
Spectre Attacks: Exploiting
Speculative Execution

IEEE Symposium on Security and Privacy 2019

Paul Kocher1, Jann Horn2, Anders Fogh3, Daniel Genkin4, Daniel Gruss5, Werner Haas6,
Mike Hamburg7, Moritz Lipp5, Stefan Mangard5, Thomas Prescher6, Michael Schwarz5,

Yuval Yarom8

1 Independent (www.paulkocher.com), 2 Google Project Zero, 3 G DATA Advanced
Analytics, 4 University of Pennsylvania and University of Maryland, 5 Graz University of

Technology, 6 Cyberus Technology, 7 Rambus, Cryptography Research Division,
8 University of Adelaide and Data61

1

https://spectreattack.com/spectre.pdf
https://spectreattack.com/spectre.pdf

What Is Spectre?

Spectre exploits traces left in covert channels (e.g., cache) by
speculative execution to leak sensitive data. Vulnerability to such
attacks is widespread and hard to fix.

2

Background

3

Out-of-Order Execution

mov (%ebx), %edx

add %edx, %eax

imul %esi, %esi

imul %edi, %edi

add %esi, %edi

Note: assume that all registers have a known initial value

4

Instruction pointer Loading (%ebx)…Loaded

Out-of-Order Execution

mov (%ebx), %edx

imul %esi, %esi

imul %edi, %edi

add %esi, %edi

add %edx, %eax

Note: assume that all registers have a known initial value

5

Instruction pointer Loading (%ebx)…Loaded

Speculative Execution

cmp (%eax), %esi

jeq target

imul %edi, %ebx

…

:target

add %(edx), %ecx

mov %(ecx), %eax

add %eax, %ecx

…

6

Instruction pointer Loading (%eax)…Loaded, (%eax) = %esi→ take branch

Speculative Execution

cmp (%eax), %esi

jeq target

imul %edi, %ebx

…

:target

add %(edx), %ecx

mov %(ecx), %eax

add %eax, %ecx

…

7

Instruction pointer Loading (%eax)…Loaded, (%eax) = %esi→ take branch

Correct branch → time saved

Speculative Execution

cmp (%eax), %esi

jeq target

imul %edi, %ebx

…

:target

add %(edx), %ecx

mov %(ecx), %eax

add %eax, %ecx

…

8

Instruction pointer Loading (%eax)…Loaded, (%eax) ≠ %esi→ don’t take branch

Incorrect branch → rollback
Transient instructions

Branch Prediction

cmp (%eax), %esi

jeq target

imul %edi, %ebx

…

:target

add %(edx), %ecx

…

9

Instruction pointer Loading (%eax)…

Recent branch outcomes:
taken
not taken
taken
taken

I’ll take this branch

Cache (Flush+Reload / Evict+Reload)

10

Cache

A

W

Y

B

Memory

A

B

C

D

W

X

Y

Z

Victim process

Attacker process

CacheCache

X

clflush

use X

load X

That was quick.
The victim has

probably used X.

Cache (Flush+Reload / Evict+Reload)

11

Cache

A

W

Y

B

Memory

A

B

C

D

W

X

Y

Z

Victim process

Attacker process

CacheCache

Y

clflush

use Y

load X

That took a while.
The victim probably

has not used X.

Cache

Y

X

Performing Spectre Attacks

12

Exploiting Conditional Branch Misprediction

if (x < array1_size)

y = array2[array1[x] * 4096];

• The attacker wants to determine the secret byte array1[x] for some out of
bounds x

• The attacker is permitted to access array1 and array2

• array1[x] should be cached, but not array1_size and array2

• The attacker should have trained the processor to take the next branch

• Using Flush+Reload, the attacker can determine the loaded entry from
array2 and deduce array1[x]

13

Example Implementation in C

• A huge variety of processors are vulnerable to the exploitation of
conditional branch misprediction

• This method was implemented in C

• Data leakage rate is in the order of 10kB/s

• Very low error rate (<0.01%)

14

Poisoning Indirect Branches

• Find a snippet of code in the victim that can be maliciously used to
leak data (called a Spectre gadget)

• Requirements to set up the attack:
• The attacker controls registers R1 and R2 and knows their initial values

