
Self-Optimzing Memory
Controllers: A Reinforcement

Learning Approach
Engin Ipek1,2 Onur Mutlu2 José F. Martinez1 Rich Carauana1

1 Cornell University, Ithaca, NY 14850 USA
2 Microsoft Research, Redmond, WA 98052 USA

Presented by Valery Fischer

International Symposium on Computer Architecture (ISCA) 2008

Summary

Problem & Goal

Key Ideas

Novelty

Mechanisms & Implementation

Results & Evaluation

Main Takeaways

Critique and Discussion

Strengths

Weaknesses

Thoughts

Discussion

2

Summary

3

Executive Summary

4

Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth
presents an impediment to CMP scalability, also memory controllers are difficult to optimize with a fixed, rigid
policy.

Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth
presents an impediment to CMP scalability, also memory controllers are difficult to optimize with a fixed, rigid
policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth
presents an impediment to CMP scalability, also memory controllers are difficult to optimize with a fixed, rigid
policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Key Ideas: Transforming the memory controller to a reinforcement learning (RL) agent, which finds the best
scheduling policy for long-term performance

Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth
presents an impediment to CMP scalability, also memory controllers are difficult to optimize with a fixed, rigid
policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Key Ideas: Transforming the memory controller to a reinforcement learning (RL) agent, which finds the best
scheduling policy for long-term performance

Evaluation: Test the new memory controller in different environments against the state-of-the-art best
average access scheduling policy FR-FCFS

Executive Summary

4

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth
presents an impediment to CMP scalability, also memory controllers are difficult to optimize with a fixed, rigid
policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Key Ideas: Transforming the memory controller to a reinforcement learning (RL) agent, which finds the best
scheduling policy for long-term performance

Evaluation: Test the new memory controller in different environments against the state-of-the-art best
average access scheduling policy FR-FCFS

Results: An RL-based memory controller improves performance of parallel applications on a 4-core CMP by
19% on average and DRAM bandwidth utilization by 22% compared to FR-FCFS

Memory Controllers

5

Core

Core

Core

Core

C
ach

e

Memory
Controller Memory Bus Memory

Memory Controllers

5

Core

Core

Core

Core

C
ach

e

Memory
Controller Memory Bus Memoryprecharge

Memory Controllers

5

Core

Core

Core

Core

C
ach

e

Memory
Controller Memory Bus Memoryprecharge

DRAM Bank (Precharge)

6

Row Buffer

Row 1

Row 2

Row 5

Row 6

Row 3

Row 4

Row 7

Row 8

DRAM Bank (Precharge)

6

precharge

Row Buffer

Row 1

Row 2

Row 5

Row 6

Row 3

Row 4

Row 7

Row 8

DRAM Bank (Precharge)

6

precharge

Row Buffer

Row 1

Row 2

Row 5

Row 6

Row 3

Row 4

Row 7

Row 8

Memory Controllers

7

Core

Core

Core

Core

C
ach

e

Memory
Controller Memory Bus Memoryactivate

Memory Controllers

7

Core

Core

Core

Core

C
ach

e

Memory
Controller Memory Bus Memoryactivate

DRAM Bank (activate)

8

Row 1

Row 2

Row 5

Row 6

Row 3

Row 4

Row 7

Row 8

Row Buffer

DRAM Bank (activate)

8

activate

Row 1

Row 2

Row 5

Row 6

Row 3

Row 4

Row 7

Row 8

Row Buffer

DRAM Bank (activate)

8

activate

Row 1

Row 2

Row 5

Row 6

Row 3

Row 4

Row 7

Row 8

Row Buffer

Memory Controllers

9

Core

Core

Core

Core

C
ach

e

Memory
Controller Memory Bus Memory

read/
write

Memory Controllers

9

Core

Core

Core

Core

C
ach

e

Memory
Controller Memory Bus Memory

read/
write

DRAM Bank (read/write)

