
May 6, 2021

SneakySnake
A Fast and Accurate Universal Genome Pre-
Alignment Filter for CPUs, GPUs, and FPGAs

Mohammed Alser1,2, Taha Shahroodi1,

Juan Gómez-Luna1,2, Can Alkan4,

Onur Mutlu1,2,3,4

Authors:

1 Department of Computer Science, ETH Zurich
2 Department of Information Technology and Electrical Engineering, ETH Zurich
3 Department of Electrical and Computer Engineering, Carnegie Mellon University
4 Department of Computer Engineering, Bilkent University

Presented by:
Robert Veres

Bioinformatics Journal, Volume 36

What is SneakySnake?

2

What is SneakySnake?

3

 Background

4

Recap from 10th grade biology

• Your most important attributes are written in your
chromosomes.

(Eye colour, gender, but even your immune
reactions to COVID)

• Your chromosomes are just very long strands of
DNA

• If we can read your DNA, we can tell a lot more
about you.

• If we could read the DNA of multiple people, we
could tell even more about you after reading your
DNA

➡ We want to read the entire DNA of multiple

people
5

Recap from 4th session

5

7

Recap from 4th session

8

Recap from 4th session

Key observation #1 Key observation #2

9

Recap from 4th session

Sequence-Alignment approach 1

10

• Most sequence alignment approaches are implemented as dynamic
programming algorithms with quadratic time complexity

• We can use a special hardware to accelerate the procedure

e.g. SIMD capable processors used by Parasail or processing in memory
Architecture such as GenASM

Sequence-Alignment approach 2

11

• Most sequence alignment approaches are implemented as dynamic
programming algorithms with quadratic time complexity

• Introduce pre-alignment filters that reduce the need for DP by eliminating
dissimilar strings

e.g. SHD or GateKeeper

However these are expensive and inaccurate

• Highly parallelizable

The goal of SneakySnake

Eliminate dissimilar strings via solving the Approximate

String matching problem

12

• Highly accurate pre-alignment filter to help us distinguish between similar
and dissimilar Strings, that we can ignore

• Should work for both short and long sequences

• Deployable on a lot of platforms

How does SneakySnake work?

13

How does SneakySnake work?

14

Single Net Routing (SNR)

Approximate String Matching (ASM)

How does SneakySnake work?

15

Single Net Routing (SNR)

Approximate String Matching (ASM)

How does SneakySnake work?

16

• Reduce ASM problem to SNR

How does SneakySnake work?

17

• Reduce ASM problem to SNR

• Solve the SNR problem

18

How does SneakySnake work?

• Reduce ASM problem to SNR

• Solve the SNR problem

• ???

• Profit!

19

How does SneakySnake work?

Step 1: Replace the DP-table with chip-maze™

Reducing ASM to SNR

20

Step 1: Replace the DP-table with chip-maze™

Step 2: Find the number of differences between two sequences by

 solving the SNR problem in the chip-maze™

What are those?

21

Reducing ASM to SNR

The Single Net Routing problem

22

23

The Single Net Routing problem

Goal: getting from the in- to the end-terminal

 with the least amount of obstacles possible

In-terminal

out-terminal

24

The Single Net Routing problem

In-terminal

Out-terminal

Checkpoints

Vertical-Routing-Track

Horizontal-Routing-Track

Escape segment

“The solution”

Change track

25

The Single Net Routing problem

Replace (m+1) x (m+1) matrix with (2E+1) x m where is defined as:

Zi,j

x

x
x

The chip-maze

26

Replace (m+1) x (m+1) matrix with (2E+1) x m where is defined as:

Zi,j

27

The chip-maze

Replace (m+1) x (m+1) matrix with (2E+1) x m where is defined as:

Zi,j

You can solve
the SNR

problem on this!

28

The chip-maze

ACCCGTA

AACCGTA
2. 1. 3. 4. 5.

29

Creating the chip-maze

ACCCGTA

AACCGTA
2. 1. 3. 4. 5.

30

Creating the chip-maze

ACCCGTA

AACCGTA
2. 1. 3. 4. 5.

31

Creating the chip-maze

ACCCGTA

AACCGTA
2. 1. 3. 4. 5.

Cont’d
No data dependencies, thus parallelisable

32

Creating the chip-maze

• Reduce ASM problem to SNR

• Solve the SNR problem

• ???

• Profit!

How does SneakySnake work?

