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Abstract—Read alignment is a time-consuming step in genome
sequencing analysis. The most widely used software for read
alignment, BWA-MEM, and the recently published faster version
BWA-MEM2 are based on the seed-and-extend paradigm for
read alignment. The seeding step of read alignment is a major
bottleneck contributing ∼40% to the overall execution time of
BWA-MEM2 when aligning whole human genome reads from
the Platinum Genomes dataset. This is because both BWA-
MEM and BWA-MEM2 use a compressed index structure called
the FMD-Index, which results in high bandwidth requirements,
primarily due to its character-by-character processing of reads.
For instance, to seed each read (101 DNA base-pairs stored in
37.8 bytes), the FMD-Index solution in BWA-MEM2 requires
∼68.5 KB of index data.

We propose a novel indexing data structure named Enumer-
ated Radix Tree (ERT) and design a custom seeding accelerator
based on it. ERT improves bandwidth efficiency of BWA-MEM2
by 4.5× while guaranteeing 100% identical output to the original
software, and still fitting in 64 GB DRAM. Overall, the proposed
seeding accelerator implemented on AWS F1 FPGA (f1.4xlarge)
improves seeding throughput of BWA-MEM2 by 3.3×. When
combined with seed-extension accelerators, we observe a 2.1×
improvement in overall read alignment throughput over BWA-
MEM2. The software implementation of ERT is integrated into
BWA-MEM2 (ert branch: https://github.com/bwa-mem2/bwa-
mem2/tree/ert) and is open sourced for the benefit of the research
community.

Index Terms—Genomics, Sequence Alignment, Bioinformatics,
Computer Architecture.

I. INTRODUCTION

Genomics can transform precision health over the next

decade. A genome is essentially a long string of DNA base-

pairs (bp) A, G, C, and T (3 Giga bp for a human

genome). During primary analysis, a sequencing instrument

splits a DNA into billions of short (∼100 bp) strings called

reads. Secondary analysis aligns the reads to a reference

genome and determines genetic variants in the analyzed

genome compared to the reference. This work focuses on

This work was supported in part by Precision Health at the University of
Michigan, by the Kahn foundation, by the NSF under the CAREER-1652294
award and the Applications Driving Architectures (ADA) Research Center, a
JUMP Center co-sponsored by SRC and DARPA.

aligning short reads, since more than 70% of the direct-to-

consumer (DTC) genomics market is currently serviced by

Illumina short read sequencers [3], [4].

Read alignment is one of the major compute bottlenecks

in secondary analysis [5]. Every read needs to be aligned
to a position in the reference genome. Naively aligning by

matching a string to every possible position in the reference

genome is computationally intractable. Read aligners solve this

using seeding [40], [43], [47]. Seeding finds a set of candidate

locations (hits) in the reference genome where a read can

potentially align. Hits for a read are determined by finding

exact matches for its substrings (seeds) in the reference. The

seed-extension phase then uses approximate string matching

to select the hit with the best score as the read’s alignment

position. In addition to read alignment, seeding is also an

important kernel in several other sequencing applications:

metagenomics classification (e.g., Centrifuge [36]), de-novo

assembly [50] and read error correction [28].

Several studies in the past have designed efficient acceler-

ator solutions for seed-extension [13], [18], [25], [26], [32],

[51]. However, efficient accelerators for seeding are lacking

despite being a performance bottleneck in commonly used

read aligners [40], [43], [47]. For instance, seeding contributes

∼40% to the overall run time of state-of-the-art read aligner

BWA-MEM2 [47]. We focus on seeding in BWA-MEM2, as

it is the fastest available implementation of BWA-MEM [43],

widely used as part of the Broad Institute’s best practices

genomics pipeline [2].

The primary performance bottleneck in seeding is memory

bandwidth. This is because both BWA-MEM and BWA-

MEM2 use a compressed index structure called the FMD-

Index. When compared to BWA-MEM, BWA-MEM2 uses a

lower compression factor for the index to reduce memory

bandwidth requirements, but because of iterative processing

of each base-pair in a read it still has high bandwidth re-

quirements. Our experiments on real whole human genome

data show that each short read (with 101 base-pairs or 37.8

B, using 3-bits per bp) requires an average of 68.5 KB of
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data to seed. That is about 50.2 TB of data for the whole

genome. Furthermore, each of the index accesses tends to

touch a different part of the 10 GB index data-structure, and

exhibits little spatial or temporal locality.
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Fig. 1. (a) ERT improves bandwidth efficiency of FMD-Index based seeding
allowing for both software and hardware acceleration of BWA-MEM2. Note
that the x-axis is scaled linearly based on read / kB as in typical roofline
plots. We show kB / read in the figure for ease of explanation. (b) Trade-off
between index size and data required for seeding. Experiment performed on
Platinum Genome reads ERR194147 1