10

Memory

Row 1

Row 2

Row 5

Row 6

Row 3

Row 4

Row 7

Row 8

Row Buffer

DRAM Bank (read/write)

10

Read/write
Memory

Row 1

Row 2

Row 5

Row 6

Row 3

Row 4

Row 7

Row 8

Row Buffer

Memory Controllers

11

Core

Core

Core

Core

C
ach

e

Memory
Controller Memory Bus MemoryData

Memory Controllers

11

Core

Core

Core

Core

C
ach

e

Memory
Controller Memory Bus MemoryData

Memory Controllers

11

Core

Core

Core

Core

C
ach

e

Memory
Controller Memory Bus Memory

Scalability Issue

12

Scalability Issue

Off-chip bandwidth scalability is limited

12

Scalability Issue

Off-chip bandwidth scalability is limited

Off-chip bandwidth presents a serious impediment to CMP scalability

12

Scalability Issue

Off-chip bandwidth scalability is limited

Off-chip bandwidth presents a serious impediment to CMP scalability

In practice only a fraction of the bandwidth can be used

12

13

Transistor Count

#
 o

f
Tr

an
si

st
or

s
(M

ill
io

ns
)

0

7500

15000

22500

30000

Year

2007 2011 2015 2018 2022

25% annual
growth

ITRS 2007 Executive Summary

14

Transistor Count

#
 o

f
Tr

an
si

st
or

s
(M

ill
io

ns
)

0

7500

15000

22500

30000

Year

2007 2011 2015 2018 2022

25% annual
growth

Pin Count

#
 o

f
Pi

ns

0

7500

15000

22500

30000

Year

2007 2011 2015 2018 2022

10% annual
growth

ITRS 2007 Executive Summary

15

Transistor Count

#
 o

f
Tr

an
si

st
or

s
(M

ill
io

ns
)

0

7500

15000

22500

30000

Year

2007 2011 2015 2018 2022

25% annual
growth

Pin Count

#
 o

f
Pi

ns

0

7500

15000

22500

30000

Year

2007 2011 2015 2018 2022

10% annual
growth

Memory bandwidth, dictated by the pin count, poses a bottleneck for CMP performance

ITRS 2007 Executive Summary

Problem & Goal

Key Ideas

Novelty

Mechanisms & Implementation

Evaluation & Results

Main Takeaways

16

Problem & Goal

Key Ideas

Novelty

Mechanisms & Implementation

Evaluation & Results

Main Takeaways

17

Problem & Goal

18

Problem & Goal

State-of-the-art memory controllers deliver low performance due to their fixed, rigid
access scheduling policies designed for average-case behaviour

18

Problem & Goal

State-of-the-art memory controllers deliver low performance due to their fixed, rigid
access scheduling policies designed for average-case behaviour

For improvements in CMP architectures, off-chip bandwidth of the memory bus presents
a serious impediment to its scalability

18

Problem & Goal

State-of-the-art memory controllers deliver low performance due to their fixed, rigid
access scheduling policies designed for average-case behaviour

For improvements in CMP architectures, off-chip bandwidth of the memory bus presents
a serious impediment to its scalability

DRAM scheduling is a complex problem, as workloads demand differing scheduling
policies

18

Problem & Goal

State-of-the-art memory controllers deliver low performance due to their fixed, rigid
access scheduling policies designed for average-case behaviour

For improvements in CMP architectures, off-chip bandwidth of the memory bus presents
a serious impediment to its scalability

DRAM scheduling is a complex problem, as workloads demand differing scheduling
policies

18

Goal: Improve Performance of off-chip bandwidth by designing a better memory
controller.