33

Step 1: Select the longest escape segment

Step 2: Create a checkpoint

Step 3: Repeat step 2 and 3 until you reach the end or threshold exceeded

If length Q != R, deduct leading and trailing obstacles from the count of edits

Solving the Single Net Routing problem

34

0

0

1

3

0

Step 1: Select the longest escape segment

Step 2: Create a checkpoint

Step 3: Repeat step 2 and 3 until you reach the end or threshold exceeded

If length Q != R, deduct leading and trailing obstacles from the count of edits

Solving the Single Net Routing problem

35

0

0

1

3

0

Step 1: Select the longest escape segment

Step 2: Create a checkpoint

Step 3: Repeat step 2 and 3 until you reach the end or threshold exceeded

If length Q != R, deduct leading and trailing obstacles from the count of edits

Solving the Single Net Routing problem

36

0

0

1

3

0

0

0

1

0

0

Step 1: Select the longest escape segment

Step 2: Create a checkpoint

Step 3: Repeat step 2 and 3 until you reach the end or threshold exceeded

If length Q != R, deduct leading and trailing obstacles from the count of edits

Solving the Single Net Routing problem

37

0

0

1

3

0

1

0

0

0

0

Cont’d

Sketch of optimality proof

38

39

Sketch of optimality proof

If SneakySnake doesn’t join the optimal solution at the next option, we can shift it to
the next checkpoint or we reach the end (thus SneakySnake has less edits)

40

Sketch of optimality proof

There is one or more Signal nets that

 connects the In and Out-Terminal ⟹ SneakySnake finds the Signal net with

the least amount of obstacles possible.

Solving the Single Net Rounting problem

In conclusion:

41

• Reduce ASM problem to SNR

• Solve the SNR problem

• ???

• Profit!

How does SneakySnake work?

42

Different versions of SneakySnake
Snake-on-Chip Snake-on-GPU

Exploits the advantages

 of an FPGA-Board

Exploits the advantages

 of a GPU

43

Snake-on-Chip, idea

Solve multiple (2E+1) x t sized problems instead of solving one (2E+1) x m SNR
problem

44

Benefits:

1. Smaller maze -> less amt. of possible solutions -> smaller LUT size

2. Easily scalable

3. Highly parallelisable (no Data dependency at all)!

Snake-on-Chip, benefits

45

Snake-on-Chip, problem
 Divide and conquerThe idea:

We can underestimate the optimal solution
➡ Similar strings get marked “more similar” as they are, but it’s ok.46

Solve multiple (2E+1) x t sized problems instead of solving one (2E+1) x m SNR
problem

Benefits:

But:

Less accurate! (However, it won’t mark a similar string as dissimilar)

Snake-on-Chip, problem

47

1. Smaller maze -> less amt. of possible solutions -> smaller LUT size

2. Easily scalable

3. Highly parallelisable (no Data dependency at all)!

The idea: Exploit the amount of GPU threads to solve multiple SNR problems

at the same time

• Copy reference and query into the
GPU’s

global memory

• Each thread solves a complete SNR
problem

Snake-on-GPU

Fig 8

48

Different versions of SneakySnake
Snake-on-Chip Snake-on-GPU

Comparison

+Scalable and parallizable

+More energy efficient than Snake-on-GPU

-More expensive and time consuming

-You can’t configure the parameters after
design time!!!

+Easier to configure

+Less expensive and time consuming

+Scalable and parallizable

-Not as energy efficient as Snake-on-Chip

49

Result

50

1. Filtering accuracy

2. Filtering time (short-and long sequences)

3. Effect on read-mapping

Result

What we mostly care about is:

51

Table 3, Page 20

Dataset for accuracy test

How much

edits two similar

strings can have

52

• Each dataset contains 30 million real sequence pairs

• 2 different sequence length, 100 and 250 basepair (prefix 100bp or 250bp)

• We differentiate between low and high edits (suffix _1 or _2)

53

Dataset for accuracy test

We want to know how many false accepts and false rejects we have 
 
Goal is: no false reject and the less false accept the better.

Filtering accuracy, goal

Definitions:

False accept := Two dissimilar string classified as similar by the algorithm

False reject := Two similar string classified as dissimilar by the algorithm

54

• SneakySnake has the lowest false
accept rate

• All filters are less accurate when
they have less Edits (i.e. _1
databases are harder to tell than
_2)

• SHD and GateKeeper is
ineffective for E≥8%

Filtering accuracy, false accepts

55

Accession no. ERR240727_1
Read length
(bp) 100

No. of reads 4 million

HTS Illumina HiSeq
2000

Accession no. ERR240727_1

Dataset no. 1 2 3 4

mrFAST -e 2 3 5 40

Each dataset contains 30 million real sequence pairs.

How much

edits two similar

strings can have

56

Filtering accuracy, false accepts

Fa
ls

e
Ac

ce
pt

 R
at

e

0%

20%

40%

60%

80%

100%

Edit Distance Threshold

0 1 2 3 4 5 6 7 8 9 10

SHD
GateKeeper
Shouji
MAGNET
SneakySnake-100
SneakySnake-5

0%

20%

40%

60%

80%

100%

Edit Distance Threshold

0 1 2 3 4 5 6 7 8 9 10

Fa
ls

e
Ac

ce
pt

 R
at

e

0%

20%

40%

60%

80%

100%

Edit Distance Threshold

0 1 2 3 4 5 6 7 8 9 10
0%

20%

40%

60%

80%

100%

Edit Distance Threshold

0 1 2 3 4 5 6 7 8 9 10

■SneakySnake eliminates, on
average, up to 412x, 40x, and
20x more incorrect mappings
compared to GateKeeper, Shouji
and MAGNET.

