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What Is Spectre?

Spectre exploits traces left in covert channels (e.g., cache) by 
speculative execution to leak sensitive data. Vulnerability to such 
attacks is widespread and hard to fix.
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Background
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Out-of-Order Execution

mov (%ebx), %edx

add %edx, %eax

imul %esi, %esi

imul %edi, %edi

add %esi, %edi

Note: assume that all registers have a known initial value
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Instruction pointer Loading (%ebx)…Loaded



Out-of-Order Execution

mov (%ebx), %edx

imul %esi, %esi

imul %edi, %edi

add %esi, %edi

add %edx, %eax

Note: assume that all registers have a known initial value
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Instruction pointer Loading (%ebx)…Loaded



Speculative Execution

cmp (%eax), %esi

jeq target

imul %edi, %ebx

…

:target

add %(edx), %ecx

mov %(ecx), %eax

add %eax, %ecx

…
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Instruction pointer Loading (%eax)…Loaded, (%eax ) = %esi→ take branch



Speculative Execution

cmp (%eax), %esi

jeq target

imul %edi, %ebx

…

:target

add %(edx), %ecx

mov %(ecx), %eax

add %eax, %ecx

…
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Instruction pointer Loading (%eax)…Loaded, (%eax ) = %esi→ take branch

Correct branch → time saved



Speculative Execution

cmp (%eax), %esi

jeq target

imul %edi, %ebx

…

:target

add %(edx), %ecx

mov %(ecx), %eax

add %eax, %ecx

…
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Instruction pointer Loading (%eax)…Loaded, (%eax ) ≠ %esi→ don’t take branch

Incorrect branch → rollback
Transient instructions



Branch Prediction

cmp (%eax), %esi

jeq target

imul %edi, %ebx

…

:target

add %(edx), %ecx

…
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Instruction pointer Loading (%eax)…

Recent branch outcomes:
taken
not taken
taken
taken

I’ll take this branch



Cache (Flush+Reload / Evict+Reload)
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Cache (Flush+Reload / Evict+Reload)

11

Cache

A

W

Y

B

Memory

A

B

C

D

W

X

Y

Z

Victim process

Attacker process

CacheCache

Y

clflush

use Y

load X

That took a while.
The victim probably 

has not used X.

Cache

Y

X



Performing Spectre Attacks
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Exploiting Conditional Branch Misprediction

if (x < array1_size)

y = array2[array1[x] * 4096];

• The attacker wants to determine the secret byte array1[x] for some out of 
bounds x

• The attacker is permitted to access array1 and array2

• array1[x] should be cached, but not array1_size and array2

• The attacker should have trained the processor to take the next branch

• Using Flush+Reload, the attacker can determine the loaded entry from 
array2 and deduce array1[x]
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Example Implementation in C

• A huge variety of processors are vulnerable to the exploitation of 
conditional branch misprediction

• This method was implemented in C

• Data leakage rate is in the order of 10kB/s

• Very low error rate (<0.01%)
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Poisoning Indirect Branches

• Find a snippet of code in the victim that can be maliciously used to 
leak data (called a Spectre gadget)

• Requirements to set up the attack:
• The attacker controls registers R1 and R2 and knows their initial values

• R1 contains the address of the desired secret byte

• The Spectre gadget adds (or other arithmetic) the memory at address R1 to 
R2 and then loads from memory at address R2

• The attacker has trained the branch predictor to the gadget’s address

• Using Evict+Reload, the attacker can deduce the secret data
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Other Varieties of Spectre Attacks
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Instruction Timing

if (false but mispredicts as true)

multiply R1, R2  // R1 and R2 are secret

multiply R3, R4      // R3 and R4 are public

• Advantages: Independent from the cache

• Disadvantages: May not provide concrete value of secret data
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Contention on the Register File

if (false but mispredicts as true)

if (condition on R1)  // R1 is secret

if(condition)

• If the secret data meets the condition in the second if statement, 
three checkpoints of registers will be kept for speculative execution 
rather than only two; the attacker may then notice slowdown

• Advantage: Independent from the cache

• Disadvantage: Some processors may not allow multiple layers of 
speculative execution
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Exploiting Interrupt Returns
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• Poison the return from an interrupt instead of an indirect branch in 
the victim’s code

• Initiate attack by causing an interrupt

• Advantage: Less dependent on victim’s code

• Disadvantage: Not applicable to Intel CPUs



Arbitrary Observable Effects

if (x < array1_size)  // Mispredict as true

y = array1[x]; 

// Do something using y that leaves observable side effects

• Advantages: Less picky with required code snippets, not dependent 
on any single microarchitectural element

• Disadvantage: May require more specialized code on the attacker’s 
side
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Preventing Spectre Attacks
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Disabling Speculative Execution
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• Disable speculative execution entirely

• Protect specific branches with lfence instructions

• Advantages: Easy to implement, very effective

• Disadvantage: Reduces performance



Separate Processes (Web Browsers)

• Run websites in separate processes

• Used by Chrome

• Advantages: Can be implemented on current hardware, reasonably 
effective

• Disadvantage: Requires a lot of resources
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Index Masking

if (x < array1_size)

y = array2[array1[x & 0xff] * 4096];

• AND array indexes with a mask

• With a proper mask, resulting indexes may be no larger than 2 times 
the array length

• Advantage: Very cheap

• Disadvantages: Doesn’t protect from all types of Spectre attacks, data 
right behind the array can still be loaded
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Preventing Sensitive Data From Entering 
Covert Channels
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• While speculatively executing, do not allow operations on sensitive 
data that leave detectable traces, e.g., usage as a memory address

• Advantages: Effective, good trade-off between performance and 
security

• Disadvantage: Not supported by current processors



Degrading the Clock

• Add jitter or reduce resolution

• Sometimes done in JavaScript

• Advantages: Very cheap, slows potential attacks

• Disadvantages: Can be detrimental to benign processes, can be 
weakened by repeated use of Evict+Reload
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Preventing Branch Poisoning

• Prevent effects of branches from less privileged processes

• Added to ISA by Intel and AMD

• Advantage: Implemented on current processors

• Disadvantage: Ineffective against other variants of Spectre attacks
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Conclusion

28



Conclusion

Spectre attacks can exploit traces of incorrectly speculatively executed 
instruction to deduce secret data on various CPUs. Due to the variety of 
performance improving components of modern processors, Spectre
vulnerabilities are nearly impossible to fix.
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Strengths
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Strengths

• Widespread vulnerability

• Variety of possible covert channels

• Hard to fully prevent on modern hardware, especially without greatly 
reducing performance

• Simplicity
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Weaknesses
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Weaknesses

• Needs to know the location of secret data and exploitable pieces of 
code

• Can struggle with complex networks of processes

• Limited by its permissions
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Alternatives and Possible 
Improvements
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Alternatives and Improvements

• Give processes with sensitive data an entire CPU core

• Do not modify the cache during speculative execution

• Flag branches where branch mispredictions occurred at least n times
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Discussion
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Possible Discussion Starters

• How to detect Spectre attacks

• What data would you want to extract with / protect from Spectre

• Any other suggestions for improvements in attack / defense
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Discussion: How to Detect Spectre Attacks
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That process is acting sus



Discussion: What Sensitive Data to Extract / 
Protect
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Discussion: Ideas for Attack or Defense

40

VS


