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Recap from 10th grade biology

• Your most important attributes are written in your 
chromosomes.


(Eye colour, gender, but even your immune 
reactions to COVID)


• Your chromosomes are just very long strands of 
DNA


• If we can read your DNA, we can tell a lot more 
about you.


• If we could read the DNA of multiple people, we 
could tell even more about you after reading your 
DNA

➡ We want to read the entire DNA of multiple 

people
5



Recap from 4th session
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Recap from 4th session
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Recap from 4th session



Key observation #1 Key observation #2
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Recap from 4th session



Sequence-Alignment approach 1
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• Most sequence alignment approaches are implemented as dynamic 
programming algorithms with quadratic time complexity


• We can use a special hardware to accelerate the procedure


e.g. SIMD capable processors used by Parasail or processing in memory 
Architecture such as GenASM




Sequence-Alignment approach 2

11

• Most sequence alignment approaches are implemented as dynamic 
programming algorithms with quadratic time complexity


• Introduce pre-alignment filters that reduce the need for DP by eliminating 
dissimilar strings


e.g. SHD or GateKeeper


However these are expensive and inaccurate



• Highly parallelizable 

The goal of SneakySnake

Eliminate dissimilar strings via solving the Approximate

String matching problem
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• Highly accurate pre-alignment filter to help us distinguish between similar 
and dissimilar Strings, that we can ignore

• Should work for both short and long sequences

• Deployable on a lot of platforms



How does SneakySnake work?
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Single Net Routing (SNR)

Approximate String Matching (ASM)

How does SneakySnake work?
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Single Net Routing (SNR)

Approximate String Matching (ASM)

How does SneakySnake work?
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• Reduce ASM problem to SNR

How does SneakySnake work?
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• Reduce ASM problem to SNR

• Solve the SNR problem
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How does SneakySnake work?



• Reduce ASM problem to SNR

• Solve the SNR problem

• ???

• Profit!
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How does SneakySnake work?



Step 1: Replace the DP-table with chip-maze™


Reducing ASM to SNR
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Step 1: Replace the DP-table with chip-maze™


Step 2: Find the number of differences between two sequences by 

   solving the SNR problem in the chip-maze™

What are those?
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Reducing ASM to SNR



The Single Net Routing problem
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The Single Net Routing problem



Goal: getting from the in- to the end-terminal

 with the least amount of obstacles possible

In-terminal

out-terminal
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The Single Net Routing problem



In-terminal

Out-terminal

Checkpoints

Vertical-Routing-Track

Horizontal-Routing-Track

Escape segment

“The solution”

Change track
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The Single Net Routing problem



Replace (m+1) x (m+1) matrix with (2E+1) x m where  is defined as:

 

Zi,j

x

x
x

The chip-maze
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Replace (m+1) x (m+1) matrix with (2E+1) x m where  is defined as:

 

Zi,j
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The chip-maze



Replace (m+1) x (m+1) matrix with (2E+1) x m where  is defined as:

 

Zi,j

You can solve 
the SNR 

problem on this!
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The chip-maze



ACCCGTA

AACCGTA
2.    1.    3.    4.    5.
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Creating the chip-maze
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Creating the chip-maze



ACCCGTA

AACCGTA
2.    1.    3.    4.    5.
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Creating the chip-maze



ACCCGTA

AACCGTA
2.    1.    3.    4.    5.

Cont’d
No data dependencies, thus parallelisable
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Creating the chip-maze



• Reduce ASM problem to SNR

• Solve the SNR problem

• ???

• Profit!

How does SneakySnake work?
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Step 1: Select the longest escape segment


Step 2: Create a checkpoint


Step 3: Repeat step 2 and 3 until you reach the end or threshold exceeded

If length Q != R, deduct leading and trailing obstacles from the count of edits

Solving the Single Net Routing problem
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Step 1: Select the longest escape segment


Step 2: Create a checkpoint


Step 3: Repeat step 2 and 3 until you reach the end or threshold exceeded

If length Q != R, deduct leading and trailing obstacles from the count of edits

Solving the Single Net Routing problem
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Step 1: Select the longest escape segment


Step 2: Create a checkpoint


Step 3: Repeat step 2 and 3 until you reach the end or threshold exceeded

If length Q != R, deduct leading and trailing obstacles from the count of edits

Solving the Single Net Routing problem
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Cont’d



Sketch of optimality proof
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Sketch of optimality proof



If SneakySnake doesn’t join the optimal solution at the next option, we can shift it to 
the next checkpoint or we reach the end (thus SneakySnake has less edits)
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Sketch of optimality proof



There is one or more Signal nets that

 connects the In and Out-Terminal ⟹ SneakySnake finds the Signal net with 


the least amount of obstacles possible. 