The memory bandwidth bottleneck can be understood using

the roofline plot shown in Figure 1 (a). The roofline is

the maximum performance achievable on a system with a

given peak bandwidth (e.g., peak memory bandwidth of 136

GB/s), for a given data efficiency (data required per analyzed

read) [54]. Based on the data requirements per read, to match

the throughput observed on an AWS CPU instance with

72 threads, FMD-index based accelerators for BWA-MEM2

would utilize about half of the peak memory bandwidth (blue

triangle). Hence, even an infinitely fast and parallel FMD-

index hardware accelerator cannot achieve more than 2.1×
speedup over the CPU instance due to its memory bandwidth

bottleneck (blue circle), unless the data requirements of the

seeding algorithm are reduced and/or the locality of the

seeding algorithm is improved. Existing hardware accelerators

for seeding [17], [20], [23] based on the FMD-Index are thus

all limited by this upper limit. To address these challenges, this

paper presents a novel data structure with 4.5× higher data

efficiency than BWA-MEM2 and an accompanying custom

accelerator architecture for seeding.

Data Structure Innovation. The highly compressed FMD-

index in BWA-MEM (4.3 GB for human genome) trades off

high memory bandwidth for small memory space. In contrast,

we propose a novel data structure for seeding that makes the

opposite trade-off: it trades off increased memory space for

reducing bandwidth required, while still fitting within a mod-

ern server’s main memory (64 GB) as shown in Figure 1 (b).

This design tradeoff is similar in spirit to that made in BWA-

MEM2 from Broad Institute and Intel (which uses a lower

compression factor for the FMD-index, resulting in a 10 GB

index), but our solution further improves bandwidth efficiency

by virtue of supporting multi-character lookup and exploiting

re-use opportunities present in the seeding algorithm. We refer

to our bandwidth-efficient data structure as Enumerated Radix

Trees (ERT).

Like the FMD-index, ERT enables variable length exact

match search functionality. But, unlike the FMD-index, it

avoids iterative lookup for every base-pair in a large structure.

It achieves this by coalescing all substrings in a reference

genome that start with the same k-mer (string of length k,

where k is less than the minimum length for a seed) together,

and representing them using a variant of a radix tree. As we

discuss later, ERT allows multiple consecutive base-pairs to be
matched with one lookup, and exhibits better spatial locality

than the FMD-index. ERT also helps reduce computation when
substrings within a read that need to be matched with the

reference overlap using a prefix encoded radix tree. ERT

increases data efficiency (data fetched per read) by 4.5× as

shown in Figure 1 (a). While it increases memory space

requirement to 62.1 GB (Figure 1 (b)), it can still fit well

within the main memory of modern servers.

Seeding Accelerator. While seeding is inherently a memory-

bound algorithm, a CPU implementation is still compute

bound because of the inefficiencies of general purpose process-

ing. GPUs are not well-suited because of significant memory

divergence during tree traversal. We observe that ERT’s in-

crease in bandwidth efficiency unlocks significant acceleration

potential as shown in roofline Figure 1 (a). An ideal ERT based

accelerator could achieve a speedup of ∼10× over BWA-

MEM2 seeding. To shift the problem to be more memory-

bound and exploit this acceleration potential, we design a cus-

tom seeding accelerator. The seeding accelerator leverages a

butterfly network to efficiently feed data to parallel specialized

seeding processors. Each seeding processor leverages light-

weight context switching to provide high compute density and

hide the long latency of DRAM accesses.

We also observe that a radix tree of a k-mer is frequently

re-used across multiple reads. However, typically several radix

trees need to be accessed to find seeds for a read, and their

aggregate size exceeds that of on-chip caches. As a result,

a radix tree usually gets evicted before it can be re-used,

resulting in a low hit rate in traditional caches. To expose

this latent temporal locality, we instead design our accelerator

to partition seeding into two phases. The first phase discovers

all the reads that need a radix tree (during so-called forward

extension). Then, the second phase fetches a tree once, and

processes all the reads that need it (for so-called backward

extension), thereby increasing ERT re-use by 2×.

