
Proceeding of the 52nd International Symposium on 
Microarchitecture (MICRO), October 2019

Seminar in Computer Architecture
Presented by: Christopher Meier
19 October 2020

ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs



Executive summary

• Motivation: Proof that AMBIT and RowClone are usable.
• Goal: Demonstrate row copy and bit-wise logical AND and OR in 

unmodified, commercial, DRAM.
• Key Idea: Violate DRAM timing constraints to enable charge sharing 

across multiple rows in the same sub-array.
• Mechanism: Perform operations with DRAM, by carefully violating its 

timing constraints.
• Implementation: Provide an in-memory compute framework to allow 

arbitrary computation.
• Results: Enable high computational throughput, up to 347x more energy 

efficient than using a vector unit.
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Motivation
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Illustration from Prof. Mutlu’s presentation on RowClone, pp. 23
[1]: A. Boroumand et al. 2018. Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks. In ASPLOS ’18:

Google consumer workloads[1]: 
Data movement contributes to 62.7% of the total energy consumption.

https://safari.ethz.ch/architecture_seminar/fall2020/lib/exe/fetch.php?media=onur-seminarincomparch-fall2020-meeting2-example-rowclone-afterlecture.pptx


Motivation

19.11.20 5[1]: Illustration from Prof. Mutlu’s presentation on RowClone, pp 23.

Reduce memory bandwidth demand:

Reduce unnecessary data movement



Solution Approach

Eliminating data movement by bringing computation closer to memory.
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S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna and O. Mutlu, 
"Processing-in-memory: A workload-driven perspective," 
in IBM Journal of Research and Development, 
vol. 63, no. 6, pp. 3:1-3:19, 1 Nov.-Dec. 2019, doi: 10.1147/JRD.2019.2934048.



Recap: DRAM Hierarchy

1. Channel
2. Rank
3. Chip
4. Bank
5. Sub-Array
6. Row/Colum
7. Cell
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Recap: DRAM Commands

- Activate:
On row level
1. Open target row
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Recap: DRAM Commands

- Activate:
On row level
1. Open target row
2. Amplify bit-line charge
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Recap: DRAM Commands

- Activate:
On row level
1. Open target row
2. Amplify bit-line charge

- Precharge:
On bank level
3. Close all rows
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Recap: DRAM Commands

- Activate:
On row level
1. Open target row
2. Amplify bit-line charge

- Precharge:
On bank level
3. Close all rows
4. Drive bit-lines to !""/2
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Motivation

• Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady 
Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization”
Proceedings of the 46th International Symposium on Microarchitecture (MICRO), Davis, CA, December 
2013.
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/


19.11.20 14Illustration from Prof. Mutlu’s presentation on RowClone, pp 31.
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Motivation
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• Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim, 
Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM 
Technology”
Proceedings of the 50th International Symposium on Microarchitecture (MICRO), Boston, MA, USA, 
October 2017.

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/
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Animation from: https://www.archive.ece.cmu.edu/~safari/pubs/ambit-bulk-bitwise-dram_micro17-talk.pptx 



Key Idea

DRAM Operation Timing
• Timing constraints guarantee correctness

• !1, Row Access Strobe #$%& : time to open a row, enable sense amplifier, wait for 
voltage to reach '(( or )*+

• !2, Row Precharge #$- : ensures that the previously activated row is closed, and 
the bit-line voltage has reached '((/2
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Key Idea

DRAM Operation Timing
• Timing constraints guarantee correctness

• T1: Row Access Strobe tRAS
• T2: Row Precharge tRP
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Key Idea:
Violate timing constraints of !1 and !2 to perform operations.



Mechanism 

Performing Row Copy
1. Issue Activate R1
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Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified
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Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified
3. Issue Precharge
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Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified
3. Issue Precharge
4.
- R1 closed, driving Vdd/2
- Interrupt Precharge

with Activate R2
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Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified
3. Issue Precharge
4.
- R1 closed, driving Vdd/2
- Interrupt Precharge

with Activate R2
5. Bit-line and cell of R2 get 

amplified
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Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified
3. Issue Precharge
4.
- R1 closed, driving Vdd/2
- Interrupt Precharge

with Activate R2
5. Bit-line and cell of R2 get 

amplified
6. R1 successfully copied to R2
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Mechanism

Performing Bulk-Bitwise logical AND/OR
By further reducing !1 and !2, three different rows can be 
opened simultaneously.