Problem & Goal

Key Ideas

Novelty

Mechanisms & Implementation

Evaluation & Results

Main Takeaways

19

Key Ideas

Reinforcement Learning as a self-optimizing agent maps to a flexible, self-optimizing
scheduler

Make memory scheduling easier and more efficient

Allows for flexible scheduling in multiple different workloads

20

Reinforcement Learning

21

Environment

Agent

Reinforcement Learning

21

Environment

Agent
State

Reinforcement Learning

21

Environment

Agent
State

Reward

Reinforcement Learning

21

Environment

Agent

Reinforcement Learning

21

Environment

AgentAction

Reinforcement Learning

21

Environment

Agent

Reinforcement Learning

21

Environment

Agent
State

Reinforcement Learning

21

Environment

Agent
State

Reward

Reinforcement Learning

21

Environment

Agent
State

Reward
Action

Applicability to Memory Controllers

22

Applicability to Memory Controllers

22

Applicability to Memory Controllers

RL applies well to Memory Controller design

22

Applicability to Memory Controllers

RL applies well to Memory Controller design

Easy translation of Environment, Agent, Action, Reward, and State to
System, Scheduler, Command, Bus Utilization, and State Attributes

22

Applicability to Memory Controllers

RL applies well to Memory Controller design

Easy translation of Environment, Agent, Action, Reward, and State to
System, Scheduler, Command, Bus Utilization, and State Attributes

22

Applicability to Memory Controllers

RL applies well to Memory Controller design

Easy translation of Environment, Agent, Action, Reward, and State to
System, Scheduler, Command, Bus Utilization, and State Attributes

22

Applicability to Memory Controllers

RL applies well to Memory Controller design

Easy translation of Environment, Agent, Action, Reward, and State to
System, Scheduler, Command, Bus Utilization, and State Attributes

22

Key Idea: Design the memory controller as an RL agent whose goal is to learn an
optimal memory scheduling policy via interaction with the system

Applicability to Memory Controllers

23

System

Scheduler

Applicability to Memory Controllers

23

System

Scheduler
State Attributes

Applicability to Memory Controllers

23

System

Scheduler
State Attributes

Bus Utilization

Applicability to Memory Controllers

23

System

Scheduler

Applicability to Memory Controllers

23

System

SchedulerCommand

Applicability to Memory Controllers

23

System

Scheduler

Applicability to Memory Controllers

23

System

Scheduler
State Attributes

Applicability to Memory Controllers

23

System

Scheduler
State Attributes

Bus Utilization

Applicability to Memory Controllers

23

System

Scheduler
State Attributes

Bus Utilization
Command

Challenges [1/2]

24

Challenges [1/2]

Temporal Credit Assignment: Agent must be able to anticipate long-term
consequences of its actions

24

Challenges [1/2]

Temporal Credit Assignment: Agent must be able to anticipate long-term
consequences of its actions

Exploration vs Exploitation: Agent must explore the environment enough to be able
to make good decisions (exploration), but also follow and exploit a found strategy
(exploitation)

24

Challenges [1/2]

Temporal Credit Assignment: Agent must be able to anticipate long-term
consequences of its actions

Exploration vs Exploitation: Agent must explore the environment enough to be able
to make good decisions (exploration), but also follow and exploit a found strategy
(exploitation)

Generalization: Agent must be able to generalize to act on such a big space of
possible configurations

24

Challenges [2/2]

25

Challenges [2/2]

Implementation of the agent should not incur additional latency

25

Challenges [2/2]

Implementation of the agent should not incur additional latency

Needs to run below DRAM cycle time

25

Challenges [2/2]

Implementation of the agent should not incur additional latency

Needs to run below DRAM cycle time

Proposed Solution: Use dedicated hardware

25

Problem & Goal

Key Ideas

Novelty

Mechanisms & Implementation

Evaluation & Results

Main Takeaways

26

Novelty

27

Novelty

Reinforcement Learning (RL) based self-optimizing memory controller

27

Novelty

Reinforcement Learning (RL) based self-optimizing memory controller

Allows hardware designers to define a performance target instead of a fixed policy