Binary equivalent acceleration and FPGA demonstration.
Given its clinical relevance, we pay particular attention to

guaranteeing exact output as the original BWA-MEM2 soft-

ware. ERT-based seeding is bit equivalent and fully verified.

In summary, this paper makes the following contributions:

• We propose a novel seeding data structure called Enumer-

ated Radix Trees (ERT) that trades off increased memory

footprint for reducing memory bandwidth required for

seeding while still fitting within a modern server’s main

memory (64 GB).
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• We design a seeding accelerator to fully exploit the

improved data-efficiency provided by ERT. Our seed-

ing accelerator uses specialized seeding processors that

support fine-grained context switching to hide the long

latency of DRAM accesses while providing high compute

density and improving memory bandwidth utilization.

• We evaluate ERT on the GRCh38 human genome as-

sembly with 787,265,109 Illumina Platinum Genomes

101 bp single-ended reads. A software implementation

of ERT provides a 2.1× speedup over state-of-the-art

BWA-MEM2 seeding [47]. Our FPGA prototype of ERT

implemented on AWS F1 FPGA (f1.4xlarge) achieves

3.6 million reads/s, resulting in 3.3× higher seeding

throughput over 72-thread software BWA-MEM2. When

combined with seed-extension accelerators, we observe a

2.1× improvement in overall read alignment throughput

over BWA-MEM2.

• We open source the ERT software implementation for

the benefit of the research community. ERT-based seed-

ing is also integrated into BWA-MEM2 (ert branch:

https://github.com/bwa-mem2/bwa-mem2/tree/ert).

II. BACKGROUND AND MOTIVATION

Both the seeding and seed-extension steps of read alignment

are important candidates for acceleration. Seeding contributes

40% to the overall execution time of BWA-MEM2 1 and

seed-extension contributes 35%. The remaining steps include

chaining that groups nearby seeds in the reference (10%),

output creation (7%) and memory allocation overheads (8%).

A. Seeding Algorithm in BWA-MEM2

The seeding algorithm in BWA-MEM2 is based on iden-

tifying substrings in the read that have super-maximal exact

matches (SMEMs) with the reference genome [43] (Figure

2 (a)). A maximal exact match (MEM) is an exact match

between the read and the reference that cannot be extended in

either direction without encountering a mismatch. An SMEM

is a maximal length match (MEM) that is not fully contained in

any other MEM. Short matches lead to an excessive number of

hits to be verified by seed extensions, while longer matches can

lead to incorrect alignments. BWA-MEM only reports SMEMs

greater than a certain minimum length (e.g., 19), empirically

determined to be a good trade-off between performance and

accuracy.

Figure 2 (b) shows the two steps involved in determining

SMEMs for a sample read and reference pair.

(1) Forward search: For a given query position in the read

(e.g., pivot x0 in Figure 2), subsequent base pairs to its right

are looked up one at a time in a reference index (e.g., FMD-

index) to find the longest exact match in the forward direction.

The end position of the longest match becomes the next pivot.

During this step, all the positions in the read where there

is a change in the set of candidate reference locations (hits)

are marked (left extension points (LEP) in Figure 2 (b). for

1measured on the whole human genome dataset (ERR194147 1) consisting
of 787,265,109 reads of 101 bp length.
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Fig. 2. (a) Super-Maximal Exact Matches example. (b) Forward and backward
search to identify super-maximal exact matches (SMEMs).

substrings T, TC, TCA and TCAGTC). Only these positions

are used as the starting query positions to identify MEMs

that extend in the backward direction. Other positions are

guaranteed to produce MEMs that are contained within those

identified from LEP.

(2) Backward search: For each query position identified in

the previous forward search step as part of LEP (substrings T,

TC, TCA and TCAGTC), subsequent base pairs to its left are

looked up one at a time to find the longest exact match in the

backward direction. After this process, SMEMs are identified

by discarding MEMs fully contained in other longer matches.

In Figure 2 (b), CAATCTCA and ATCTCAGTC are reported as

SMEMs. The MEMs CAATCT and CAATCTC are discarded

because they are fully contained in another MEM CAATCTCA.

SMEMs obtained during seeding are assumed to be part of the

final alignment.