57

Filtering accuracy, false accepts

• SneakySnake has 0 false
rejects

• This is nothing special,
besides MAGNET they all
have 0 false rejects

Filtering accuracy, false rejects

58

•SneakySnake is up to 3,141,100% more accurate than GateKeeper

•Also up to 2,060,200% more accurate than SHD

•And up to 64,000% more accurate than Shouji

•Also, when it comes to false rejects, it is 100% accurate

➡SneakySnake is more accurate than other state-of-art pre alignment filters

Filtering accuracy, conclusion

59

Filtering time

Short sequences Long sequences
•We can have the same dataset as in the
filtering accuracy tests (100/250_1/2)

•We want to compare pre-alignment filters
by using them with the same sequence
aligners

•We want to separate the tests by CPU,
GPU and FPGA based algorithms

•We need datasets with larger basepairs

Spoiler: we’ll learn that SneakySnake is
the fastest pre-alignment filter so we only

care about wether it makes sequence
alignment faster

•We want to compare runtime of sequence
aligners with and without SneakySnake

60

Filtering time, short sequences

•Dataset is the same as in Filtering accuracy test

•We use Edlib and Parasail, two state-of-art sequence aligners

•We use SHD (Shifted Hamming Distance) and SneakySnake for
the CPU-based comparison

•We compare GateKeeper, Shouji, Snake-on-Chip and Snake-on-
GPU for the FPGA/GPU-based speed test

61

• SneakySnake alone is slower
than Shifted Hamming
Distance

• But the whole process of
sequence alignment gets
faster

Because the sequence
aligner has to compare more
dissimilar strings with SHD

62

Filtering time, short sequences

• Runtime significantly reduced
when using a variant of
SneakySnake

• We can tell that Snake-on-
Chip and Snake-on-GPU is
faster than the CPU version
of SneakySnake

63

Short sequences, GPU/FPGA

•SneakySnake is up to 790% - 3,900% faster than other CPU-based pre-alignment
filters.

•Runtime of Edlib and Parasail reduced by up to 32,000% and up to 53,500% with
Snake-on-Chip and by 41,200% and 68,800% with Snake-on-GPU

•SneakySnake is also up to 100% faster than Shouji and Gatekeeper

•Snake-on-GPU is 3,900% faster than SneakySnake (CPU based)

➡Snake-on-GPU and Snake-on-Chip is the fastest pre-alignment filter (over Edit-
distance of ≤5%)

64

Short sequences, conclusion

•Two datasets, (10Kbp, 100Kbp).

10Kbp has 100,000 10,000 long base pair sequence

100Kbp has 74,687 1000,000 long base pair sequence

•We use Parasail and KSW2, two state-of-art sequence aligners
when it comes to longer sequences

•We look at the runtime of SneakySnake, the sequence aligner and
the two combined

65

Long sequences, dataset

Filtering time, long sequences

• SneakySnake is faster than the
sequence aligner alone, when the
edit distance threshold is low

• But it gets less and less significant
as we increase the edit distance
threshold

Because the more strings are
marked as similar the less of a
help the pre-alignment filter is.

66

•SneakySnake accelerates Parasail and KSW2 by 50,800-97,800% and 280-9,070%

•But it is only helping when SneakySnake filters out more than ~30% of the
sequences

➡In most cases, it is beneficial to use SneakySnake as pre-alignment filter before
applying the sequence aligner

67

Long sequences, conclusion

We want to integrate SneakySnake into a state-of-art read mapper

We use minimap2 as read mapper as it includes methods to speed up read
mapping and it is parallelized.

Effect on read mapping

• SneakySnake + minimap2’s aligner is at least 6x faster than minimap2’s
approach

• The mapping time is reduced from 418 seconds to 206

➡We reduced the speed of read mapping with SneakySnake

68

Strengths

69

• It’s possible to sequence multiple samples parallel at the same time as it is
highly parallelisable

• Superior to other approaches (and even to the state-of-art techniques)
when it comes to speed and accuracy

• Available on CPU, GPU and FPGA thus compatible with most sequence
aligner

• Snake-on-Chip and Snake-on-GPU exploit their architecture in a very
effective way, without being dependent from a given model or platform

Strengths

• First pre-aligner that is both software designed and co-hardware designed

70

• We can accelerate state-of-art genome sequencer with integrating
SneakySnake into state-of-art read mappers

• Very simple, easy-to-understand solution

Strengths (cont’d)

71

Weaknesses

72

Weaknesses

• If the higher HRT found an escape segment to the end, SneakySnake will
still iterate through the lower HRTs

73

Weaknesses

74

0

0

1

3

0

4 Goes to end-terminal,
we could stop

0

1

Cont’d

• If the higher HRT found an escape segment to the end, SneakySnake will
still iterate through the lower HRTs

Weaknesses

• If the higher HRT found an escape segment to the end, SneakySnake will
still iterate through the lower HRTs

• Snake-on-Chip is more expensive and less accurate than the other versions

• Sometimes definitions are unclear

75

What if j<i?

