
Neurocube: A Programmable Digital Neuromorphic Architecture
with High-Density 3D Memory

Duckhwan Kim∗, Jaeha Kung∗, Sek Chai†, Sudhakar Yalamanchili ∗, and Saibal Mukhopadhyay∗
∗School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

kimduckhwan, jhkung, sudha, smukhopadhyay6@gatech.edu
†SRI International, Princeton, New Jersey, USA

sek.chai@sri.com

Abstract—This paper presents a programmable and scal-
able digital neuromorphic architecture based on 3D high-
density memory integrated with logic tier for efficient neural
computing. The proposed architecture consists of clusters of
processing engines, connected by 2D mesh network as a
processing tier, which is integrated in 3D with multiple tiers
of DRAM. The PE clusters access multiple memory channels
(vaults) in parallel. The operating principle, referred to as the
memory centric computing, embeds specialized state-machines
within the vault controllers of HMC to drive data into the
PE clusters. The paper presents the basic architecture of the
Neurocube and an analysis of the logic tier synthesized in
28nm and 15nm process technologies. The performance of the
Neurocube is evaluated and illustrated through the mapping of
a Convolutional Neural Network and estimating the subsequent
power and performance for both training and inference.

Keywords-Neural nets; Neurocomputers; Neuromorphic
computing

I. INTRODUCTION

Computational efficiency is a primary concern in neuro-

inspired learning systems. While there are important ad-

vances in Deep neural networks enabling new capabilities in

visual search, signal processing, data mining, and other big-

data applications [1], these systems are still very complex

and it can take many weeks to train neural nets with today’s

computing systems. General Purpose Graphics Processing

Units (GPGPU) have driven much of the recent success

in Deep Learning, enabling key algorithm explorations

with sufficient level of acceleration [2]. Researchers are

also exploring other computing fabrics such as FPGAs

[3]–[5], and more recently, neuromorphic hardware ASIC

accelerators [3]–[8] to improve the computational perfor-

mance and power efficiency of neuro-inspired algorithms.

The programmability of GPGPUs supports realizations of

different types and scale of neural nets but have much

lower power-efficiency. On the other hand, ASICs have

much higher power and computational efficiency, but are not

programmable and consequently not scalable. The goal of

this paper is to propose and evaluate an architecture that can

provide GPGPU like programmability/scalability but with

higher power and computational efficiency (closer to that of

ASICs).

1

0.1

10

100

1000

28 x 28 128 x 96 176 x 144 256 x 192

1.25MB

4.31MB

eDRAM

SRAM

M
em

o
ry

 R
eq

u
ir

em
en

t
(M

B
)

Image Size

(under 1mm2

area constraint)

MNIST with

MLP 4 Layers

MNIST with

MLP 3 Layers

Scene Labeling

with ConvNN

MNIST with

MLP 5 Layers

Figure 1. Required memory for scene labeling [9] with different image size
using convolutional neural network and for MNIST [10]. Memory capacity
of SRAM and eDRAM is normalized by 1mm2 area constraint [11], [12].

Host CPU Logic die

DRAM

DRAM

DRAM

DRAM

Host - Neurocube

Neurocube

TSVs

Logic die

16 Partitions

TSVs

Vault

Controller

Vault

DRAM

dies

Links

Figure 2. Neurocube architecture using Micron’s Hybrid Memory Cube.

Neural network is highly parallel, with opportunities

to exploit data and thread level parallelism. While there

are architectures that attempt to achieve performance and

scalability by reducing the processing units [3]–[5], [7],

[8], the overall system performance is often limited due to

insufficient memory bandwidth and network latency. Low

operational density (ops/byte), poor spatial locality, and

massive parallelism serve to stress memory bandwidth.

As a result, early on-chip cache solutions [4], [8] were

tried but they were not scalable to large neural networks

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

1063-6897/16 $31.00 © 2016 IEEE

DOI 10.1109/ISCA.2016.41

380

2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture

1063-6897/16 $31.00 © 2016 IEEE

DOI 10.1109/ISCA.2016.41

380

or complex applications over large data sets, e.g., high

resolution image and extracted features [4]. For example,

Fig. 1 shows the growth in required memory capacity for

scene labeling [9] with different input image sizes using

convolutional neural network [10] and MNIST [10] with

MLP [13]. It shows even the use of high density eDRAM

on-chip cache memory [7] cannot support large input image

sizes and/or deeper leaning networks on-chip underscoring

the pressure on off-chip memory bandwidth.

This paper introduces the Neurocube: a programmable,

scalable, power efficient digital architecture platform for

computing neuro-inspired algorithms (Fig. 2). Our approach

is based on following key innovations:

1. In-memory neuromorphic processing. The Neu-

rocube integrates a fine grained, highly parallel, compute

layer within a 3D high-density memory package, the hybrid

memory cube (HMC).

2. Memory-centric neural computing (MCNC). We

exploit the data-driven nature and statically known memory

access patterns of neuro-inspired algorithms to implement a

programmable memory system to drive data flow enabled

compute units. The lack of a traditional instruction set

model is a major source of energy and compute efficiency

improvement.

3. Programmable Neurosequence Generator. Host pro-

gramming interface is a set of memory-based programmable

state machines (neurosequence generators) that exposes

abstractions for connectivity and synaptic weights as the

vehicle for programming different neural nets.

We analyze performance and power of Neurocube for both

training and inference of ConvNN (Scene Labeling [9]).

Neurocube synthesized with 15nm can deliver throughput

up to 132GOPs/s during inference and 127GOPs/s during

training within a compute power envelope of 3.4W in

15nm FinFet. The simulations project ∼4X improvement in

computing power-efficiency (GOPs/s/W) over reported GPU

based implementation while providing the programmability

and scalability advantages over ASIC/FPGA platforms.

The remainder of the paper is organized as follows:

Section 2 introduces preliminaries for Neurocube; Section

3 describes the architecture of Neurocube; Section 4 intro-

duces memory centric neural computing; Section 5 describes

the operation of Neurocube; Section 6 simulates system

performance; the hardware is synthesized with 28nm and

15nm process in Section 7; Section 8 compares Neurocube

with previous work, and concludes in Section 9.

II. PRELIMINARIES

A. Programmable Digital Neural Network

In this paper, we will use the term neural network (NN)

to represent an artificial neural network [22]. In general,

NN is composed of multiple layers of neurons where each

layer is composed of multiple neurons. The first layer, which

receives the raw input (e.g., image), is called the input layer.

N.L(y
i
)

x
1

x
2

x
n-1

x
n

... x
i

(a)

w
i,1

w
i,2

w
i,n-1

w
i,n

∑

..
.

..
.

..
.

synaptic

weight
input

output
input

layer

hidden

layer

output

layer

(b)

(c)

..
.

..
.

..
.

input

layer

hidden

layer

output

layer

(d)

..
.

..
.

..
.

input

layer

output

layer

Figure 3. (a) Simple neuron diagram, (b) Fully-connected feedforward
composed of input layer, one hidden layer, and output layer, (c) Convolu-
tional neural network (feedforward, sparse connection), and (d) Recurrent
neural network (fully-connected feedback).

The last layer, which generates the output of the NNs, is

called the output layer. The multiple layers between the input

and the output layers are referred to as the hidden layers.