B. FMD-Index

To identify SMEMs and their locations in the reference

genome, BWA-MEM2 uses a highly compressed data structure

called the FMD-index [24], [42] which is built using both

strands of DNA. As shown in Figure 3 (a), the FMD-index

consists of: (1) the suffix array (SA), which contains the

locations of lexicographically sorted suffixes of the reference

genome R, (2) the Burrows Wheeler Transform (BWT), com-

puted as the last column of the cyclically sorted suffix array

of the reference, (3) the count table (C) which stores the

number of characters in R lexicographically smaller than a

given character c and (4) the occurrence table (Occ) which

stores the number of occurrences of a character up to a certain

index in the suffix array. Using the count and occurrence

tables, one can identify intervals (s and e) in the Burrows-

Wheeler matrix where a particular query string exists in the

reference by performing iterative lookups for each successive

character in the query as shown in Figure 3 (b).
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Fig. 3. (a) FM-index for reference R (b) Backward search using the FM-index.

C. FMD-index based seeding bottlenecks

The FMD-index allows the lookup of a query Q of length

N in a reference R using approximately O(N) memory oper-

ations. The BWA-MEM2 implementation of FMD-index uses

10 GB (6 GB occurrence table (8× compressed) + 4 GB suffix

array (8× compressed)) [47] compared to 4.3 GB in BWA-

MEM. Further decompressing the occurrence table and suffix

array of BWA-MEM2 is shown to only improve performance

slightly: 3–7% [47].

Starting from a single character in the read, the FMD-index

enables forward and backward MEM searches to determine the

number of hits of progressively longer substrings using at most

2 extra memory lookups per character. However, these memory

lookups touch different parts of a 10 GB data structure and

rarely exhibit spatial locality. This reduces the effectiveness

of caching in modern processors and leads to high memory

bandwidth requirements. Software implementations of the

FMD-index (e.g., BWA-MEM) have attempted to improve the

locality of MEM search in two ways. First, occurrence table

entries are typically co-located with portions of the BWT in

tightly packed cache-line aligned data structures to improve

the spatial locality of an index lookup. Second, backward

search passes for substrings sharing the same prefix (e.g., TC
and TCA in Figure 2 (b)) are performed in lock-step leading

to access of occurrence table data belonging to the same or

nearby cache lines [43], [56]. Despite these optimizations, our

experiments on real whole human genome reads (details in

Section V) show that FMD-index based seeding still has high

data requirements (i.e., each read can require ∼68.5 KB of

index data for seeding). Further, ∼40% cycles are spent in

core stalling for memory/cache.

FMD-Index based seeding also inherently involves sequen-

tial dependent memory accesses and its performance is limited

by memory access latency. We mitigate this problem using

hardware multiplexing, where one physical compute unit con-

text switches between different reads on a memory stall.

III. ENUMERATED RADIX TREES

A. ERT Design

1) K-mer Enumerated Index:

FMD-index stores a compressed representation of the set of

all suffixes that exist in the reference genome in lexicographic

order. We now consider a substring of length k in the read

(referred to as a k-mer). Due to natural genome variation and

sequencing errors, not all k-mers will exist in the reference

and, hence, in the FMD-index. Therefore, when looking up

a k-mer in the FMD-index, we must start with a 1-mer

and grow the string, character by character, for as long as

it exists in the FMD-index, or till we reach the desired k-

mer length. This iterative, character-by-character access to

the FMD-index substantially increases the required number of

DRAM accesses, creating a memory bottleneck. This is further

aggravated by the fact that accesses to the index rarely follow

lexicographic order, making it difficult to exploit locality over

such a large window (i.e., set of all suffixes of the k-mer).

To overcome these two limitations, we instead enumerate

all possible k-mers (whether they exist in the reference or

not) and store them in an index table. For each k-mer (an

index entry), we then store all its suffixes in the reference.

Since all possible k-mers are represented in the index, k
characters from the read can be looked up in a single memory

access, significantly reducing the number of DRAM accesses.

Furthermore, subsequent accesses to the suffixes of the k-mer

have much improved spatial locality, since they are co-located

together. LEP information for the k-mer, resulting from each

of the k single character lookups is pre-computed and stored in

the index table entry. Figure 4 shows an example index table

enumerating all 6-character substrings.

To choose k, we observe that BWA-MEM2 only reports

SMEMs greater than a certain minimum length (e.g., 19). This

is because shorter substrings lead to an excessive number of

hits to be verified by seed extensions. Thus k can be set to any

value less than 19. The higher we set it, the more characters

can be looked up at once, but it would require more space.

We choose k = 15 to keep the size of index table tractable

(O(4k)), i.e, 1 G entries when k = 15. Later, in section III-E

we discuss a solution to effectively increase k by selectively

using a multi-level index.