- The second Activate is sent while setting the word-line.
- The word-line according to the value on the

row address bus is being driven.
- Intermediate row is being opened as well.

19.11.20 25



Mechanism

Performing Bulk-Bitwise logical AND/OR

- Speculation:
- Row address is updated from LSB to MSB

- Note: 
- The row address update order is dependent on the 

manufacturer.
- It will not work the same on every DRAM chip
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Operation Reliability

Manufacturing Variations

- Capacitance variations require different timings

- Faulty cells due to manufacturing imperfections
- Their row addresses are being remapped to another physical location
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Implementation

As part of the proof of concept, computeDRAM introduces an in-memory 
compute framework.

In-memory compute framework
- Software interface to perform arbitrary computation using the three basic 

operations as building blocks.
- Manages the rows, where computations are being executed.
- Addresses the issue of errors due to faulty cells,

by introducing an error table.
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Implementation

Performing arbitrary computation
- AND and OR are not logically complete on their own, 

the NOT operation is missing

- Workaround: Save negated values in pairwise fashion with their nominals.

! ! " " # #
- Overhead is quite substantial: 
- Generate the negated pair
- Double the memory space needed
- Twice the number of operations needed.

19.11.20 29



Implementation

Implementation choices

- Computations only performed in the first 
three rows.

- Operations require a setup:
1. Copy the operands and the op-constant 

to these 3 rows
2. Perform the computation
3. Copy the result back to the destination 

row
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Implementation

Challenge
- The library ensures that operand rows are in 

the same sub-array by checking their 
address.

- The addresses of remapped rows are not
consistent with their physical locations.

- There is no way to guarantee that data is on 
the same sub-array, as the new row could 
be anywhere.
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Implementation

Solution: Error Table
- Idea: Exclude ”bad” columns and rows from 

computation with a custom mapping.

- Requires a scanning process to discover 
”bad” parts and save them to the error table.

- The error table requires periodical re-scans, 
due to natural wear out etc.
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Methodology

• Host system + FPGA running SoftMC to control the DRAM module

• Limitations:
- Timing intervals are limited to 

multiples of 2.5 ns

- DDR3 chips only

Extensive tests on environment 
temperature have been made
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Evaluation

Which manufacturers work?
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Evaluation

Computational Throughput
- Overhead does not change as we move from scalar to vector operations of 

64k elements

Energy efficiency
- Eliminates the high energy overhead of transferring data between CPU and 

main memory.
- 347x more efficient than using a vector unit for row copy.
- 48x more efficient for 8-bit AND/OR
- 9.3x more efficient for 8-bit ADD
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Conclusion

• Motivation: Proof that AMBIT and RowClone are usable.
• Goal: Demonstrate row copy and bit-wise logical AND and OR in 

unmodified, commercial, DRAM.
• Key Idea: Violate DRAM timing constraints to enable charge sharing 

across multiple rows in the same sub-array.
• Mechanism: Perform operations with DRAM, by carefully violating its 

timing constraints.
• Implementation: Provide an in-memory compute framework to allow 

arbitrary computation.
• Results: Enable high computational throughput, up to 347x more energy 

efficient than using a vector unit.
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Strengths

• Working proof of concept
- No additional hardware required
- Accessible in form of a library

• Addresses an important problem
• Well written
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Weaknesses

• Requirement for pairwise saving of negated values
• Not applicable to every DRAM chip
- Getting the timings right is substantial

• Requires data to be in the same sub array
• No solution for inter subarray row copy
• Proof of concept
- No thorough evaluation
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Related Work
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Related Work
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Related Work
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Open Discussion

• Is ComputeDRAM practical for actual use?
- What overhead is imposed?
- Do you think the overhead is acceptable?
- Are there any additional requirements to the system?

• What workloads can benefit from ComputeDRAM?

• Is there a way to enable more general computation?
- E.g. multiplication, division, floating point arithmetic…
- Where are the limits in complexity?

19.11.20 42



Open Discussion

• Will the solution become more important over time?

• What alternatives do you see?
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Thank you for your attention!