Fig. 3 (a) illustrates the neuron, which state (yi) is

defined as summation of weighted (wik) inputs (xk) and the

threshold is represented as an activate function (N.L(y)).
The state (yi) and output (xi) of neuron i is computed as

yi =
∑

k

wik · xk (1)

xi = N.L(yi). (2)

where, N.L() is a non-linear activate function. The basic

operation of a single neuron is common to all NNs (Eq.

1) while the activate function may differ. Different NNs

can be defined by the connections of the neurons in the

network. For example, a multi-layer perceptron (MLP [13])

is a feedforward network in which each neuron in one layer

is connected to all neurons in the next layer (Fig. 3 (b)).

In Eq. 1, k refers to all connected neurons in the preceding

layer. For a convolutional neural network (ConvNN [10]), k
is the 2D-neighborhood of i; therefore only a few neurons

placed locally together are connected to a neuron in next

layer (Fig. 3 (c)). For a recurrent neural network (RNN [23]),

k refers to all neurons in the preceding layer and includes

itself (recurrent); the current output is the input to compute

the state at the next time step (Fig. 3 (d)).

We should note that the main difference between different

neural networks is the set k - the set of neurons connected to

a single neuron in the next layer. In other words, each class

of neural networks can be defined by the connectivity be-

tween neurons, while the basic operation of a neuron remains

381381

Table I
3D STACKED MEMORY SPECIFICATION.

DDR3 [14] Wide I/O 2 [15] HBM [16] HMC-Ext [17] HMC-Int [17]
Interface 2D 3D 2.5D 3D 3D

Max. # Channels 2 8 8 8 16
Word Size 64 bit 128 bit 128 bit 32 bit 32 bit

Peak B.W.† 12.8 GBps 6.4 GBps 16 GBps 40 GBps 10 GBps
tCL + tRCD 25 ns N/A N/A 27.5 ns [18] 27.5 ns [18]

Operating Voltage 1.5 V, 1.35 V [14] 1.1 V [15] 1.2 V [19] 1.2 V [20] 1.2 V [20]
Energy 70 pJ/bit [21] N/A N/A 10 pJ/bit [20] 3.7 pJ/bit [20]

†Peak bandwidth per channel

the same - (multiplication and accumulation). Therefore, we

observe that a group of multiply-accumulate (MAC) units

can be used to emulate a range of neural network sizes

and types by re-programming the connectivity between the

units. We further observe that programmable connectivity

simply means orchestrating the required data flows between

memory and the MAC units.

B. 3D High-Density Memory

Fig. 1 underscores the need for both memory size and

bandwidth. High density 3D memory, composed of mul-

tiple stacked DRAM dies offers to meet the capacity and

bandwidth demands of neuro-inspired computations. Table I

compares several candidate 3D memory technologies.

Wide I/O-2 is designed for mobile platforms by stacking

conventional DRAM on the mobile SoC (3D interface) [15].

Using high density TSVs, the number of I/Os per channel

is high (total number of I/Os from 8 channels is 1,024).

High Bandwidth Memory (HBM) is designed for high

performance processors [19]. HBM is composed of 4 DRAM

dies and one single logic die. The logic die is designed for

testing (design for test (DFT)), TSV arrays, and interface

(PHY) for communication with the SoC.

The Hybrid Memory Cube (HMC) is also designed for

high performance applications [17]. It is composed of

multiple stacked DRAM dies and a single base logic die

interconnected with TSVs. Each DRAM die is divided into

16 partitions in a 2D grid and the corresponding partitions on

the vertical die form a single vault. Each vault has an inde-

pendent vault controller on the logic die; therefore multiple

partitions in the DRAM die can be accessed simultaneously.

There have been proposals for off-loading data-intensive

operations onto the logic die [24]–[26].

Compared to HBM or Wide I/O-2, the HMC architecture

provides highly parallel access to the memory (one channel

per vault) which is better suited to the highly parallel

architecture of the computing layer in the Neurocube. The

logic and memory dies can be fabricated in different process

technologies; e.g., DRAM dies are fabricated in 50nm and

logic die is fabricated in 28nm [20]. However, the area of

the logic die relative to the memory dies is constrained by

the package [20], and power dissipation is limited by the

Link

TSV

VC R R R R
NoC

PE PE PE PE

μ

Vault

DRAM die

PNG
..

.

..
.

..
.

w
i,j

x
i

Mapped into

Memory
Current layer

Host

For all layers One layer

is done

Program & initiate

new layer

Layerwise operation

Figure 4. Programming Neurocube flow.

much tighter thermal constraints [27]. In this paper, we will

refer to the interface between DRAM layers and the logic

die as ‘HMC-Int’ (6th column in Table I).

C. Programming and Execution Model

Fig. 4 illustrates a high level model of the programming

and execution of a NN using the Neurocube architecture.

The NN shown in Fig. 4 is stored in the DRAM stack - the

locations of i) the layers, ii) the states of all of the neurons,

iii) the corresponding connection weights are known a priori.

Consequently, the data movement paths required between

the DRAM layers and the logic layer to operate the network

are known a priori. These data movement paths are compiled

into state machine descriptions that will drive programmable

neurosequence generators (PNG) integrated with the vault

controllers. The host initiates the processing of each layer

by programming the PNG by loading the state machines

which streams data to the compute layer which operates in

a data-driven manner. Thus, the execution of each NN layer

is fully data driven. We refer to this as a memory-centric
neural computing model since the compute units are driven

by the memory system and there is no stored program in

the traditional sense. The remainder of the paper describes

each of the microarchitectural elements in greater detail.

382382

(a)

A

B

C

Y=AB+C

Cnt

M MMM M M

Buffer

$ $$ $ $ $

(b)

W

Cache

Mem for

weights

MAC

PE

OP.

counter

Router

Link

TSVVC

R R RNoC
PE PE PE PE

μ

Vault

DRAM die

PNG

Figure 5. (a) Proposed Neurocube architecture and (b) Organization of
the processing elements (PEs).

(a) (b)

R
R

R :router

Priority

Reg.

Routing

LUT

North
West
East

South
PE

Memory

North
West
East
South
PE
Memory

(c)

Figure 6. (a) 2D mesh NoC, (b) 2D fully connected NoC, and (c) Router
design for 2D mesh NoC.

III. NEUROCUBE ARCHITECTURE

Fig. 5 illustrates the key components of the Neurocube

architecture designed in the logic die of a HMC. Multiple

processing elements (PE) concurrently communicate with

multiple DRAM vaults through high-speed TSVs. A host

communicates with the Neurocube through external links of

the HMC to configure (program) the Neurocube for different

neural network architectures (such as number of layers, types

of layers, and dimension of layers). The Neurocube archi-

tecture is composed of a global controller, programmable

neurosequence generator (PNG) for DRAM, routers for a

2D-mesh network on chip, and processing elements (PEs).

Notations to describe the architecture are explained as:

Number of DRAM banks (vaults or channels): nCh, Number

of PE per DRAM bank (vault): nPE , Number of MACs per

PE: nMAC , DRAM I/O clock frequency: fDRAM−IO, NoC

router clock frequency: fNoC , PE clock frequency: fPE ,

MAC clock frequency: fMAC .

A. Memory System

Fig. 2 shows the structure of HMC described in Section

II-B. To utilize all 16 vaults effectively, each vault is

connected to one PE. Note that in general we can have

a different number of MAC units/PE to match the vault

bandwidth. All PEs are connected by a 2D mesh network.