Solving the Single Net Rounting problem

In conclusion:
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• Reduce ASM problem to SNR

• Solve the SNR problem

• ???

• Profit!

How does SneakySnake work?
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Different versions of SneakySnake
Snake-on-Chip Snake-on-GPU

Exploits the advantages

 of an FPGA-Board

Exploits the advantages

 of a GPU
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Snake-on-Chip, idea

Solve multiple (2E+1) x t sized problems instead of solving one (2E+1) x m SNR 
problem  
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Benefits:

1. Smaller maze -> less amt. of possible solutions -> smaller LUT size 


2. Easily scalable


3. Highly parallelisable (no Data dependency at all)!

Snake-on-Chip, benefits
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Snake-on-Chip, problem
                Divide and conquerThe idea:

We can underestimate the optimal solution
➡ Similar strings get marked “more similar” as they are, but it’s ok.46

Solve multiple (2E+1) x t sized problems instead of solving one (2E+1) x m SNR 
problem  



Benefits:

But:

Less accurate! (However, it won’t mark a similar string as dissimilar)

Snake-on-Chip, problem
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1. Smaller maze -> less amt. of possible solutions -> smaller LUT size 


2. Easily scalable


3. Highly parallelisable (no Data dependency at all)!



The idea: Exploit the amount of GPU threads to solve multiple SNR problems

at the same time

• Copy reference and query into the 
GPU’s 

global memory

• Each thread solves a complete SNR 
problem

Snake-on-GPU

Fig 8
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Different versions of SneakySnake
Snake-on-Chip Snake-on-GPU

Comparison

+Scalable and parallizable


+More energy efficient than Snake-on-GPU


-More expensive and time consuming


-You can’t configure the parameters after 
design time!!!

+Easier to configure


+Less expensive and time consuming


+Scalable and parallizable


-Not as energy efficient as Snake-on-Chip
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Result
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1. Filtering accuracy


2. Filtering time (short-and long sequences)


3. Effect on read-mapping

Result

What we mostly care about is:
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Table 3, Page 20

Dataset for accuracy test

How much

edits two similar

strings can have
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• Each dataset contains 30 million real sequence pairs


• 2 different sequence length, 100 and 250 basepair (prefix 100bp or 250bp)


• We differentiate between low and high edits (suffix _1 or _2)

53

Dataset for accuracy test



We want to know how many false accepts and false rejects we have 
 
Goal is: no false reject and the less false accept the better.

Filtering accuracy, goal

Definitions:

False accept := Two dissimilar string classified as similar by the algorithm

False reject   := Two similar string classified as dissimilar by the algorithm
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• SneakySnake has the lowest false 
accept rate


• All filters are less accurate when 
they have less Edits (i.e. _1 
databases are harder to tell than 
_2)


• SHD and GateKeeper is 
ineffective for E≥8%

Filtering accuracy, false accepts
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Accession no. ERR240727_1
Read length 
(bp) 100

No. of reads 4 million

HTS Illumina HiSeq 
2000

Accession no. ERR240727_1

Dataset no. 1 2 3 4

mrFAST -e 2 3 5 40

Each dataset contains 30 million real sequence pairs.

How much

edits two similar

strings can have

56

Filtering accuracy, false accepts
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■SneakySnake eliminates, on 
average, up to 412x, 40x, and 
20x more incorrect mappings 
compared to GateKeeper, Shouji 
and MAGNET.
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Filtering accuracy, false accepts



• SneakySnake has 0 false 
rejects


• This is nothing special, 
besides MAGNET they all 
have 0 false rejects


Filtering accuracy, false rejects
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•SneakySnake is up to 3,141,100% more accurate than GateKeeper


•Also up to 2,060,200% more accurate than SHD


•And up to 64,000% more accurate than Shouji


•Also, when it comes to false rejects, it is 100% accurate


➡SneakySnake is more accurate than other state-of-art pre alignment filters

Filtering accuracy, conclusion
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Filtering time