27

Novelty

Reinforcement Learning (RL) based self-optimizing memory controller

Allows hardware designers to define a performance target instead of a fixed policy

First to apply Machine Learning in memory controllers

27

Problem & Goal

Key Ideas

Novelty

Mechanisms & Implementation

Evaluation & Results

Main Takeaways

28

Rewards

29

Rewards

Rewards represent the goal towards which is being optimized

29

Rewards

Rewards represent the goal towards which is being optimized

Current Bus Utilization is the reward for this agent

29

Feature Selection

30

Feature Selection

The features describe the system state to the agent

30

Feature Selection

The features describe the system state to the agent

Selected Features:

30

Feature Selection

The features describe the system state to the agent

Selected Features:

30

Feature Selection

The features describe the system state to the agent

Selected Features:

1. Number of Reads

30

Feature Selection

The features describe the system state to the agent

Selected Features:

1. Number of Reads
2. Number of Writes

30

Feature Selection

The features describe the system state to the agent

Selected Features:

1. Number of Reads
2. Number of Writes
3. Number of reads, that are load misses

30

Feature Selection

The features describe the system state to the agent

Selected Features:

1. Number of Reads
2. Number of Writes
3. Number of reads, that are load misses
4. Relation of command to a load miss in core C

30

Feature Selection

The features describe the system state to the agent

Selected Features:

1. Number of Reads
2. Number of Writes
3. Number of reads, that are load misses
4. Relation of command to a load miss in core C
5. Number of writes waiting for row referenced by command considered

30

Feature Selection

The features describe the system state to the agent

Selected Features:

1. Number of Reads
2. Number of Writes
3. Number of reads, that are load misses
4. Relation of command to a load miss in core C
5. Number of writes waiting for row referenced by command considered
6. Number of oldest load misses waiting for row referenced by command

considered per core

30

Feature Selection

The features describe the system state to the agent

Selected Features:

1. Number of Reads
2. Number of Writes
3. Number of reads, that are load misses
4. Relation of command to a load miss in core C
5. Number of writes waiting for row referenced by command considered
6. Number of oldest load misses waiting for row referenced by command

considered per core

Features were selected through an automated feature selection process

30

Q-Values

31

Q-Values

Q-values approximate the cumulative long-term reward for each
state action pair

31

Q-Values

Q-values approximate the cumulative long-term reward for each
state action pair

Will update itself using a function of the reward, and previous
Q-values, and the new arrived state

31

Q-Values

Q-values approximate the cumulative long-term reward for each
state action pair

Will update itself using a function of the reward, and previous
Q-values, and the new arrived state

The values are updated through a bellman equation:

31

Q-Values

Q-values approximate the cumulative long-term reward for each
state action pair

Will update itself using a function of the reward, and previous
Q-values, and the new arrived state

The values are updated through a bellman equation:

31

Q-Values

Q-values approximate the cumulative long-term reward for each
state action pair

Will update itself using a function of the reward, and previous
Q-values, and the new arrived state

The values are updated through a bellman equation:

31

CMAC representation

32

CMAC representation

There are too many Q-values to represent, takes up a lot of space:

32

CMAC representation

There are too many Q-values to represent, takes up a lot of space:
O(NumberOfStates * NumberOfActions) = O(TransactionQueueEntriesNumberOfAttributes * NumberOfActions)

32

CMAC representation

There are too many Q-values to represent, takes up a lot of space:
O(NumberOfStates * NumberOfActions) = O(TransactionQueueEntriesNumberOfAttributes * NumberOfActions)

CMAC representation is used for generalization and resolution:
Using overlapping coarse grained tables for adaptive resolution

32

CMAC representation

33

CMAC representation

34

Algorithm (Initialization)

35

System

Algorithm (Initialization)

35

Initialize Q-values to
1

1 − γ

System

Algorithm (Initialization)

35

Initialize Q-values to
1

1 − γ

get_legal_command_set()

System

Algorithm (Initialization)