B. Processing Elements (PE)

The processing element (PE) is the main computing unit

and is comprised of multiple multiply accumulator (MAC)

units since weighted summation is the main arithmetic

operation in the emulated NNs (Eq. 1). A single PE is

composed of nMAC MAC units, a cache memory, a temporal

buffer, and a memory module for storing shared synaptic

weights. Fig. 5 (b) shows a block diagram of a single PE.

1) Multiply-Accumulator: In this paper, we used a

16-bit fixed point (Q1,7,8: 1bit MSB, 7bits integer, 8bits

fractional part) representation for both the state and weights

in a generic neural network. The operating clock frequency

of a MAC (fMAC) is determined as below

fMAC = fPE/nMAC (3)

where fPE = fNoC = fDRAM−IO (operating frequencies

of the PE, NoC, and DRAM I/O system). To compute sum

of multiplications (
∑

W ×X), the output of a MAC needs

to be used as an input in next cycle. (Fig. 5 (b)).

2) PE Memory: The operation of the PE and the role of

the various memories are best illustrated with an example.

Consider a network where each layer has 8 neurons and each

neuron has 3 input neurons from the previous layer. The PE

has 8 MAC units. Consider the update of a layer. The 8

MAC units in a PE synchronously process/update one output

neuron at a time. On cycle 1, each MAC unit computes the

summation with the first input of each neuron. On cycle 2,

each MAC unit computes the second term of the summation

using the state and weight from its second input neuron and

so on. Thus in three cycles the states of all 8 neurons have

been updated.

The state of the input neurons and their associated con-

nectivity weights are encapsulated in a packet and moved

to the PEs by the programmable PNGs. Each packet has an

OP-ID value to indicate whether they are the first, second,

etc. input for its corresponding output neuron. Each PE has

an operation counter (OP-counter) used to sequence through

the correct number of input neurons for each output neuron

whose state is being updated. At any point in time, the OP-

counter refers to the input number currently being computed

by the MAC units (i.e., input 1, input 2 etc.). If packets

arrive out of order they are buffered in the SRAM cache

until all corresponding inputs arrive, i.e., it is buffered if the

OP-ID of the packet is greater than the OP-counter value.

When all corresponding inputs arrive, they are moved to

the temporal buffer and the availability of all inputs triggers

383383

Gen. addr. for

connected neuron &

synaptic weight

Repeat for all

input/weights

Send addr. to

Vault Ctrl. (VC)

VC sends data

back to PNG

Push packet

to NoC

Encapsulate

data into packet

For each neuron

in current layer

Figure 7. Operation of the Programmable Neurpsequence Generator (PNG)
for computing one layer.

a MAC operation. Finally, if the size of synaptic weights

matrix is small all weights are stored in PE weight memory.

C. 2D Network on Chip

The PEs are interconnected by a 2D mesh network as

shown in Fig. 6 (a). Fig 6 (c) illustrates a block diagram

of the router. Each PE is connected to a single router. Each

router has 6 input channels and 6 output channels (4 for

neighbhoring routers and 2 for PE and memory). The router

is wormhole switched with credit-based flow control, a 16-

depth packet buffer for each input and output channel, and

table-based routing. Routing is deterministic X-Y routing.

Input buffers use a rotating daisy chain priority scheme

for arbitrating between inputs requesting the same outputs.

Priorities are updated every clock cycle. The impact of the

NoC architecture on the system performance in terms of

throughput will be analyzed in Section VI.

IV. MEMORY CENTRIC NEURAL COMPUTING

In this section, we describe the design/programming of the

Programmable Neuroseuquence Generator (PNG). The host

programs the execution of one layer at a time. For example,

Neurocube to operate ConvNN for scene labeling [9] with

six layers (2Dconv, pooling, 2Dconv, pooling, 2Dconv, and

fully connected) where different layers demonstrate different

types of connectivity (local connection in 2Dconv, and all

to all connectivity, similar to MLP in fully connected layer)

should be programmed six times.

The execution of each layer is described in this section as

i) the packetization and flow of data between memory and

the PEs, ii) the addressing of memory and programming of

the memory-based state machines, and iii) the programming

interface to the host.

A. Orchestration of the Data Flows

Each vault controller in the HMC has an associated

programmable neurosequence generator (PNG) that controls

the data movements required for neural computation. Fig. 7

shows the operation of a PNG for each layer in the NN. For

each neuron in the layer, the PNG will generate the addresses

of the connected neurons in previous layer and weights in

the memory. Consider a neuron in one layer (yi in Fig. 8

(b)). To compute the state of this neuron the PNG generates

a sequence of addresses for the locations of (a) the state of

all connected neuron (xk) and (b) the corresponding synaptic

weights (wk) between them. The preceding is repeated for

each neuron in the network. The PNG executes this operation

and sends the address sequences to the vault controller (VC).

As the PNG receives the data stream from the VC, the

data corresponding to each connected neuron is encapsulated

into a packet. The PNG encodes a specific MAC-ID for each

packet such that all packets corresponding to the neuron and

its connected neuron have the same MAC-ID. The PNG also

pushes states (yi in Eq. 1) through the non-linear activate

function (implemented as the Look Up Table (LUT)) and the

output of neuron (xi in Eq. 2) is embedded in the packet.

Finally, the packet includes source ID (memory vault ID)

and destination ID (PE ID) and is injected into the router in

the NoC to deliver to the PEs. (Fig. 8 (a)).

After the MACs finish the computation, the state of output

neuron is encapsulated into packets for each MAC (all

MACs finish the operation at the same time) with MAC−ID

and injected into the network. When the PNG receives the

packet (write back), the PE index (SRC in the packet and

MAC-ID are sufficient to determine the neuron to be updated

and its address. This information is pushed back to the VC.

B. Design and Operation of the PNG

Fig. 8 (a) shows the block diagram of the PNG, composed

of i) the address generator, ii) configuration registers, iii) a

Look-Up-Table (LUT) for the non-linear activate function,

and iv) packet encapsulation/de-encapsulation logic. Each

PNG is programmed by a global controller (μ ctrl.) inter-

acting with the host. The host loads configuration registers

(see below) to initiate the computation of a single layer.

After all 16 PNGs are configured, computation begins.

The address generator in the PNG is designed as a

programmable finite state machine (FSM) that can be used

to sequence through addresses for single layer of neurons.

Operationally, the computation over a single layer of neurons

is composed of three nested loops: a loop across all neurons

in the layer, a loop across all connections for single neuron

in the layer, and a loop across all MACs. A single MAC

computes the state of one neuron at a time; therefore

nMAC MACs compute nMAC neurons after iterating over

nConnections computations (multiplication and additions).

This process is repeated until the state of all neurons in

this layer have been computed. The FSM structure using

three counters (one for each loop) is shown in Fig. 8 (b).

These counters are programmed by the host to initiate the

computation of each layer.

The combinational logic computes the memory address

of each required connected neuron and synaptic weights for

current neuron in this layer. This logic receives the current

states of the neuron counter (curx, cury) and connectivity

384384

PNGConfiguration

Register

Address

Generator

(counters)
Addr.

Vault

Ctrl.

μCtrl.