2) Customized Radix Tree:

The next question is how to store the suffixes of a k-mer

in an index entry, so that we can support MEM searches for

strings longer than k. One option is to augment the index table

with an FMD-index, and iteratively grow the k-mer prefix.

However, even within the subset of all suffixes sharing the

same k-mer prefix, FMD-index lookups have poor locality.

Also, they still operate with a single character at a time.

To overcome this problem, we observe that a radix tree can

naturally support multi-character lookups. This is because in a

radix tree, we can merge all singleton paths into a single node,

thereby addressing a multiple character lookup with a single

memory access. Figure 4 shows a radix tree for one k-mer

GACAGC in the index table (note radix is 4 for the genome

alphabet). The proposed ERT merges singleton paths (GC in

Figure 4) using variable-size internal nodes that store the full

singleton path string (designated as UNIFORM). A singleton

path is encountered when all paths in the tree from a certain

node onward share a common string.
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Fig. 4. Enumerated radix tree (ERT) example. ERT supports multi-character lookup using a multi-level index table and radix tree. Each index table entry
contains a Type field, k-1 bit LEP field (Section II) and a pointer field that indicates the address of the root node of a radix tree (not shown). Type can
be any of the following: (1) EMPTY: k-mer is absent in the reference. (2) LEAF: k-mer is unique (i.e., has the same suffix at all occurrences in the reference).
(3) TREE: k-mer exists in the reference and has a pointer to the root of the radix tree. (4) TABLE: k-mer has a large number (> 256) of unique suffix strings
in the reference. The index table entry for this k-mer points to a 2nd-level index table to succinctly represent these suffix strings. ERT represents a singleton
path using a variable-size internal node (UNIFORM) supporting multi-character lookup (5). If a singleton path ends in a leaf, it is truncated at its start with a
LEAF node that points to the reference genome (path compression), 6). Each path from the root to the leaf in ERT encodes a prefix of a sequence occurring
in the reference genome. To indicate absence of prefixes in the reference, ERT also includes EMPTY nodes (ending with $). UNIFORM nodes have only one
valid child branch for the prefix, while DIVERGE nodes have more than one.

Early Path Compression: To further improve the space-

efficiency of the ERT, we observe that a k-mer frequently

becomes unique in the reference genome as it increases in

length. This means that, past a certain length, a prefix is

followed by a single, unique suffix string in the reference

genome. This would introduce a UNIFORM node in the ERT

with a singleton string of characters (up to the length of the

read). To avoid storing this long string, we instead replace it

with a pointer to the occurrence of this string in the reference

genome. In Figure 4 we show how in the ERT, these nodes

are marked as leaf nodes, containing a single pointer. Leaf

nodes encountered during a MEM search are decompressed, by

fetching the full reference string corresponding to the reference

pointer stored at the leaf node. Note that the pointer in the

leaf node is required regardless of this compression technique

since it is necessary to indicate the location of the traversed k-

mer in the reference genome. Hence, it does not present any

storage overhead. Instead, this optimization results in ∼2×
space savings and was critical for being able to store the full

human genome in under 64 GB of storage, which is a common

configuration for servers.

3) ERT Construction and SMEM Operation:

The ERT k-mer index table and corresponding radix trees

are built by first enumerating all possible k-mers and then

querying a pre-built FMD-index of the reference genome

to grow the trees for each k-mer according to all existing

sequences in the reference. Each k-mer and ERT path from the

root to the leaf of the tree corresponds to a unique sequence

in the reference. The locations of these sequences are stored

as pointers at the leaves of the tree, as noted above. Note that

if a particular k-mer does not exist (referred to as EMPTY in

Figure 4), we do not store a pointer to an ERT tree since no

SMEM with length k < 19 is required. In our implementation

where k = 15, 38.8% of the index entries are empty. For an

EMPTY entry, we still compute the LEP bits corresponding

to the k-mer and store it in the index table, to indicate at

which positions along this k-mer a backward traversal must

be initiated.

The size of the ERT index depends both on the size and

the repetitiveness of the reference genome under study. We

empirically estimate the space occupied by the ERT index to

be ∼20 N bytes, where N is the size of the reference genome

in Giga base-pairs. For instance, the ERT index size for the

human genome is 62.1 GB (index table–8 GB; radix tree–

54.1 GB) and for the wheat genome (∼17 Giga bp) is 320

GB. ERT index construction is fast and takes ∼1 hr wall-

clock time for the human genome with 72-threads. Note that

ERT index construction is not a bottleneck, since it is done

only once per reference genome and reused across several read

alignment runs.