35

Initialize Q-values to
1

1 − γ

get_legal_command_set()

System

C

Algorithm (Initialization)

35

Initialize Q-values to
1

1 − γ

get_legal_command_set()

System

Cselect_random_
command(C)

Algorithm (Initialization)

35

Initialize Q-values to
1

1 − γ

get_legal_command_set()

cmd

System

Cselect_random_
command(C)

Algorithm (Initialization)

35

Initialize Q-values to
1

1 − γ

get_legal_command_set()

cmd

get_Q-value(SystemState, cmd)

System

Cselect_random_
command(C)

Algorithm (Initialization)

35

Initialize Q-values to
1

1 − γ

get_legal_command_set()

cmdQprev

get_Q-value(SystemState, cmd)

System

Cselect_random_
command(C)

Algorithm

36

cmdQprev

System

C

Algorithm

36

cmdQprev

System

issue_command
(cmd)

C

Algorithm

36

cmdQprev

System

issue_command
(cmd)

C

observe_reward()

Algorithm

36

cmdQprev

r

System

issue_command
(cmd)

C

observe_reward()

Algorithm

36

cmdQprev

r

System

issue_command
(cmd)

C

observe_reward()

get_legal_command_set()

Algorithm

36

cmdQprev

r

System

issue_command
(cmd)

C

observe_reward()

get_legal_command_set()

select_command()

Algorithm

36

cmdQprev

r

System

issue_command
(cmd)

C

observe_reward()

get_legal_command_set()

select_command()

get_Q-value(SystemState, cmd)

Algorithm

36

cmdQprev Qselected

r

System

issue_command
(cmd)

C

observe_reward()

get_legal_command_set()

select_command()

get_Q-value(SystemState, cmd)

Algorithm

36

cmdQprev Qselected

r

System

issue_command
(cmd)

C

observe_reward()

get_legal_command_set()

select_command()

update Q-value(Q
prev , r, Q

selected)

get_Q-value(SystemState, cmd)

Implementation

37

Implementation

38

Implementation

39

Implementation

40

Implementation

41

Implementation

42

Implementation

Does not pose a large processing overhead

42

Implementation

Does not pose a large processing overhead

The 5 stages run below DRAM cycle time

42

Implementation

Does not pose a large processing overhead

The 5 stages run below DRAM cycle time

Does not create additional latencies to any instruction it executes

42

Implementation

Does not pose a large processing overhead

The 5 stages run below DRAM cycle time

Does not create additional latencies to any instruction it executes

Storage Overhead = 32 kB

42

Problem & Goal

Key Ideas

Novelty

Mechanisms & Implementation

Evaluation & Results

Main Takeaways

43

Experimental Setup

44

Experimental Setup

Comparison: FR-FCFS, in-order memory controller, optimistic scheduler with 100%
peak DRAM throughput

44

Experimental Setup

Comparison: FR-FCFS, in-order memory controller, optimistic scheduler with 100%
peak DRAM throughput

Benchmarking Workloads: Mix of scalable parallel scientific applications
(from the SPLASH-2 suite, SPEC OpenMP suite, and parallel NAS benchmarks)
and a parallelized data mining application (SCALPARC from Nu-MineBench)

44

Experimental Setup

Comparison: FR-FCFS, in-order memory controller, optimistic scheduler with 100%
peak DRAM throughput

Benchmarking Workloads: Mix of scalable parallel scientific applications
(from the SPLASH-2 suite, SPEC OpenMP suite, and parallel NAS benchmarks)
and a parallelized data mining application (SCALPARC from Nu-MineBench)

The parallel workloads were simulated on a CMP with four two-way simultaneously
multithreaded (SMT) cores, 4MB of L2 cache, and a DDR2-800 memory system