Data
R

Vault

ENCLUT
Packet

LUT: Look-up-table for non-linear activate function

ENC: Encapsulator

y
i
=∑w

k
∙x
k

k

Generic Neural Network

Connection

Counter

(mac id)

Counter

(x, y)

y
i

Counter

(n
x
, n

y
)

k

Three nested FSMs

Clk

Counter

(mac id)

Comb. logic

Counter

(n
x
, n

y
)

MAC iter done Connection iter done

Comparator

Counter

(x, y) One layer

done

#MAC #Connections
#Neurons in

current layer

Counter
Configuration

Register

Memory

Address

mac

id=1
0

Clk

MAC iter done

n
y
=r

n
x
=r

1

n
y
=-r

n
x
=-r

0

n
y
=-r

n
x
=-r+1

0

Connection Iterate

x=W

y=H
1

x=1

y=1
0

Neurons Iterate

Connection iter done

*stride = #MAC

0

x=1+#MAC

y=1

One layer done

mac

id=2
0

mac id =

#MAC
1

MAC Iterate
(a)

(b) (d)

*Assume #MACs is always constant

One Layer

Done

Configuration

Enable Signal

From Host Program

Neurocube Operation

(c)

loading two configuration reg.

Figure 8. (a) Interaction between PNG, VC, and host. (b) General neural network can be translated as three nested loops, which can be implemented
using three counters. (c) Timing diagram of programming PNG and Neurocube operation. (d) Three nested loops can be mapped to finite state machines.

(nx, ny), and computes the target address (targx, targy) as

follows:

targx = curx + nx, targy = cury + ny, (4)

Note (curx, cury) is the coordinate of the current neuron.

Based on the the number of connected neurons and their

weights, the memory range allocated for this layer (state

of connected neurons and synaptic weights) can be precom-

puted. Therefore, the actual memory address for the required

neuron located at (targx, targy) is computed as:

Addr = targy ×W + targx +Addrlast, (5)

where W represent width of output image and Addrlast
represents the last memory address from the previous layer.

Fig. 8 (c) shows timing of host-PNG interactions. To

program the PNG, the host asserts a configuration enable

signal to write configuration registers (see next section).

After the host writes all configuration registers, it deactivates

the configuration enable signal that initiates the FSM. Fig.

8 (d) shows that how the three counters inter-operate. When

the state value of the current neuron counter equals the total

number of neurons in this layer, it means that the PNG has

generated all data address sequences required for this layer.

After generating all required data addresses, the PNG waits

to receive the newly computed state for the last output pixel.

After it receives the last state, the PNG raises the layer done

signal. Then host now starts programming the next layer.

C. Programming of the PNG

Programming the PNG initially map all data structures

of NN (e.g., input image and weights) into the physical

address space of the cube (i.e., across vaults, dies, banks etc.)

followed by periodic configuration to process each layer of

the neural net. The implementation of this global controller

can be via software executing on a simple micro controller

on the logic die or, directly by the host via the HMC links. In

the latter case the configuration registers must be accessible

to the host. In this paper we assume the latter, i.e., direct

host programming.

385385

3
320

2
4

0

314

2
3
4

6

2D-Conv

1
1
7

157
6

Max-pooling

1
1
1

151
64

2D-Conv

55

7564

Max-pooling

49

69
256

2D-Conv
Pixel-wise

Fully connected

256 64
8

#Outputs [W, H] =

#Connections [r, r] =

[157, 117]

[2, 2]

[151, 111]

[7, 7]

[75, 55]

[2, 2]

[69, 49]

[7, 7]

[64, 1]

[256, 1]

[8, 1]

[64, 1]

Programming

Command

Sent from Host

ConvNN

Operation

[314, 234]

[7, 7]

Figure 9. Convolutional neural network for scene labeling [9] and programming parameters for each layer

(c)

(d)

(a)

2D Convolutional

Layer

Max Pooling

Layer

Fully Connected

Layer

Kernel
Reshape

(b)

Input IMG

Vault 1 Vault2

Vault 3 Vault 4

PE
4

R R

R

V3

R

r

N
I

2D → 1D

Duplicate N
I Divide

(e)

V4

V2V1

Vault 1 Vault2

Vault 3 Vault 4

V1

V3 V4

V2

V3 V4

V2V1

V3 V4

V2V1

Figure 10. Data movement in Neurocube (assume 4 vaults and 4 PEs). (a)
ConvNN structure. (b) For 2D convolutional layer, input image is divided
into 4 non-overlap segments. (c) To reduce NoC traffic, input is divided with
overlapped area. (d) For fully connected layer, input image is transformed
to vector and this vector is duplicated to all HMC vaults. (e) To reduce
duplicated memory overhead, input vector is divided into all vaults.

As an example, consider how the PNG can be con-

figured for a convolutional NN during inference (Fig. 9).

The number of MACs is determined by design as 16. To

iterate over all neurons in the 1st convolutional layer, the

configuration register for the number of neurons should be

set to 73,476 (314 × 234). The value of the counter for

iterating over current neurons is incremented by 16 at each

step since the states of 16 neurons in this layer are computed

simultaneously. For one neuron, the number of connection

is 49 (7 × 7), and is also programmed into the PNG.

V. COMPUTE OPERATION IN NEUROCUBE

A. Management of Data Movement

Application: ConvNN for Scene Labeling
In this section, we discuss how to reduce data movement,

specially over the 2D NoC, for locally connected and fully

connected layer. Fig. 10 shows that how input image and

weight matrix are divided into nCh partitions and stored in

DRAM vaults to manage data movement.

1. Locally Connected Computation: For small connec-

tions, the weights are duplicated in the weight memory

of all PEs. Only input needs to be partitioned and stored

in the vaults as illustrated in Fig. 10 (b). The 2D NoC

traffic can be reduced by dividing into multiple overlapped

image segments (Fig. 10 (c)). The overlapping can improve

throughput with small memory overhead, specially for small

kernels; the memory overhead increases with kernel size.

2. Fully Connected Layer: We can divide the weight

matrix into DRAM banks (Fig. 10 (d)) and duplicate the

input vector in each vault so that a PE can compute neurons

using data from a single vault. However, when input image is

too large to duplicate, both input and weight matrix need to

be divided resulting in higher NoC traffic (Fig. 10 (e)). Note

a fully-connected model can be used to represent irregular
connections between neurons by storing a synapse weight

of ‘0’ for missing connections.

B. Operation of the PEs

Fig. 11 illustrates PE operations after programming by

global controller. Fig. 11 (a) shows data and packet transfer

among vault, PNG, and router. From a single DRAM vault

in HMC-Int., the PNG receives 32bit data and encapsulates

that into two packets. Source (SRC) indicates the DRAM

vault (4bit for 16 vaults in HMC-Int.), and destination (DST)

indicates PE (4bit for 16 PEs). As all MACs operate in

parallel, nMAC weights and nMAC states are delivered

to PE. Each packet has a MAC-ID (4bit for nMAC=16)

to represent the target MAC. Each packet has OP-ID to

represents the sequence of operations to compute one single

output neuron. We assign 8bit for OP-ID. If maximum

iteration for one pixel is more than 256, OP-ID represents

the remainder of OP-ID divided by 256.