• R1 contains the address of the desired secret byte

• The Spectre gadget adds (or other arithmetic) the memory at address R1 to
R2 and then loads from memory at address R2

• The attacker has trained the branch predictor to the gadget’s address

• Using Evict+Reload, the attacker can deduce the secret data

15

Other Varieties of Spectre Attacks

16

Instruction Timing

if (false but mispredicts as true)

multiply R1, R2 // R1 and R2 are secret

multiply R3, R4 // R3 and R4 are public

• Advantages: Independent from the cache

• Disadvantages: May not provide concrete value of secret data

17

Contention on the Register File

if (false but mispredicts as true)

if (condition on R1) // R1 is secret

if(condition)

• If the secret data meets the condition in the second if statement,
three checkpoints of registers will be kept for speculative execution
rather than only two; the attacker may then notice slowdown

• Advantage: Independent from the cache

• Disadvantage: Some processors may not allow multiple layers of
speculative execution

18

Exploiting Interrupt Returns

19

• Poison the return from an interrupt instead of an indirect branch in
the victim’s code

• Initiate attack by causing an interrupt

• Advantage: Less dependent on victim’s code

• Disadvantage: Not applicable to Intel CPUs

Arbitrary Observable Effects

if (x < array1_size) // Mispredict as true

y = array1[x];

// Do something using y that leaves observable side effects

• Advantages: Less picky with required code snippets, not dependent
on any single microarchitectural element

• Disadvantage: May require more specialized code on the attacker’s
side

20

Preventing Spectre Attacks

21

Disabling Speculative Execution

22

• Disable speculative execution entirely

• Protect specific branches with lfence instructions

• Advantages: Easy to implement, very effective

• Disadvantage: Reduces performance

Separate Processes (Web Browsers)

• Run websites in separate processes

• Used by Chrome

• Advantages: Can be implemented on current hardware, reasonably
effective

• Disadvantage: Requires a lot of resources

23

Index Masking

if (x < array1_size)

y = array2[array1[x & 0xff] * 4096];

• AND array indexes with a mask

• With a proper mask, resulting indexes may be no larger than 2 times
the array length

• Advantage: Very cheap

• Disadvantages: Doesn’t protect from all types of Spectre attacks, data
right behind the array can still be loaded

24

Preventing Sensitive Data From Entering
Covert Channels

25

• While speculatively executing, do not allow operations on sensitive
data that leave detectable traces, e.g., usage as a memory address

• Advantages: Effective, good trade-off between performance and
security

• Disadvantage: Not supported by current processors

Degrading the Clock

• Add jitter or reduce resolution

• Sometimes done in JavaScript

• Advantages: Very cheap, slows potential attacks

• Disadvantages: Can be detrimental to benign processes, can be
weakened by repeated use of Evict+Reload

26

Preventing Branch Poisoning

• Prevent effects of branches from less privileged processes

• Added to ISA by Intel and AMD

• Advantage: Implemented on current processors

• Disadvantage: Ineffective against other variants of Spectre attacks

27

Conclusion

28

Conclusion

Spectre attacks can exploit traces of incorrectly speculatively executed
instruction to deduce secret data on various CPUs. Due to the variety of
performance improving components of modern processors, Spectre
vulnerabilities are nearly impossible to fix.

29

Strengths

30

Strengths

• Widespread vulnerability

• Variety of possible covert channels

• Hard to fully prevent on modern hardware, especially without greatly
reducing performance

• Simplicity

31

Weaknesses

32

Weaknesses

• Needs to know the location of secret data and exploitable pieces of
code

• Can struggle with complex networks of processes

• Limited by its permissions

33

Alternatives and Possible
Improvements

34

Alternatives and Improvements

• Give processes with sensitive data an entire CPU core

• Do not modify the cache during speculative execution

• Flag branches where branch mispredictions occurred at least n times

35

Discussion

36

Possible Discussion Starters

• How to detect Spectre attacks

• What data would you want to extract with / protect from Spectre

• Any other suggestions for improvements in attack / defense

37

Discussion: How to Detect Spectre Attacks

38

That process is acting sus

Discussion: What Sensitive Data to Extract /
Protect

39

Discussion: Ideas for Attack or Defense

40

VS