Unclear definitions

76

77

Unclear definitions

1, if j ≤ i or j + i − E − 1 > m

78

This tells the reader what happens for index out of bound

Unclear definitions

79

Unclear definitions

Do we create the maze in advance or not?

Weaknesses

80

• Result analysis of read mapping doesn’t include any figures

• Requires a high knowledge about the topic to understand the paper

• Indexing starts at 1

• If the higher HRT found an escape segment to the end, SneakySnake will
still iterate through the lower HRTs

• Snake-on-Chip is more expensive and less accurate than the other versions

• Sometimes definitions are unclear

Do you have any questions?

81

Discussion

We can convert binary code into
DNA base pairs

82

Discussion

They claim “synthetic DNA has
emerged as a novel substrate to
encode computer data with the
potential to be orders of magnitude
denser than contemporary cutting
edge techniques”

83

We can convert binary code into
DNA base pairs

Discussion

We can convert binary code into
DNA base pairs

They tested it only with the String
“HELLO”

They used Parasail for DNA alignment

84

They claim “synthetic DNA has
emerged as a novel substrate to
encode computer data with the
potential to be orders of magnitude
denser than contemporary cutting
edge techniques”

Does SneakySnake enable us to use DNA as memory storage? 
If no, would it at least improve it?

Discussion

85

Does SneakySnake enable us to use DNA as memory storage? 
If no, would it at least improve it?

Discussion

• Helps a lot if small edit distance is possible

• Considering smaller sequences, the CPU based version is up to 40x
faster than Parasail.

• In general, it would indeed accelerate the procedure, but still not fast
enough to make DNA and other areas are lacking of performance as
well

86

Could we improve the runtime of Sequence-alignment instead of pre-filtering
to make read mapping faster?

Discussion

87

Could we improve the time complexity of Sequence-alignment?

Discussion

Unfortunately the fastest sequence-
alignment is proven to be

(Otherwise we can solve 3-sat in less
than)

O(m2/logm)

O(n2)

➡We need to decrease the speed of other
areas.

88

Could we improve SneakySnake’s performance if we used in-memory
processing or in-cache processing?

Discussion

SneakySnake has no data dependencies, but still needs to access a
high amount of data

89

Could we improve SneakySnake’s performance if we used in-memory
processing or in-cache processing?

Discussion

This is the idea of GenCache (with
GenAx, not SneakySnake), that uses
in-cache operations to accelerate
sequence aligners

They significantly reduced energy
consumption (8.3x less) and execution
time (5.8x less)

90

Could we improve SneakySnake’s performance if we used in-memory
processing or in-cache processing?

Discussion

They use a special architecture, SS
would lose it’s “independence”

91

They significantly reduced energy
consumption (8.3x less) and execution
time (5.8x less)

This is the idea of GenCache (with
GenAx, not SneakySnake), that uses
in-cache operations to accelerate
sequence aligners

Could we do better if we sacrificed the “platform independence of
SneakySnake”?

Discussion

92

Could we do better if we sacrificed the “platform independence of
SneakySnake”?

Discussion

GenASM creates a framework to
remove limitation of Bitap (like GenAx)
on current systems

They compare it to Shouji and provide 3.7x
speedup, thus faster than SneakySnake
(only with 100bp)

➡Design of special framework could speed
up SneakySnake

93

Different versions of SneakySnake
Snake-on-Chip Snake-on-GPU

Comparison

+Scalable and parallizable

+More energy efficient than Snake-on-GPU

-More expensive and time consuming

-You can’t configure the parameters after
design time!!!

+Easier to configure

+Less expensive and time consuming

+Scalable and parallizable

-Not as energy efficient as Snake-on-Chip

94

As a lab offering genome sequencing, would you rather buy a sequencer

based on Snake-on-Chip or Snake-on-GPU?

Discussion

95

As a lab offering genome sequencing, would you rather buy a sequencer

based on Snake-on-Chip or Snake-on-GPU?

Discussion

➡ Depends on how many customers we expect. Snake-on-GPU worth it if we can
exploit the thousands of threads a GPU offers

96

97

Thank you for your attention!