Fig. 11 (a)-(d) illustrates example when PE needs to

compute 3rd operation (OP-counter is 3). Packet for MAC15

to operate 3rd operation is moved to temporal buffer[15]

directly (a). If packet’s OP-ID is higher than current OP-

counter, it moves to cache memory (b). Cache memory is

divided into multiple sub-banks (e.g. 16 sub-banks as in

386386

SRC DST MAC-ID OP-IDDATA

4bit 4bit 16bit 4bit 8bit

Router [2]

PE[2], OP Counter = 3

1 2 0x32 14 3

Temporal Buffer

0x7A

MAC
0

MAC
14

MAC
15

Weight Memory
Cache Memory

(c)

0x3F

0

4

15

...

...

[0]0x5A

Router [2]

PE[2], OP Counter = 4

MAC
0

MAC
14

MAC
15

Weight Memory
Cache Memory

(d)

0x5A

0

4

15

...

...

Router [2]

PE[2], OP Counter = 3

0 2 0x3F 15 3

0x7A

MAC
0

MAC
14

MAC
15

Weight Memory
Cache Memory

0

4

15

...

...

(a)

Temporal Buffer

Router [2]

PE[2], OP Counter = 3

0 2 0x5A 0 4

0x7A

MAC
0

MAC
14

MAC
15

Weight Memory
Cache Memory

0

4

15

...

...

(b)

0x3F

Temporal Buffer

Figure 11. Operation of PE (OP counter = 3). (a) Packet with OP-ID as 3
arrives PE and moves to temporal buffer. (b) Packet with OP-ID as 4 arrives
PE and moves to cache memory. (c) Packet with OP-ID as 3 arrives PE and
moves to temporal buffer. Temporal buffer receives 16 weights and input (d)
Buffer is flushed and MACs start computation. Operation counter increases.
Before start 4th operation, bring pre-stored data from cache memory.

Fig. 11). When a new packet arrives which is not for the

current operation (OP-ID != OP-counter), it is stored in sub-

bank mod(OP-ID, 16). When temporal buffer receives all

16 input pixels and 16 synaptic weights, temporal buffer

is flushed, MACs start computation, and PE increases OP-

counter (c). For next operation, pre-stored data in cache

memory is moved to temporal buffer (d). When checking for

necessary packets for the next operation, the PE performs a

full search of the sub-bank that may take anywhere from 16

clock cycles (16 MACs) to 64 clock cycles (max 64 entries).

VI. SYSTEM THROUGHPUT SIMULATION

We developed a cycle-level Neurocube simulator for per-

formance evaluation. In simulator, main memory specifica-

tion (bandwidth, number of channels, bus-width), PE (cache

size, number of MACs), and router (buffer size, latency)

are parametrized. For all 16 vaults in the HMC, 32bit word

(2 data items) is pushed at 5GHz (HMC specification) in

burst mode and burst length is assumed as 8. Therefore,

after pushing 8 words, the HMC needs to wait tCCD before

sending the next 8 words. Reference clock in the simulator

is the main memory clock frequency (2.5GHz × 2 = 5GHz).

The system simulation is performed considering a multi-

layer ConvNN structure for scene labeling [9]. We choose

ConvNN as the example, because it helps demonstrate the

programmability of the Neurocube for locally connected (2D

convolutional) as well as fully connected networks. This

ConvNN is constructed with 7 layers and input image is

RGB 320 × 240. The number of neurons for each layer

is illustrated in Fig. 9. We analyze the system performance

during both inference and training, while most of the prior

hardware works only considered inference ([2] [4] [5] [8]

[6]) or training for simple application like MNIST (2 layers,

28×28 input, [7]).

Fig. 12 and Fig. 13 show the throughput and memory

requirements for inference and training operations in scene

labeling [9]. Unlike most of the related works that concen-

trates on only one layer and/or only inference operations,

we simulate the system for both inference and training with

and without data duplication.

1) Inference: The three convolutional layers and the first

fully connected layer dominates the number of operations. In

particular, the former dominates execution time in training.

With data duplication (black bar), Neurocube shows almost

constant throughput since there is no lateral traffic for both

types of layers (132.4GOPs/s). Without data duplication

(gray bar), throughput for fully connected layers degrades;

therefore total throughput is slightly lower than that of data

duplication (111.4GOPs/s).

2) Training: For training, operation with data duplication

is applied (126.8GOPs/s). For memory requirements, dupli-

cation shows 48% additional memory overhead to maintain

high throughput.

3) Image Processing Throughput: We estimate the im-

age processing throughput for the scene labeling application

based on the RTL level design of the Neurocube hardware

in 28nm and 15nm nodes (see Section VII). The estimated

throughput for inference are 17.52 frames/second in 28nm

and 292.14 frames/second in 15nm. Likewise for training,

272.52 frames/second in 28nm and 4542.14 frames/second

in 15nm (one epoch in training with image size: 64 × 64).

Extending Neurocube for Other Neural Networks: The

example of ConvNN shows how Neurocube can be used

to program other NN. Programming an MLP [13] or RNN

[23] is similar to programming the fully-connected layer in

ConvNN. Although RNN is not simulated in this paper, RNN

is equivalent to a deep MLP after unfolding in time, while

LSTM [28], a variant of RNN with multiple hidden layers

each with a different activation function, can be realized by

updating the LUT for each layer during programming. On

the other hand, programming a locally connected layer like

Cellular Neural Network [29] is similar to programming the

2D convolutional layer. Therefore, different types of network

can be programmed in Neurocube without architectural

changes.

387387

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

5.000E+10

7.000E+10

9.000E+10

1.100E+11

1.300E+11

1.500E+11

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

High Throughput (Duplication) Low Memory (No Duplication)

C1: 1st 2D Conv. layer C2: 2nd 2D Conv. layer C3: 3rd 2D Conv. layer

F1: 1st Fully-connected layer F2: 2nd Fully-connected layer

Operations

C1 C2 C3 F1 F2 Total

Clock Cycles

C1 C2 C3 F1 F2 Total

GOPs/s

C1 C2 C3 F1 F2 Total

Memory Requirements (Byte)

C1 C2 C3 F1 F2 Total

Figure 12. Neurocube performance for scene labeling [9]. Neurocube can operate high throughput with data duplication (black) or slightly lower throughput
to save memory requirement (gray). (a) Number of operations, (b) Number of clock cycles, (c) Throughput (GOPs/s), and (d) memory requirements and
overhead for inference with data duplication

5.000E+10

7.000E+10

9.000E+10

1.100E+11

1.300E+11

1.500E+11

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+03

1.00E+04

1.00E+05

Operations

C1 C2 C3 F1 F2 Total

Clock Cycles

GOPs/s Memory Requirements

(Byte)

C1 C2 C3 F1 F2 Total

C1 C2 C3 F1 F2 Total C1 C2 C3 F1 F2 Total

Figure 13. Neurocube performance for training scene labeling [9] with
small image size (64 × 64) and data duplication. (a) Number of operations,
(b) number of clock cycles, (c) throughput (GOPs/s), and (d) memory
requirements and overhead for inference with data duplication

A. Effect of NN Parameters

In this sub-section we study the effect of NN parameters

on the system performance. Fig. 14 (a) and (b) show the

simulation results of the locally connected layer (2D convo-

lutional layer) with different kernel sizes. When each vault

does not duplicate the neighborhood input pixels, a higher

kernel size increases the lateral traffic on the NoC thereby

decreasing system throughput. When the neighborhood is

duplicated, there is no degradation in system performance

with large kernel size, however, the memory overhead due

to duplication increases.