Once constructed, we can use the ERT to search for MEMs

according to the SMEM seeding algorithm (Section II-A). For

a given k-mer scanned from a read, based on the starting

position of the MEM, we do the following: (1) The index table

is looked up using the k-mer with a single DRAM access

( 1 – 4 in Figure 4). If an entry in the index table exists, the

root of the k-mer tree is also fetched with a second memory

access ( 5 ). (2) The branches in the k-mer tree are then

traversed according to the remaining base pairs in the read
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until a leaf node is encountered or an empty node is reached

(i.e., no further characters in the read match with strings

existing in the reference). (3) If a leaf node is reached, the

reference sequence corresponding to that leaf is fetched with a

DRAM access to determine the final characters matching with

the read ( 6 ). (4) If we reach a dead end (EMPTY node) in

the tree, we have found the end of the MEM. At this point, all

locations where this MEM exists in the reference (i.e., all leaf

nodes in the downstream sub-tree) are gathered using a depth-

first traversal, referred to as leaf gathering. (5) The index table

entry only contains the LEP bits for the k-mer. We compute

the LEP bits for the suffix of the k-mer as follows. Each time

a DIVERGE node is encountered during the traversal of an

ERT path, a bit is set in the LEP bitvector since this indicates

a hit set change, i.e., the hits are divided across the divergent

paths from that node. (6) After the depth-first sub-tree traversal

completes or in case the end of the read is reached, a backward

traversal is initiated for each LEP position along the traversed

path. The backward traversal operates in the same way as the

forward traversal by searching the same ERT data structure

for MEMs in the reverse complemented read. Note that bases

A and T and bases C and G are complements of each other.

B. Optimization: Prefix-Merged Radix Tree

The goal of prefix-merged radix trees is to re-use work

across MEM searches (forward or backward) from consecutive

positions in the read.
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Fig. 5. Merging radix-trees by adding prefix data at the leaf nodes allows
ERT to leverage prefix information to perform multiple MEM searches in a
single tree traversal.

Opportunity: In the seeding computation, the time spent

doing backward MEM searches is ∼2× that of forward search,

making it important to optimize this step. On average, we find

that there are ∼10 backward searches for each forward search

from a pivot. Also, it is common to observe searches from

adjacent query positions in the read (consecutive bits of LEP

are ’1’). Normally, these lead to multiple independent index

table lookups and tree traversals as shown in Figure 5.

Insight: In the unoptimized ERT, there exists a radix tree for

each k-mer that occurs in the reference, including adjacent,

sliding window k-mers (e.g., ATG and TGA). We recognize that

radix trees for adjacent k-mers contain redundant information

and that the information contained in one of the trees can be

reconstructed from the adjacent k-mer’s tree by storing prefix

information at each of its nodes. In the example shown in

Figure 5, a string ATGA, which is normally found by accessing

the ATG tree can be instead reconstructed from the TGA tree

by indicating the presence or absence of prefix character A in

each of the nodes of TGA’s tree.

The key observation is that with such a prefix-merged radix

tree, multiple backward searches (TGAxyz and ATGAxyz)

can be performed in a single index table lookup and tree
traversal by checking for prefix character matches at each

visited node. In Figure 5, when we reach the leaf node

represented by string TGAG, we can also match character A
from the read as a prefix, resulting in the MEM represented

as ATGAG. This reduces two MEM searches into one.

Design: Augmenting each of the nodes with prefix information

in order to merge k-mer trees takes up significant space

and offsets the benefit from merging trees. Therefore, in our

prefix optimized ERT, only leaf nodes are augmented with

prefix characters (2 bits per prefix character) found at the

corresponding reference positions (Figure 5). Storing prefix

information at the leaf nodes is sufficient as prefix information

at each of the internal nodes can be reconstructed by visiting

all of the leaf nodes in its corresponding sub-tree. We chose

a 1-character prefix at leaf nodes after observing that each

backward search on average matches ∼1 prefix character at

the leaf nodes. This resulted in 50% fewer backward searches.

The index table entry for k-mers with merged radix trees (e.g.,

ATG) contains a pointer to the adjacent k-mer’s tree (e.g., TGA,

not shown in figure). We also add a tree-present bit to each

k-mer entry to distinguish k-mers with/without merged radix

trees.

C. Optimization: Locality with K-mer Reuse

The goal is to increase the re-use of the index table entry

and the radix tree for a k-mer.