Short sequences Long sequences
•We can have the same dataset as in the 
filtering accuracy tests (100/250_1/2)


•We want to compare pre-alignment filters 
by using them with the same sequence 
aligners


•We want to separate the tests by CPU, 
GPU and FPGA based algorithms

•We need datasets with larger basepairs

Spoiler: we’ll learn that SneakySnake is 
the fastest pre-alignment filter so we only 

care about wether it makes sequence 
alignment faster

•We want to compare runtime of sequence 
aligners with and without SneakySnake
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Filtering time, short sequences

•Dataset is the same as in Filtering accuracy test


•We use Edlib and Parasail, two state-of-art sequence aligners


•We use SHD (Shifted Hamming Distance) and SneakySnake for 
the CPU-based comparison


•We compare GateKeeper, Shouji, Snake-on-Chip and Snake-on-
GPU for the FPGA/GPU-based speed test
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• SneakySnake alone is slower 
than Shifted Hamming 
Distance


• But the whole process of 
sequence alignment gets 
faster


Because the sequence 
aligner has to compare more 
dissimilar strings with SHD
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Filtering time, short sequences



• Runtime significantly reduced 
when using a variant of 
SneakySnake


• We can tell that Snake-on-
Chip and Snake-on-GPU is 
faster than the CPU version 
of SneakySnake
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Short sequences, GPU/FPGA



•SneakySnake is up to 790% - 3,900% faster than other CPU-based pre-alignment 
filters.


•Runtime of Edlib and Parasail reduced by up to 32,000% and up to 53,500% with 
Snake-on-Chip and by 41,200% and 68,800% with Snake-on-GPU


•SneakySnake is also up to 100% faster than Shouji and Gatekeeper


•Snake-on-GPU is 3,900% faster than SneakySnake (CPU based)


➡Snake-on-GPU and Snake-on-Chip is the fastest pre-alignment filter (over Edit-
distance of ≤5%)
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Short sequences, conclusion



•Two datasets, (10Kbp, 100Kbp). 

10Kbp has 100,000 10,000 long base pair sequence

100Kbp has 74,687 1000,000 long base pair sequence


•We use Parasail and KSW2, two state-of-art sequence aligners 
when it comes to longer sequences


•We look at the runtime of SneakySnake, the sequence aligner and 
the two combined
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Long sequences, dataset



Filtering time, long sequences

• SneakySnake is faster than the 
sequence aligner alone, when the 
edit distance threshold is low


• But it gets less and less significant 
as we increase the edit distance 
threshold


Because the more strings are 
marked as similar the less of a 
help the pre-alignment filter is.
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•SneakySnake accelerates Parasail and KSW2 by 50,800-97,800% and 280-9,070%


•But it is only helping when SneakySnake filters out more than ~30% of the 
sequences

➡In most cases, it is beneficial to use SneakySnake as pre-alignment filter before 
applying the sequence aligner
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Long sequences, conclusion



We want to integrate SneakySnake into a state-of-art read mapper


We use minimap2 as read mapper as it includes methods to speed up read 
mapping and it is parallelized.

Effect on read mapping

• SneakySnake + minimap2’s aligner is at least 6x faster than minimap2’s 
approach


• The mapping time is reduced from 418 seconds to 206

➡We reduced the speed of read mapping with SneakySnake 
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Strengths
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• It’s possible to sequence multiple samples parallel at the same time as it is 
highly parallelisable

• Superior to other approaches (and even to the state-of-art techniques) 
when it comes to speed and accuracy

• Available on CPU, GPU and FPGA thus compatible with most sequence 
aligner

• Snake-on-Chip and Snake-on-GPU exploit their architecture in a very 
effective way, without being dependent from a given model or platform

Strengths

• First pre-aligner that is both software designed and co-hardware designed
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• We can accelerate state-of-art genome sequencer with integrating 
SneakySnake into state-of-art read mappers

• Very simple, easy-to-understand solution

Strengths (cont’d)
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Weaknesses
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Weaknesses

• If the higher HRT found an escape segment to the end, SneakySnake will 
still iterate through the lower HRTs
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Weaknesses
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4 Goes to end-terminal, 
we could stop

0

1

Cont’d

• If the higher HRT found an escape segment to the end, SneakySnake will 
still iterate through the lower HRTs



Weaknesses

• If the higher HRT found an escape segment to the end, SneakySnake will 
still iterate through the lower HRTs


• Snake-on-Chip is more expensive and less accurate than the other versions


• Sometimes definitions are unclear
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What if  j<i?