Fully connected layers are placed as last layers of the

ConvNN as classifiers. Consider a 3-layer fully-connected

network with one hidden layer (between input and output).

Memory Overhead (%)

135.0

133.0

133.4

133.8

134.2

134.6

74.0

70.8

71.4

72.0

72.6

73.3

System Throughput (GOPs/s) Lateral Traffic Ratio (%)

Kernel Radius
1 73 5

(a)

2D Convolutional

without duplicate
9.00%

0.00%

1.80%

3.60%

5.40%

7.20%

74.0%

69.0%

70.0%

71.0%

72.0%

73.0%

Neurons at

Next Layer

(c)

256 2,048512 1,024
Input Neurons

16,384

Fully Connected

without duplicate
135.0

133.0

133.4

133.8

134.2

134.6

7.00%

0.00%

1.40%

2.80%

4.20%

5.60%

Input Neurons

65,536

135.0

133.0

133.4

133.8

134.2

134.6

20.00%

0.00%

4.00%

8.00%

12.00%

16.00%

2D Convolutional

with duplicate

Kernel Radius
1 73 5

(b)

Neurons at

Next Layer

(d)

256 2,048512 1,024

Fully Connected

with duplicate

Figure 14. Effect of NN parameters on throughput and memory: effect
of kernel size in 2D convolutional layer (a) without duplicate and (b) with
duplicate; and effect of number of neurons at in the hidden layer for fully
connected layer (c) without duplicate and (d) with duplicate.

More neurons in the hidden layer allow more complex non-

linear classification, but also require more computation and

memory. Without duplication, one PE should access all

vaults to compute one pixel at the current layer; therefore

lateral traffic on the NoC is high (71%) (Fig. 14 (c)).

However, the number of connected neurons in previous layer

for one neuron is constant. In other words, the amount of

lateral traffic is also constant. Therefore, system performance

388388

System Throughput (GOPs/s)

70.0%

0.0%

17.5%

35.0%

52.5%

Duplicate No

Duplicate

160.0

0

40.0

80.0

120.0

Lateral Traffic Ratio (%)

Duplicate No

Duplicate

HMC DDR3 HMC DDR3

(a)

System Throughput (GOPs/s)

70.0%

0.0%

17.5%

35.0%

52.5%

2D Conv FC

160.0

0

40.0

80.0

120.0

Lateral Traffic Ratio (%)

2D Conv FC

M2G FCNOC

(b)

M2G FCNOC

Figure 15. Performance comparison: (a) HMC and DDR3, and (b) mesh
grid and fully connected NoC.

is almost constant (Fig. 14 (d)). When number of neurons

at the current layer increases, synaptic weights (NI ×NO)

occupy the most of the memory in terms of space since it is

fully connected (it has a huge weight matrix). Therefore, the

portion of duplicated input neurons in total required memory

decreases (memory overhead decreases).

B. HMC-Internal vs. DDR3

According to Table I, peak bandwidth of DDR3

(12.8GBps) is higher than that of HMC-Int (10GBps); there-

fore, a comparative analysis of the two will help understand

the role of concurrency in the Neurocube. For the 2D Conv.

layer, simulation is performed to analyze the impact of the

number of channels. Fig. 15 (a) shows that DDR3 shows

much lower system performance, although DDR3 has higher

peak bandwidth. Since DDR3 has only two channels, data

traffic on the 2D NoC is a major bottleneck. Due to large

lateral NoC traffic (about 60%), there is no benefit from

duplication in 2D Conv. in terms of system performance. Un-

der the same bandwidth, more slower channels can leverage

NoC traffic; therefore it improves the system performance.

C. Mesh Grid NoC vs. Fully Connected NoC

In addition to memory with many channels, a fully

connected NoC (all routers are connected each other, Fig.

6 (b)) also can reduce the NoC traffic. The impact of NoC

on the performance is emphasized especially for the layer

with dense connections. Fig. 15 (b) shows that there is no

throughput degradation from the locally connected layer to

the fully connected layer since there is no lateral traffic on

the NoC. However, one single router needs 17 input/output

channels. High radix NoCs may be an option here.

Router
16 MACs

PNG

Weight

Register

Temporal

Buffer
2.5KB

SRAM

5
1

3
u

m

513um

787um

7
8

7
u

m

Vault Controller

(0.62mm2)

[E. Azarkhish, 2015 DATE]

50um

5
0

u
m

116 TSVs

(pitch = 4um, diameter = 2um)

Vault Controller

Temporal Buffer

2.5KB SRAM PNG

RouterWeight Register
1

6
 M

A
C

s

1
,1

0
0

u
m

1,100um

One core in Neurocube

8
,2

4
6

u
m

8,246um

Neurocube on HMC logic die

Figure 16. Layout of one partition of HMC logic die including a single
PE (16 MACs, 2.5KB SRAM, weight registers, temporal buffer, and PNG),
vault controller [24], and a single router.

349K

321K

Thermal analysis operating 5GHz (15nm FinFet)

Figure 17. 3D-Thermal simulation for Neurocube in 15nm and 4 DRAM
dies. Maximum temperature of logic die is 349K and of DRAM die is
344K.

VII. HARDWARE SIMULATION

Design of PE: One PE was designed in Verilog and

synthesized using 28nm CMOS and 15nm FinFet [31], [32].

The PE includes 16 MAC units, PNG, temporal buffer,

and weight memory. As already explained in Section III-B,

2.5KB local memory is composed of 16 banks and each

bank is designed to store 1,280bits (80bit × 16 lines) : 20bit

word (16bit data + 4bit MAC-ID) × 16 MACs × 4 buffering

depth. For each vault, we design one PE and a router for

2D mesh. The maximum clock frequency of SRAM from the

28nm library was 300MHz. Therefore, the PE and the router

were synthesized to operate at 300 MHz and the MACs are

synthesized to operate at 18.75MHz (Eq. 3). We have also

re-designed the Neurocube with 15nm FinFet process [32]

to achieve 5GHz operating frequency. Power and area of

389389

Table II
HARDWARE SIMULATION OF SINGLE CORE IN NEUROCUBE

Operating
Freq (MHz)

Dynamic
Power (W)

Area (mm2)
Power Density

(W/mm2)
Size (bit) 28nm 15nm 28nm 15nm 28nm 15nm 28nm 15nm

MAC 16 18.75 320 3.02E-04 9.17E-03 0.0011 0.0002 2.75E-01 4.89E+01
SRAM Cache

(2.5KB)
20,480 300 5,120 2.93E-03 2.90E-02 0.0873 0.0448 3.36E-02 7.10E-02

Temporal
Buffer

512 300 5,120 2.70E-05 2.05E-05 0.0025 0.0003 1.09E-02 7.10E-02

PMC N/A 300 5,120 4.17E-04 1.39E-03 0.0081 0.0013 5.16E-02 1.09E+00
Weight Reg 3,600 300 5,120 1.84E-04 1.44E-04 0.0173 0.0020 1.07E-02 7.10E-02

Router 36 300 5,120 7.17E-03 3.59E-02 0.0609 0.0085 1.18E-01 4.24E+00
PE Sum - 300 5,120 1.56E-02 2.13E-01 0.1936 0.0600 8.04E-02 3.06E+00

Compute in Neurocube
(16 PEs + 16 Routers)

- 300 5,120 2.49E-01 3.41E+00 3.0983 0.9601 8.04E-02 3.06E+00

HMC Logic Die
Without Neurocube

- 300 5,120 1.04E+00 8.67E+00 - - - -

All DRAM Dies - 300 5,120 5.68E-01 9.47E+00 - - - -

Table III
RECENT HARDWARE PLATFORMS FOR NEURO-INSPIRED ALGORITHM.