Opportunity: For a batch of 1000 reads, we observe that

∼45% index table and radix tree accesses from k-mers can

be re-used, with re-use improving slightly with larger batch

sizes. This is expected given the highly redundant nature of the

human genome and high coverage of sequenced reads needed

to correct sequencing errors (each position in the reference

genome can be covered by 30–50 reads on average). However,

typically several radix trees need to be accessed to find seeds

for a read, and their aggregate size exceeds that of on-chip

caches. As a result, a radix tree usually gets evicted before it

can be re-used, resulting in a low hit rate in traditional caches.

This problem can be mitigated if we can determine in advance

the set of k-mers for which a radix tree needs to be fetched

from DRAM.

Insight: The forward and backward search phases of the

SMEM algorithm need not be performed sequentially for

each read. Instead they can be decoupled to expose temporal

locality. More specifically, we can perform forward search for

a batch of reads, identify all the unique k-mers that are to be

used in backward search (using LEPs), fetch each radix tree

once for each unique k-mer and perform all backward searches
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Fig. 6. Phase 1) Perform forward extension for a batch of reads. Identify all k-mers required for backward extension (dashed lines) using LEP. Store k-mer
metadata (k-mer, read ID, start index) in a metadata table. Phase 2) Sort k-mers to bring backward extension tasks involving the same k-mer
together. Phase 3) Perform all backward extensions involving the same k-mer together to exploit locality. The ERT for each k-mer is fetched only once from
DRAM, reducing bandwidth requirements.

for that k-mer tree before moving to the next k-mer. We refer

to this technique as k-mer reuse.

Design: Figure 6 describes the steps to be performed to

leverage k-mer reuse. While processing the forward searches

for a batch of N reads, we store each backward search that

must be computed in a k-mer metadata table implemented

on-chip. Each backward search entry is composed of: (1) k-

mer starting from the backward search point in the read, (2)
the read ID in the batch, and (3) start position of backward

search in the read. Once all forward searches have been

completed for a batch of reads, we sort all entries in the

metadata table, grouping each required backward search by

k-mer. We then proceed one k-mer at a time and compute

all backward searches associated with a k-mer sequentially.

The first time a k-mer is encountered, we perform one index

table lookup, as well as fetch a portion of the k-mer’s tree

into an on-chip cache. Subsequent backward extensions then

consult this cache during tree walking, skipping two otherwise

mandatory DRAM accesses. We find that forward, backward

and sort phases of seeding take 26.4%, 67.6% and 6% time

respectively.

D. Optimization: Tiled Layout for Spatial Locality

Similar to [19], [35], the spatial locality of ERT accesses

can be improved by using a tiled layout for radix tree nodes

as shown in Figure 7. In this layout, sub-trees of nodes

that are likely to be accessed at the same time are clustered

together into a single cache block- or a DRAM page-sized

tile. Compared to breadth-first or depth-first layout of nodes,

the tiled layout guarantees at least log4(n+1) nodes accesses

per tile, where n is the number of nodes in the tile. With this

optimization, ERT traverses ∼3 nodes on average per 64 B,

utilizing 50% of the data it fetches from memory.

E. Optimization: Memory Space

Opportunity: Enumerating all k-character prefixes in the

index table can have prohibitive space overheads for large k.

For example, a 19-mer table has 419 entries, resulting in 2

TB of space, assuming 8 bytes per entry. However, the human

genome is not a random string of characters from the genome

�����������
	�
���

Fig. 7. Cache-friendly tiled data-layout for ERT.

alphabet. The repetitive nature of the human genome makes

the distribution of hits (or leaf nodes in the radix tree) for

different k-mers heavily skewed.
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Fig. 8. Figure showing skewed hit distribution for k-mers.

Insight: We leverage the skewed distribution of k-mers in the

human genome to design a multi-level index table. For a given

number of hits X, Figure 8 shows the number of k-mers in the

human genome that have hits > X. It can be seen that very

few k-mers (∼ 0.01%) have greater than 1000 hits. However,

these k-mers have dense radix trees, which can be compactly

represented using an index table as shown in Figure 8.