Unclear definitions
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Unclear definitions



1, if j ≤ i or j + i − E − 1 > m

78

This tells the reader what happens for index out of bound

Unclear definitions
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Unclear definitions

Do we create the maze in advance or not?



Weaknesses
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• Result analysis of read mapping doesn’t include any figures


• Requires a high knowledge about the topic to understand the paper


• Indexing starts at 1

• If the higher HRT found an escape segment to the end, SneakySnake will 
still iterate through the lower HRTs


• Snake-on-Chip is more expensive and less accurate than the other versions


• Sometimes definitions are unclear



Do you have any questions?
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Discussion

We can convert binary code into 
DNA base pairs 

82



Discussion

They claim “synthetic DNA has 
emerged as a novel substrate to 
encode computer data with the 
potential to be orders of magnitude 
denser than contemporary cutting 
edge techniques”
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We can convert binary code into 
DNA base pairs 



Discussion

We can convert binary code into 
DNA base pairs 

They tested it only with the String 
“HELLO”

They used Parasail for DNA alignment
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They claim “synthetic DNA has 
emerged as a novel substrate to 
encode computer data with the 
potential to be orders of magnitude 
denser than contemporary cutting 
edge techniques”



Does SneakySnake enable us to use DNA as memory storage? 
If no, would it at least improve it?

Discussion
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Does SneakySnake enable us to use DNA as memory storage? 
If no, would it at least improve it?

Discussion

• Helps a lot if small edit distance is possible


• Considering smaller sequences, the CPU based version is up to 40x 
faster than Parasail.


• In general, it would indeed accelerate the procedure, but still not fast 
enough to make DNA and other areas are lacking of performance as 
well
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Could we improve the runtime of Sequence-alignment instead of pre-filtering 
to make read mapping faster?

Discussion
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Could we improve the time complexity of Sequence-alignment?

Discussion

Unfortunately the fastest sequence-
alignment is proven to be 



(Otherwise we can solve 3-sat in less 
than )

O(m2/logm)

O(n2)

➡We need to decrease the speed of other 
areas.
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Could we improve SneakySnake’s performance if we used in-memory 
processing or in-cache processing?

Discussion

SneakySnake has no data dependencies, but still needs to access a 
high amount of data
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Could we improve SneakySnake’s performance if we used in-memory 
processing or in-cache processing?

Discussion

This is the idea of GenCache (with 
GenAx, not SneakySnake), that uses 
in-cache operations to accelerate 
sequence aligners

They significantly reduced energy 
consumption (8.3x less) and execution 
time (5.8x less)
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Could we improve SneakySnake’s performance if we used in-memory 
processing or in-cache processing?

Discussion

They use a special architecture, SS 
would lose it’s “independence”

91

They significantly reduced energy 
consumption (8.3x less) and execution 
time (5.8x less)

This is the idea of GenCache (with 
GenAx, not SneakySnake), that uses 
in-cache operations to accelerate 
sequence aligners



Could we do better if we sacrificed the “platform independence of 
SneakySnake”?

Discussion

92



Could we do better if we sacrificed the “platform independence of 
SneakySnake”?

Discussion

GenASM creates a framework to 
remove limitation of Bitap (like GenAx) 
on current systems

They compare it to Shouji and provide 3.7x 
speedup, thus faster than SneakySnake 
(only with 100bp)

➡Design of special framework could speed 
up SneakySnake
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Different versions of SneakySnake
Snake-on-Chip Snake-on-GPU

Comparison

+Scalable and parallizable


+More energy efficient than Snake-on-GPU


-More expensive and time consuming


-You can’t configure the parameters after 
design time!!!

+Easier to configure


+Less expensive and time consuming


+Scalable and parallizable


-Not as energy efficient as Snake-on-Chip
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As a lab offering genome sequencing, would you rather buy a sequencer

based on Snake-on-Chip or Snake-on-GPU?


Discussion
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As a lab offering genome sequencing, would you rather buy a sequencer

based on Snake-on-Chip or Snake-on-GPU?


Discussion

➡ Depends on how many customers we expect. Snake-on-GPU worth it if we can 
exploit the thousands of threads a GPU offers
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Thank you for your attention!