Papers [2] "15 This work [4] "11 [5] "14 [7] "14 [8] "15 [6] "15
Programmability Yes Yes Yes Yes No No No No No No

Hardware
Tegra

K1
GTX
780† 28nm 15nm Virtex 6 45nm

Xilinx
ZC706

28nm 65nm 28nm

Bit Precision N/A N/A 16bit 16bit 16bit 16bit 16bit 16bit 12bit 16bit
Thrp.

(GOPs/s)
With DRAM 76.0 1,781.0 8.0 132.4 - - 227.0 - - -
W/O. DRAM - - - - 147.0 1,164.0 - 5,580.0 203.0 2.78

Compute Power (W) 11.00 206.80
0.25

(1.86)
3.41

(21.50)
10.00 5.00 8.00 15.97 1.20 0.001

Efficiency (GOPS/s/W) 6.91 8.61 31.92 38.82 14.70 232.80 28.38 349.40 169.17 2,780.00
Application

Inference/Training
Scene Labeling

[9] Inference
[9]

Both
N/A N/A N/A

N/A
Both

[9]
Inference

N/A

Number of
Input Neurons

76,800 76,800 N/A N/A N/A 784 76,800 N/A

† GDDR5 (3GB, 6Gbps) power is estimated by [30]

SRAM in 15nm is estimated using [11] (power). Supply

voltage ratio is used to estimate SRAM power in 15nm,

which is conservative estimation.

Power estimation of HMC: The baseline HMC design

reports 3.7pJ/bit for DRAM and 6.78pJ/bit for logic layer

[20]. Based on these values, the power of the logic die

without Neurocube (16 vault controllers, 4 links (SERDES),

interface between all VCs and all links) and DRAM die is

computed assuming clock frequency of the vault I/O clock

(2.5GHz × 2 = 5GHz) [i.e. Logic power = 6.78pj/bit × 32

bit × 16 × 5GHz = 17.3 W]. However, the maximum clock

frequency for the PE in the 28nm node is only 300MHz,

leading to a reduced activity of 0.06 (=300MHz/5GHz)

in the vault controllers and DRAM. Hence, logic die and

DRAM powers in 28nm are scaled accordingly. As the PE

in 15nm operates at 5GHz, no such activity scaling has been

applied. However, the baseline power of the logic die have

been scaled based on the energy scaling factors from [33].

System power and performance: Table II shows the dy-

namic power consumption and area for Neurocube in 28nm

and 15nm nodes. Therefore, additional power overhead

due to the Neurocube on the logic die is 249mW (16 ×
15.6mW) in 28nm and 3.41W in 15nm. The image process-

ing throughput for inference and training using Neurocube

are mentioned in Section VI.

Area analysis: The area overhead in the logic die due to 16

PEs is 3.09mm2 (16 × 0.1936mm2) in 28nm and 0.98mm2

in 15nm. To estimate total logic die area with Neurocube,

we present one feasible layout in 28nm (Fig. 16). One PE

and a router can be placed in 513μm2 by 513μm2 with

70% utilization ratio. We used area of the VC synthesized

in 28nm from [24]. As there are 1,866 TSVs in one HMC

[20], we assumed that 116 TSVs are placed in the middle of

the VC and the area of the TSV array is estimated using a

4μm pitch and 2μm diameter [33]. One core of Neurocube

(a PE, a router, and a VC) is designed by placing VC in the

middle and placing other modules around the VC to reduce

interconnect. We can see that Neurocube with 16 cores can

be synthesized on the logic die (68mm2 [20]) of HMC.

Neurocube in 15nm also fits in the area of HMC (Table II).

Thermal analysis: For thermal analysis of Neurocube

we use [34], [35] and simulate the floorplan shown in

390390

Fig. 16 assuming passive heat sink. For the 28nm node,

the thermal effect was negligible as Neurocube consumes

relatively small power at 300MHz (1.3W). For the 15nm

node (and associated power density), We observe that the

maximum temperature for 16 PEs increases up to 349K

and the maximum temperature for 4 DRAM dies increases

to 344K (Fig. 17). According to the HMC 2.0 [36], the

maximum operating temperature of logic die is 383K and

that of DRAM die is 378K. Therefore, Neurocube operating

at 5GHz at the 15nm node fits within thermal conditions.

We estimate logic die power based on [20], which includes

the power of 16 vault controllers, 4 high speed links,

ECC, and the interface between vaults and links. Note in

Neurocube we will use links, ECC, and interface only during

programming by host, not during computation; this may

reduce the logic die power from Table II.

VIII. RELATED WORK

The related work on the neuromorphic hardware platforms

can be divided into two categories: software based on GPUs,

and hardware based using ASIC/FPGA (Table III).

GPU [2] and mobile processor [2] can operate multiple

different neural networks by programming software and in-

terface with external high density memory. However, GPUs

have lower compute efficiency than ASIC/FPGA.

ASIC/FPGA platforms can achieve higher compute effi-

ciency. FPGA platforms for the 2D convolutional layers have

been demonstrated [3]–[5]. The designs leveraged localized

computations on ConvNN by reusing neuron’s output to

improve efficiency; however, it may not work on fully

connected layers. Note even in FPGA, once a NN engine

is synthesized, it cannot be programmed on-line.

ASIC can achieve the highest throughput and the highest

efficiency, but its scalability is limited by on-chip memory

(or interface with external memory) and lack of programma-

bility [4], [6]–[8]. However, including the DRAM latency

and power will degrade efficiency of these engines.

The Neurocube presented in this paper takes a signifi-

cant shift from the prior work. First, Neurocube explores

the processing-in-memory concepts to address the critical

memory capacity/bandwidth challenge allowing a scalable

NN hardware with high system performance. More im-

portantly, Neurocube can be programmed on-line to map

different neural networks (programmability). As expected,

Neurocube shows higher compute efficiency than GPU (in-

cluding DRAM latency). The ASICs show better perfor-

mance, however, a part of the difference can be attributed to

the fact prior work did not consider the DRAM performance.

IX. CONCLUSION

This paper presents the Neurocube - a programmable and

scalable digital architecture for neuro-inspired algorithms.

The Neurocube design incorporates a logic die with an

array of clustered, data-driven, multiply-accumulate (MAC)

units integrated with a 3D DRAM stack for high bandwidth

and low latency memory access. Programmable address

sequence generators integrated into the memory system

generate the correct sequence of data accesses to push data

from memory to the MAC units where the arrival of neuron

states and connectivity weights triggers MAC operation. By

reprogramming the sequence generators, multiple, different

types of neural networks can be emulated. Next steps involve

scaling this implementation across multiple cubes to support

much larger networks than can be feasibly supported today.

ACKNOWLEDGMENT

This material is based on work supported in part by

an ONR Young Investigator award, a National Science

Foundation CAREER Award, and the National Science

Foundation grant CCF 1337177. The authors also gratefully

acknowledge the detailed and constructive comments of the

reviewers.

REFERENCES

[1] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural Networks, vol. 61, pp. 85–117, 2015.

