
Proceeding of the 52nd International Symposium on
Microarchitecture (MICRO), October 2019

Seminar in Computer Architecture
Presented by: Christopher Meier
19 October 2020

ComputeDRAM: In-Memory Compute Using Off-the-Shelf DRAMs

Executive summary

• Motivation: Proof that AMBIT and RowClone are usable.
• Goal: Demonstrate row copy and bit-wise logical AND and OR in

unmodified, commercial, DRAM.
• Key Idea: Violate DRAM timing constraints to enable charge sharing

across multiple rows in the same sub-array.
• Mechanism: Perform operations with DRAM, by carefully violating its

timing constraints.
• Implementation: Provide an in-memory compute framework to allow

arbitrary computation.
• Results: Enable high computational throughput, up to 347x more energy

efficient than using a vector unit.

19.11.20 2

Outline

1. Motivation
2. Solution Approaches
3. Recap on DRAM
4. Key Idea
5. Mechanism of ComputeDRAM
6. Operation Reliability
7. Implementation of ComputeDRAM
8. Methodology
9. Evaluation
10. Conclusion

19.11.20 3

Motivation

19.11.20 4

Illustration from Prof. Mutlu’s presentation on RowClone, pp. 23
[1]: A. Boroumand et al. 2018. Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks. In ASPLOS ’18:

Google consumer workloads[1]:
Data movement contributes to 62.7% of the total energy consumption.

https://safari.ethz.ch/architecture_seminar/fall2020/lib/exe/fetch.php?media=onur-seminarincomparch-fall2020-meeting2-example-rowclone-afterlecture.pptx

Motivation

19.11.20 5[1]: Illustration from Prof. Mutlu’s presentation on RowClone, pp 23.

Reduce memory bandwidth demand:

Reduce unnecessary data movement

Solution Approach

Eliminating data movement by bringing computation closer to memory.

19.11.20 6

S. Ghose, A. Boroumand, J. S. Kim, J. Gómez-Luna and O. Mutlu,
"Processing-in-memory: A workload-driven perspective,"
in IBM Journal of Research and Development,
vol. 63, no. 6, pp. 3:1-3:19, 1 Nov.-Dec. 2019, doi: 10.1147/JRD.2019.2934048.

Recap: DRAM Hierarchy

1. Channel
2. Rank
3. Chip
4. Bank
5. Sub-Array
6. Row/Colum
7. Cell

19.11.20 7

1
2

4

3

6

5

7

Recap: DRAM Hierarchy

1. Channel
2. Rank
3. Chip
4. Bank
5. Sub-Array
6. Row/Colum
7. Cell

19.11.20 8

1
2

4

3

6

5

7

Recap: DRAM Commands

- Activate:
On row level
1. Open target row

19.11.20 9

1

Recap: DRAM Commands

- Activate:
On row level
1. Open target row
2. Amplify bit-line charge

19.11.20 10

1 2

Recap: DRAM Commands

- Activate:
On row level
1. Open target row
2. Amplify bit-line charge

- Precharge:
On bank level
3. Close all rows

19.11.20 11

1 32

Recap: DRAM Commands

- Activate:
On row level
1. Open target row
2. Amplify bit-line charge

- Precharge:
On bank level
3. Close all rows
4. Drive bit-lines to !""/2

19.11.20 12

1 432

Motivation

• Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun, Gennady
Pekhimenko, Yixin Luo, Onur Mutlu, Michael A. Kozuch, Phillip B. Gibbons, and Todd C. Mowry,
"RowClone: Fast and Energy-Efficient In-DRAM Bulk Data Copy and Initialization”
Proceedings of the 46th International Symposium on Microarchitecture (MICRO), Davis, CA, December
2013.

19.11.20 13

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://www.microarch.org/micro46/

19.11.20 14Illustration from Prof. Mutlu’s presentation on RowClone, pp 31.

VDD/2

VDD/2

0

VDD/2 + δ

0

VDD
VDDVDD/2 + δ

Sense Amplifier
(Row Buffer)

Amplify the
difference

0

Data gets
copied

src

dst

RowClone: Intra-Subarray Copy

Motivation

19.11.20 15

• Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan, Amirali Boroumand, Jeremie Kim,
Michael A. Kozuch, Onur Mutlu, Phillip B. Gibbons, and Todd C. Mowry,
"Ambit: In-Memory Accelerator for Bulk Bitwise Operations Using Commodity DRAM
Technology”
Proceedings of the 50th International Symposium on Microarchitecture (MICRO), Boston, MA, USA,
October 2017.

https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf
http://www.microarch.org/micro50/

½ VDD + δ
Triple-Row Activation: Majority Function

16

0 ½ VDD

01

1 VDD

enable
sense amp

Sense
Amp

activate
all three

rows
01

01

Animation from: https://www.archive.ece.cmu.edu/~safari/pubs/ambit-bulk-bitwise-dram_micro17-talk.pptx

Key Idea

DRAM Operation Timing
• Timing constraints guarantee correctness

• !1, Row Access Strobe #$%& : time to open a row, enable sense amplifier, wait for
voltage to reach '((or)*+

• !2, Row Precharge #$- : ensures that the previously activated row is closed, and
the bit-line voltage has reached '((/2

19.11.20 17

Key Idea

DRAM Operation Timing
• Timing constraints guarantee correctness

• T1: Row Access Strobe tRAS
• T2: Row Precharge tRP

19.11.20 18

Key Idea:
Violate timing constraints of !1 and !2 to perform operations.