44

Evaluation: Speedup

45

Evaluation: Speedup

45

Evaluation: Speedup

46

Evaluation: Speedup

46

Evaluation: Data Bus Utilization

47

Evaluation: Data Bus Utilization

47

Evaluation: Sensitivity Parameters

48

Evaluation: Sensitivity Parameters

48

O
pt

im
al

Evaluation: Sensitivity Parameters

48

O
pt

im
al

Evaluation: Sensitivity Parameters

49

 decides the amount of random commands chosenϵ

Evaluation: Sensitivity Parameters

49

O
pt

im
al

 decides the amount of random commands chosenϵ

Evaluation Summary

50

Evaluation Summary

RL-based memory scheduler improves performance over state-of-the-art memory
scheduling policies by 19% on average

50

Evaluation Summary

RL-based memory scheduler improves performance over state-of-the-art memory
scheduling policies by 19% on average

Improvements are seen for all tested workloads and architectures

50

Evaluation Summary

RL-based memory scheduler improves performance over state-of-the-art memory
scheduling policies by 19% on average

Improvements are seen for all tested workloads and architectures

Shows a promising way of improving memory schedulers

50

Problem & Goal

Key Ideas

Novelty

Mechanisms & Implementation

Evaluation & Results

Main Takeways

51

Executive Summary

52

Executive Summary

52

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth
presents an impediment to Chip Multiprocessor (CMP) scalability, also memory controllers are difficult to
optimize with a fixed, rigid policy.

Executive Summary

52

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth
presents an impediment to Chip Multiprocessor (CMP) scalability, also memory controllers are difficult to
optimize with a fixed, rigid policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Executive Summary

52

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth
presents an impediment to Chip Multiprocessor (CMP) scalability, also memory controllers are difficult to
optimize with a fixed, rigid policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Key Ideas: Transforming the memory controller to a reinforcement learning (RL) agent, which finds the best
scheduling policy for long-term performance

Executive Summary

52

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth
presents an impediment to Chip Multiprocessor (CMP) scalability, also memory controllers are difficult to
optimize with a fixed, rigid policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Key Ideas: Transforming the memory controller to a reinforcement learning (RL) agent, which finds the best
scheduling policy for long-term performance

Evaluation: Test the new memory controller in different environments against the state-of-the-art best
average access scheduling policy FR-FCFS

Executive Summary

52

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth
presents an impediment to Chip Multiprocessor (CMP) scalability, also memory controllers are difficult to
optimize with a fixed, rigid policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Key Ideas: Transforming the memory controller to a reinforcement learning (RL) agent, which finds the best
scheduling policy for long-term performance

Evaluation: Test the new memory controller in different environments against the state-of-the-art best
average access scheduling policy FR-FCFS

Results: An RL-based memory controller improves performance of parallel applications on a 4-core CMP by
19% on average and DRAM bandwidth utilization by 22% compared to FR-FCFS

Executive Summary

52

Problem: Conventional memory controllers deliver relatively low performance and off-chip bandwidth
presents an impediment to Chip Multiprocessor (CMP) scalability, also memory controllers are difficult to
optimize with a fixed, rigid policy.

Goal: Improve off-chip bandwidth by utilizing a dynamic, self-optimizing memory controller

Key Ideas: Transforming the memory controller to a reinforcement learning (RL) agent, which finds the best
scheduling policy for long-term performance

Evaluation: Test the new memory controller in different environments against the state-of-the-art best
average access scheduling policy FR-FCFS

Results: An RL-based memory controller improves performance of parallel applications on a 4-core CMP by
19% on average and DRAM bandwidth utilization by 22% compared to FR-FCFS

Motivation: Efficiently utilizing off-chip bandwidth is critical in the design of Chip Multiprocessors (CMPs)

Main Takeaways

53

Main Takeaways

An RL-based self-optimizing memory scheduler adapts to its environment and shows
promising results compared to state-of-the-art technologies

53

Main Takeaways

An RL-based self-optimizing memory scheduler adapts to its environment and shows
promising results compared to state-of-the-art technologies

