25



Challenges [2/2]

Implementation of the agent should not incur additional latency

Needs to run below DRAM cycle time

25



Challenges [2/2]

Implementation of the agent should not incur additional latency

Needs to run below DRAM cycle time

Proposed Solution: Use dedicated hardware
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First to apply Machine Learning in memory controllers
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The features describe the system state to the agent

Selected Features:

1. Number of Reads
2. Number of Writes
3. Number of reads, that are load misses
4. Relation of command to a load miss in core C
5. Number of writes waiting for row referenced by command considered
6. Number of oldest load misses waiting for row referenced by command 

considered per core

Features were selected through an automated feature selection process
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CMAC representation

There are too many Q-values to represent, takes up a lot of space:
O(NumberOfStates * NumberOfActions) = O(TransactionQueueEntriesNumberOfAttributes * NumberOfActions)

CMAC representation is used for generalization and resolution: 
Using overlapping coarse grained tables for adaptive resolution 
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Implementation

Does not pose a large processing overhead

The 5 stages run below DRAM cycle time

Does not create additional latencies to any instruction it executes

Storage Overhead = 32 kB
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Comparison: FR-FCFS, in-order memory controller, optimistic scheduler with 100% 
peak DRAM throughput

Benchmarking Workloads: Mix of scalable parallel scientific applications  
(from the SPLASH-2 suite, SPEC OpenMP suite, and parallel NAS benchmarks)  
and a parallelized data mining application (SCALPARC from Nu-MineBench)

The parallel workloads were simulated on a CMP with four two-way simultaneously 
multithreaded (SMT) cores, 4MB of L2 cache, and a DDR2-800 memory system 
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RL-based memory scheduler improves performance over state-of-the-art memory 
scheduling policies by 19% on average

Improvements are seen for all tested workloads and architectures

Shows a promising way of improving memory schedulers
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presents an impediment to Chip Multiprocessor (CMP) scalability, also memory controllers are difficult to 
optimize with a fixed, rigid policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Key Ideas: Transforming the memory controller to a reinforcement learning (RL) agent, which finds the best 
scheduling policy for long-term performance

Evaluation: Test the new memory controller in different environments against the state-of-the-art best 
average access scheduling policy FR-FCFS

Results: An RL-based memory controller improves performance of parallel applications on a 4-core CMP by 
19% on average and DRAM bandwidth utilization by 22% compared to FR-FCFS

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)
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An RL-based self-optimizing memory scheduler adapts to its environment and shows 
promising results compared to state-of-the-art technologies

It reduces human design effort

Utilizes the memory bus more efficiently

Promising way for future technologies

53



Critique & Discussion

54



Strengths

Weaknesses

Thoughts

Discussion

55



Strengths

Weaknesses

Thoughts

Discussion

56



Strengths

57



Strengths

1. The paper shows the first application of machine learning to memory controllers

57



Strengths

1. The paper shows the first application of machine learning to memory controllers

2. Leads to a significant performance improvement in contrast to fixed state-of-the-art 
memory controllers

57



Strengths

1. The paper shows the first application of machine learning to memory controllers

2. Leads to a significant performance improvement in contrast to fixed state-of-the-art 
memory controllers

3. The proposed solution is self-optimizing and dynamic, and can thus improve 
performance for many different workloads

57



Strengths

1. The paper shows the first application of machine learning to memory controllers

2. Leads to a significant performance improvement in contrast to fixed state-of-the-art 
memory controllers

3. The proposed solution is self-optimizing and dynamic, and can thus improve 
performance for many different workloads

4. Thorough evaluation with many different workloads and comparisons 

57



Strengths

1. The paper shows the first application of machine learning to memory controllers

2. Leads to a significant performance improvement in contrast to fixed state-of-the-art 
memory controllers

3. The proposed solution is self-optimizing and dynamic, and can thus improve 
performance for many different workloads

4. Thorough evaluation with many different workloads and comparisons 

5. Well written: Clearly explains the mechanism behind the implementation
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Weaknesses

1. The paper makes specific assumptions and uses parameters which could be 
explained more thoroughly for better understanding

2. The specific implementation/how exactly this is implemented in hardware and its 
costs are not discussed in a lot of detail

3. The paper limits itself to a scope and does not fully consider what could be done 
outside of the assumed constraints
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Thoughts

Cool and novel idea with really good applicability

Starting grounds of optimizing difficult problems with ML 

Opens up new possibilities in ML and HW interplay

Encourages the use of ML in places, where dynamic and adaptable solutions are needed
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Discussion

What are potential reasons for or against implementing this in a real-world system?
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Discussion

Are there other applications similar to this, which you can see in other Computer 
Architecture designs?

64



Discussion

Is this worth exploring further now 13 years after the publishing of this paper?
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Discussion

Can you see other criteria, other than only latency overhead, which could also be 
considered for an implementation of this technology?
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Implementation
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Implementation
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Evaluation: Speedup
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Same information is given to the FR-FCFS memory scheduler



Evaluation: Performance
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Evaluation: Speedup
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Evaluation: System
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Evaluation: static vs. dynamic
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