Mechanism

Performing Row Copy
1. Issue Activate R1

19.11.20 19

Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified

19.11.20 20

Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified
3. Issue Precharge

19.11.20 21

Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified
3. Issue Precharge
4.
- R1 closed, driving Vdd/2
- Interrupt Precharge

with Activate R2

19.11.20 22

Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified
3. Issue Precharge
4.
- R1 closed, driving Vdd/2
- Interrupt Precharge

with Activate R2
5. Bit-line and cell of R2 get

amplified

19.11.20 23

Mechanism

Performing Row Copy
1. Issue Activate R1
2. Bit-line gets amplified
3. Issue Precharge
4.
- R1 closed, driving Vdd/2
- Interrupt Precharge

with Activate R2
5. Bit-line and cell of R2 get

amplified
6. R1 successfully copied to R2

19.11.20 24

Mechanism

Performing Bulk-Bitwise logical AND/OR
By further reducing !1 and !2, three different rows can be
opened simultaneously.

- The second Activate is sent while setting the word-line.
- The word-line according to the value on the

row address bus is being driven.
- Intermediate row is being opened as well.

19.11.20 25

Mechanism

Performing Bulk-Bitwise logical AND/OR

- Speculation:
- Row address is updated from LSB to MSB

- Note:
- The row address update order is dependent on the

manufacturer.
- It will not work the same on every DRAM chip

19.11.20 26

Operation Reliability

Manufacturing Variations

- Capacitance variations require different timings

- Faulty cells due to manufacturing imperfections
- Their row addresses are being remapped to another physical location

19.11.20 27

Implementation

As part of the proof of concept, computeDRAM introduces an in-memory
compute framework.

In-memory compute framework
- Software interface to perform arbitrary computation using the three basic

operations as building blocks.
- Manages the rows, where computations are being executed.
- Addresses the issue of errors due to faulty cells,

by introducing an error table.

19.11.20 28

Implementation

Performing arbitrary computation
- AND and OR are not logically complete on their own,

the NOT operation is missing

- Workaround: Save negated values in pairwise fashion with their nominals.

! ! " " # #
- Overhead is quite substantial:
- Generate the negated pair
- Double the memory space needed
- Twice the number of operations needed.

19.11.20 29

Implementation

Implementation choices

- Computations only performed in the first
three rows.

- Operations require a setup:
1. Copy the operands and the op-constant

to these 3 rows
2. Perform the computation
3. Copy the result back to the destination

row

19.11.20 30

Implementation

Challenge
- The library ensures that operand rows are in

the same sub-array by checking their
address.

- The addresses of remapped rows are not
consistent with their physical locations.

- There is no way to guarantee that data is on
the same sub-array, as the new row could
be anywhere.

19.11.20 31

Row
address

Physical
row layout

Redundant Row

Implementation

Solution: Error Table
- Idea: Exclude ”bad” columns and rows from

computation with a custom mapping.

- Requires a scanning process to discover
”bad” parts and save them to the error table.

- The error table requires periodical re-scans,
due to natural wear out etc.

19.11.20 32

Row
address

Redundant Row

Physical
row layout

Methodology

• Host system + FPGA running SoftMC to control the DRAM module

• Limitations:
- Timing intervals are limited to

multiples of 2.5 ns

- DDR3 chips only

Extensive tests on environment
temperature have been made

19.11.20 33

Evaluation

Which manufacturers work?

19.11.20 34

Evaluation

Computational Throughput
- Overhead does not change as we move from scalar to vector operations of

64k elements

Energy efficiency
- Eliminates the high energy overhead of transferring data between CPU and

main memory.
- 347x more efficient than using a vector unit for row copy.
- 48x more efficient for 8-bit AND/OR
- 9.3x more efficient for 8-bit ADD

19.11.20 35

Conclusion

• Motivation: Proof that AMBIT and RowClone are usable.
• Goal: Demonstrate row copy and bit-wise logical AND and OR in

unmodified, commercial, DRAM.
• Key Idea: Violate DRAM timing constraints to enable charge sharing

across multiple rows in the same sub-array.
• Mechanism: Perform operations with DRAM, by carefully violating its

timing constraints.
• Implementation: Provide an in-memory compute framework to allow

arbitrary computation.
• Results: Enable high computational throughput, up to 347x more energy

efficient than using a vector unit.

19.11.20 36

Strengths

• Working proof of concept
- No additional hardware required
- Accessible in form of a library

• Addresses an important problem
• Well written

19.11.20 37

Weaknesses

• Requirement for pairwise saving of negated values
• Not applicable to every DRAM chip
- Getting the timings right is substantial

• Requires data to be in the same sub array
• No solution for inter subarray row copy
• Proof of concept
- No thorough evaluation

19.11.20 38

Related Work

19.11.20 39

Related Work

19.11.20 40

Related Work

19.11.20 41

Open Discussion

• Is ComputeDRAM practical for actual use?
- What overhead is imposed?
- Do you think the overhead is acceptable?
- Are there any additional requirements to the system?

• What workloads can benefit from ComputeDRAM?

• Is there a way to enable more general computation?
- E.g. multiplication, division, floating point arithmetic…
- Where are the limits in complexity?

19.11.20 42

Open Discussion

• Will the solution become more important over time?

• What alternatives do you see?

19.11.20 43

Thank you for your attention!

