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Executive summary

● Problem: Easier for the developers to do conservative 

locking but it comes with performance tradeoffs

● Goal: Enable highly concurrent multithreaded execution in 

a simple way

● Key Approach
○ Try to execute critical section without locks

○ If other threads interfere rollback

● Evaluation: Test SLE on different kind of multiprocessors
○ More than 50% of the locks were removed

○ Speedup on most workloads on most multiprocessors 4
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Why do I have to waste 
time and energy taking 
the flag if Alice didn’t 
take it in the past days
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Problem

● Conservative locking
+ Simple for the developer
- Performance loss

● Lock granularity
+ Fine grained locking can improve performance
- Harder for developers to use those techniques

● Thread-unsafe legacy libraries
○ For libraries without multithreading support use a global lock
○ Big performance degradation
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Potential parallelism hidden by locks
Thread 1

LOCK(hash_tbl.lock)
var = hash_tbl.lookup(X)
if (!var)

hash_tbl.add(X)
UNLOCK(hash_tbl.lock)

Thread 2

LOCK(hash_tbl.lock)
var = hash_tbl.lookup(Y)
if (!var)

hash_tbl.add(Y)
UNLOCK(hash_tbl.lock)

33



Goal of SLE (Speculative Lock Elision)

● Highly concurrent multithreaded execution
○ Multiple threads can access the same critical section

● Simple correct multithreaded code development
○ Programmers can use simpler conservative locking without performance 

degradation
● Easily implementable

○ Modifications only in microarchitecture
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Key Ideas

● Locks often impose false dependencies

● Locks are not the only way to guarantee atomicity

● Remove locks and check for atomicity while executing

● Buffer result and commit only if atomicity is preserved
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No read/write conflicts 
between threads. For 
other threads the 
critical section is 
executed in “an instant”



Mechanism

36



SLE Algorithm

1. Predict that memory operation will occur atomically in 

the critical section

2. Execute critical section speculatively and buffer results

3. If atomicity cannot be guaranteed trigger misprediction

4. Commit state and exit speculative critical section
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Implementation
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Implementation

1. How do we identify where locks are?

2. How can we buffer the state of the execution?

3. What we have to do on mispredictions?

4. How do we commit the state?
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1. How do we identify where locks are?

● Read value x => store value y => ... => store value x

● If the critical section occur atomically the second 
store overwrites the first one

We predict that after the read and store (lock acquire) 
another store (lock release) will follow

Lock acquire Crit. Sec. Lock release
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2. How can we buffer the state of the execution?

● Register state (two approaches)

1. Reorder buffer (ROB)
■ Already implemented for 

branch misprediction
■ Size of critical section 

limited by ROB size

2. Register checkpoint
■ Save architectural state 

before lock elision in the 
cache

■ Restore checkpoint on 
misprediction

■ Limited by cache size
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● Memory state
○ Leverage already existing write 

buffer
○ Add support for speculative 

stores
○ Speculative data is not 

committed until lock elision is 
validated



3. What do we have to do on mispredictions?

1. Atomicity violations
● Can be detected with cache coherence mechanisms
● The cache blocks must be in the exclusive state

2. Violations due to limited resources
2.1. Cache size (Reg checkpoint)
2.2. Write buffer size
2.3. ROB size
2.4. Uncached accesses or events (e.g. some sys calls)
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4. How do we commit the state?

● Speculative data is in the write buffer

● The cache blocks are in exclusive state if we read/wrote 

to that block

● Set the state of the write buffer to the latest
○ This happens in an instant because is only one bit to be set

=> Atomicity is preserved
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Why can we do lock elision?

● No partial updates are made visible to other threads
● The architectural state is the same after the lock 

release with or without SLE
● If another thread acquires the lock

○ The lock acquire is a write
○ Other speculating threads will observe the write
○ Trigger mispeculation
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Methodology
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Methodology
● Simulation with SimpleMP derived from Simplescalar
● 3 different multiprocessor (MP) systems:

1. Chip MP (CMP)
All processors on the same die, fast cache access and 
inter-processor communication 

2. Bus MP (BMP)
Processors connected by a bus, easily scalable

3. Distributed Shared Memory (DSM)
Every processor have their memory, to share data they 
have to send it to each other. No race conditions memory 
is private

● Single register checkpoint
● Restart threshold of 1 (number of retries)
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Benchmarks

● N threads each incrementing a unique counter all 
protected by the same lock

● Barnes: N-Body, nested cell locks
● Cholesky: Matrix factoring, task queues and col. locks
● Mp3D: Rarefied field flow, cell locks
● Radiosity: 3D rendering, nested task queues
● Water-nsq: Water molecules, global structure
● Ocean-cont: Hydrodynamics, conditional updates
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Simple N threads counting
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● Expected result on trivial workload
● Without SLE: more threads worst 

performance
● With SLE: more threads better 

performance



Real world benchmark
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● More than 50% locks were removed
● On average more that 80%



Real world benchmark
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● Higher lock elision doesn’t always 
translate to better speedup

● Sometimes removing locks worsen the 
performance showing other bottlenecks

● On most workloads we still obtain some 
speedup



Executive summary

● Problem: Easier for the developers to do conservative 

locking but it comes with performance tradeoffs

● Goal: Enable highly concurrent multithreaded execution in 

a simple way

● Key Approach
○ Try to execute critical section without locks

○ If atomicity cannot be guaranteed trigger mispeculation

● Evaluation: Test SLE on different kind of multiprocessors
○ More than 50% of the locks were removed

○ Speedup on most workloads on most multiprocessors 51



Strengths

● Does not require software modifications and developer 
effort

● Only small changes in microarchitecture required
● The SLE algorithm has negligible performance overhead
● Ahead of his time

○ MP not widely spread

● The idea can be applied to various type of MP systems
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Weaknesses

● Naive lock identification
● Optimistic prediction algorithm
● Performance overhead where no locks present not evaluated
● It is unclear what happens when we mispredict that a 

store is a lock
● Possible security vulnerability

○ Read buffer of speculative execution

● Additional hardware cost not explained

53



A bit of history

● 2001 (When this paper was presented)
○ Intel Pentium 4 (1 core, 2.8 GHz, 512 KB L2 cache)
○ IBM Power 4 (2 core, 1.9 GHz, 1.4 MB L2 cache)

■ First commercially available multiprocessor chip
● June 2013: Intel processors introduced TSX with HLE 

(Hardware Lock Elision)
○ New instruction to support transactional memory

● October 2014: AMD proposed ASF (Advanced Synchronization 
Facility)

● 2019: Intel removed HLE (CVE-2019-11135)
● 2020: Intel removed TSX on 10th gen. CPUs
● AMD never implemented ASF on any production CPUs
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Thoughts and ideas

● Paper ahead of his time
● Developers were not used to doing parallel optimized 

programming
● Probably not very useful when using a framework that is 

already optimized for parallel execution
● The security risk was not negligible

○ The actual performance improvement was not great
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Questions?
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Do you agree with the choice of Intel in 
removing TSX because of a security risk?
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Instead of an only hardware approach 
where are other approaches 
better/worse?
Hardware only vs. software only vs. compiler assisted
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Can we apply the same idea to different 
lock types? (e.g. barriers, semaphore)
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Can we elide different instruction(s) 
using the same mechanism?
For example silent pairs that are not lock acquire/release
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