It reduces human design effort

53

Main Takeaways

An RL-based self-optimizing memory scheduler adapts to its environment and shows
promising results compared to state-of-the-art technologies

It reduces human design effort

Utilizes the memory bus more efficiently

53

Main Takeaways

An RL-based self-optimizing memory scheduler adapts to its environment and shows
promising results compared to state-of-the-art technologies

It reduces human design effort

Utilizes the memory bus more efficiently

Promising way for future technologies

53

Critique & Discussion

54

Strengths

Weaknesses

Thoughts

Discussion

55

Strengths

Weaknesses

Thoughts

Discussion

56

Strengths

57

Strengths

1. The paper shows the first application of machine learning to memory controllers

57

Strengths

1. The paper shows the first application of machine learning to memory controllers

2. Leads to a significant performance improvement in contrast to fixed state-of-the-art
memory controllers

57

Strengths

1. The paper shows the first application of machine learning to memory controllers

2. Leads to a significant performance improvement in contrast to fixed state-of-the-art
memory controllers

3. The proposed solution is self-optimizing and dynamic, and can thus improve
performance for many different workloads

57

Strengths

1. The paper shows the first application of machine learning to memory controllers

2. Leads to a significant performance improvement in contrast to fixed state-of-the-art
memory controllers

3. The proposed solution is self-optimizing and dynamic, and can thus improve
performance for many different workloads

4. Thorough evaluation with many different workloads and comparisons

57

Strengths

1. The paper shows the first application of machine learning to memory controllers

2. Leads to a significant performance improvement in contrast to fixed state-of-the-art
memory controllers

3. The proposed solution is self-optimizing and dynamic, and can thus improve
performance for many different workloads

4. Thorough evaluation with many different workloads and comparisons

5. Well written: Clearly explains the mechanism behind the implementation

57

Strengths

Weaknesses

Thoughts

Discussion

58

Weaknesses

59

Weaknesses

1. The paper makes specific assumptions and uses parameters which could be
explained more thoroughly for better understanding

59

Weaknesses

1. The paper makes specific assumptions and uses parameters which could be
explained more thoroughly for better understanding

2. The specific implementation/how exactly this is implemented in hardware and its
costs are not discussed in a lot of detail

59

Weaknesses

1. The paper makes specific assumptions and uses parameters which could be
explained more thoroughly for better understanding

2. The specific implementation/how exactly this is implemented in hardware and its
costs are not discussed in a lot of detail

3. The paper limits itself to a scope and does not fully consider what could be done
outside of the assumed constraints

59

Strengths

Weaknesses

Thoughts

Discussion

60

Thoughts

61

Thoughts

Cool and novel idea with really good applicability

61

Thoughts

Cool and novel idea with really good applicability

Starting grounds of optimizing difficult problems with ML

61

Thoughts

Cool and novel idea with really good applicability

Starting grounds of optimizing difficult problems with ML

Opens up new possibilities in ML and HW interplay

61

Thoughts

Cool and novel idea with really good applicability

Starting grounds of optimizing difficult problems with ML

Opens up new possibilities in ML and HW interplay

Encourages the use of ML in places, where dynamic and adaptable solutions are needed

61

Strengths

Weaknesses

Thoughts

Discussion

62

Discussion

What are potential reasons for or against implementing this in a real-world system?

63

Discussion

Are there other applications similar to this, which you can see in other Computer
Architecture designs?

64

Discussion

Is this worth exploring further now 13 years after the publishing of this paper?

65

Discussion

Can you see other criteria, other than only latency overhead, which could also be
considered for an implementation of this technology?

66

Backup sildes

67

Implementation

68

Implementation

69

Evaluation: Speedup

70

Same information is given to the FR-FCFS memory scheduler

Evaluation: Performance

71

Evaluation: Speedup

72

Evaluation: System

73

Evaluation: static vs. dynamic

74