[2] L. Cavigelli, M. Magno, and L. Benini, “Accelerating real-
time embedded scene labeling with convolutional networks,”
in Proceedings of the 52nd Annual Design Automation Con-
ference, p. 108, ACM, 2015.

[3] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun, “CNP: An
fpga-based processor for convolutional networks,” in Field
Programmable Logic and Applications, 2009. FPL 2009.
International Conference on, pp. 32–37, IEEE, 2009.

[4] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello,
and Y. LeCun, “Neuflow: A runtime reconfigurable dataflow
processor for vision,” in Computer Vision and Pattern Recog-
nition Workshops (CVPRW), 2011 IEEE Computer Society
Conference on, pp. 109–116, IEEE, 2011.

[5] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello,
“A 240 g-ops/s mobile coprocessor for deep neural networks,”
in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2014 IEEE Conference on, pp. 696–701, IEEE,
2014.

[6] F. Conti and L. Benini, “A ultra-low-energy convolution
engine for fast brain-inspired vision in multicore clusters,” in
Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, pp. 683–688, EDA Consortium,
2015.

[7] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang,
L. Li, T. Chen, Z. Xu, N. Sun, et al., “Dadiannao: A
machine-learning supercomputer,” in Microarchitecture (MI-
CRO), 2014 47th Annual IEEE/ACM International Sympo-
sium on, pp. 609–622, IEEE, 2014.

[8] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim,
and L. Benini, “Origami: A convolutional network acceler-
ator,” in Proceedings of the 25th edition on Great Lakes
Symposium on VLSI, pp. 199–204, ACM, 2015.

391391

[9] S. Gould, R. Fulton, and D. Koller, “Decomposing a scene
into geometric and semantically consistent regions,” in Com-
puter Vision, 2009 IEEE 12th International Conference on,
pp. 1–8, IEEE, 2009.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[11] E. Karl, Z. Guo, J. W. Conary, J. L. Miller, Y.-G. Ng,
S. Nalam, D. Kim, J. Keane, U. Bhattacharya, and K. Zhang,
“0.6 v 1.5 ghz 84mb sram design in 14nm finfet cmos technol-
ogy,” in Solid-State Circuits Conference-(ISSCC), 2015 IEEE
International, pp. 1–3, IEEE, 2015.

[12] F. Hamzaoglu, U. Arslan, N. Bisnik, S. Ghosh, M. B.
Lal, N. Lindert, M. Meterelliyoz, R. B. Osborne, J. Park,
S. Tomishima, et al., “13.1 a 1gb 2ghz embedded dram
in 22nm tri-gate cmos technology,” in Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2014 IEEE
International, pp. 230–231, IEEE, 2014.

[13] F. Rosenblatt, “Principles of neurodynamics. perceptrons and
the theory of brain mechanisms,” tech. rep., DTIC Document,
1961.

[14] “DDR3 SDRAM, JESD79-3F.” http://www.jedec.org/
standards-documents/docs/jesd-79-3d.

[15] “WIDE I/O 2, JESD229-2.” http://www.jedec.org/standards-
documents/docs/jesd229-2.

[16] “High Bandwith Memory, JESD235.” http://www.jedec.org/
standards-documents/results/jesd235.

[17] Hybrid Memory Cube Consortium, “Hybrid memory cube
specification 1.0,” 2013.

[18] P. Rosenfeld, Performance exploration of the hybrid memory
cube. PhD thesis, University of Maryland, 2014.

[19] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim,
Y. J. Park, J. H. Kim, D. S. Kim, H. B. Park, J. W. Shin,
J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee, K. W. Park,
B. Chung, and S. Hong, “25.2 a 1.2 v 8gb 8-channel 128gb/s
high-bandwidth memory (hbm) stacked dram with effective
microbump i/o test methods using 29nm process and tsv,” in
Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), 2014 IEEE International, pp. 432–433, IEEE, 2014.

[20] J. Jeddeloh and B. Keeth, “Hybrid memory cube new dram
architecture increases density and performance,” in 2012
Symposium on VLSI Technology (VLSIT), 2012.

[21] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis,
K. Periyathambi, and M. Horowitz, “Towards energy-
proportional datacenter memory with mobile dram,” in ACM
SIGARCH Computer Architecture News, vol. 40, pp. 37–48,
IEEE Computer Society, 2012.

[22] S. S. Haykin, S. S. Haykin, S. S. Haykin, and S. S. Haykin,
Neural networks and learning machines, vol. 3. Pearson
Education Upper Saddle River, 2009.

[23] H. Jaeger, Tutorial on training recurrent neural networks,
covering BPPT, RTRL, EKF and the" echo state network"
approach. German National Research Center for Information
Technology, 2002.

[24] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “High perfor-
mance axi-4.0 based interconnect for extensible smart mem-
ory cubes,” in Proceedings of the 2015 Design, Automation
& Test in Europe Conference & Exhibition, pp. 1317–1322,
EDA Consortium, 2015.

[25] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A
scalable processing-in-memory accelerator for parallel graph
processing,” in Proceedings of the 42nd Annual International
Symposium on Computer Architecture, pp. 105–117, ACM,
2015.

[26] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instruc-
tions: a low-overhead, locality-aware processing-in-memory
architecture,” in Proceedings of the 42nd Annual International
Symposium on Computer Architecture, pp. 336–348, ACM,
2015.

[27] J. Zhao, G. Sun, G. H. Loh, and Y. Xie, “Optimizing
gpu energy efficiency with 3d die-stacking graphics memory
and reconfigurable memory interface,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 10, no. 4,
p. 24, 2013.

[28] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to
forget: Continual prediction with lstm,” Neural computation,
vol. 12, no. 10, pp. 2451–2471, 2000.

[29] L. O. Chua and L. Yang, “Cellular neural networks: Theory,”
Circuits and Systems, IEEE Transactions on, vol. 35, no. 10,
pp. 1257–1272, 1988.

[30] “Samsung Green Memory Solutions.” http://www.samsung.
com/us/business/oem-solutions/pdfs/Green-GDDR5.pdf.

[31] “Synopsys 32/28nm Generic Library.” https://www.synopsys.
com/COMMUNITY/UNIVERSITYPROGRAM/Pages/32-
28nm-generic-library.aspx.

[32] “Nangate FreePDK15 Open Cell Library.” http://www.
nangate.com/?page_id=2328.

[33] “International Technology Roadmap for Semiconductors,
Interconnect, 2011.” http://www.itrs.net/ITRS%201999-
2014%20Mtgs,%20Presentations%20&%20Links/2011ITRS/
2011Chapters/2011Interconnect.pdf.

[34] A. Sridhar, A. Vincenzi, D. Atienza, and T. Brunschwiler,
“3d-ice: A compact thermal model for early-stage design of
liquid-cooled ics,” Computers, IEEE Transactions on, vol. 63,
no. 10, pp. 2576–2589, 2014.

[35] W. J. Song, S. Mukhopadhyay, and S. Yalamanchili, “Energy
introspector: A parallel, composable framework for integrated
power-reliability-thermal modeling for multicore architec-
tures,” in Performance Analysis of Systems and Software
(ISPASS), 2014 IEEE International Symposium on, pp. 143–
144, IEEE, 2014.

[36] Hybrid Memory Cube Consortium, “Hybrid memory cube
specification 2.0,” 2014.

392392