Design: Instead of enumerating all k-character prefixes for

large k, we decompose the index table into two levels (Figure 4

7 ), wherein the first level enumerates all k-mers and the

subsequent level enumerates all x-character suffixes for a

subset of k-mers (such that k + x = min. SMEM length). The

multi-level index table further extends the benefit of multi-

character lookup. While choosing a larger x helps reduce

tree traversal time, for the human genome we were able to
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accommodate up to x = 4 (fan-out = 256) for a subset of 15-

mer dense trees without increasing space overheads. Compared

to x = 1, x = 4 improves CPU performance by 10%. Since

most trees are shallow (83% of leaf nodes have depths <=
8), we did not explore more than two-levels or higher fan-out

for the internal nodes of ERT.

F. Optimization: Pruning Wasteful Backward Searches

Typically backward search is performed starting from each

query position where the set of candidate hits changes (as

given by the LEPs), in no particular order. However by

imposing an order for the backward searches, namely starting

from the rightmost query position where the hit set changes

and proceeding leftward, it is possible to prune out subsequent

backward searches as illustrated in Figure 9.
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Fig. 9. Pruning wasteful backward searches by performing backward searches
in right-to-left order

The forward pass partitions the read into multiple non-

overlapping MEMs. As a result, each backward search is

guaranteed to not produce a MEM that spans across multiple

pivots. If any backward search from position xj in the read

reaches the previous pivot xi−1, then backward searches ∀x,

where x < xj are guaranteed to produce MEMs that are

contained within that of xj and are redundant.

IV. SEEDING ACCELERATOR

A. Overview

The overall architecture of our seeding accelerator is shown

in Figure 10. The accelerator is composed of multiple par-

allel seeding machines connected to the available DRAM

channels using a crossbar network. Each seeding machine is

composed of a control processor that issues commands to

three types of processing elements. Each processing element

(PE) is provisioned with multiple lightweight contexts and

performs a sub-task associated with SMEM identification (i.e.

index table lookups, walking ERTs, and depth-first search

based leaf gathering). When a processing element issues a

memory request to the Data Fetcher–a rudimentary address

generation unit and memory controller– and a memory stall

occurs, the processing element immediately switches to a new

context. This fine-grained context switching greatly increases

compute density of each seeding machine and is essential

to an FPGA implementation with limited logic and routing

resources. When the memory request returns, its data is stored

in the corresponding PEs context memory and the context is

marked as ready.
Decoding radix-tree nodes to determine the next node while

traversing the ERT and control operations in the SMEM

algorithm are the most time consuming compute steps in

ERT-based seeding. Prior to designing custom functional units

for these steps, we explored the RISC-based Xilinx MicroB-

laze softcore. However, on the MicroBlaze, node decoding

resulted in 10–16× higher latency based on ERT node type

and required 1.7× higher LUTs and 3.2× higher flip-flops

compared to a custom node decoder. When the custom node

decoder is combined with a MicroBlaze-based controller, we

observed 7.3×–16.6× higher latency for implementing the

SMEM algorithm compared to a custom node decoder coupled

with a custom controller implementation.

B. Processing Elements

Index Fetcher: The Index Fetcher is responsible for initi-

ating a walk by converting a k-mer string to an index table

address and requesting the corresponding entry from the ERT

index table. These requests immediately trigger a context

switch, swapping out the current context until the requested

data is returned. If the path terminates at the index table

(entry type = EMPTY), the results are returned to the control

processor to determine how to proceed. If the radix tree for

that k-mer exists, the index fetcher issues a request for the

root of the radix tree.

Tree Walker: The Tree Walker is responsible for traversing

the ERT, decoding nodes, and reporting the end result of a

walk. Each node in the tree is decoded using the corresponding

base-pair in the read to calculate the next ERT node address.

If the Tree Walker ever detects that it needs more of the ERT

data structure to continue its traversal, it requests the data from

the Data Fetcher and triggers a context switch. During decode,

the Tree Walker computes the address of the next tree node

based on the types and content of existing child nodes and the

read characters or ends the traversal. Each ERT node takes

a variable number of cycles to decode depending on node

complexity. For example, UNIFORM nodes require an exact

match string comparison to compare each DNA base-pair in

the UNIFORM string with the read string. This comparison is

accomplished using parallel XOR gates and priority encoders

over three cycles. Leaf nodes that are “early path compressed”

also require string comparison hardware (Section III-A2). Im-

plementing these comparisons using custom parallel hardware

is an important feature of the specialized processor versus

implementation in software on a general purpose CPU.

Leaf Gatherer: If a tree walk hits an EMPTY node (i.e.,

match cannot be extended further) all remaining leaves in

the parent sub-tree must be gathered in order to identify all

possible reference locations of the current match. We refer

to this as Leaf Gathering, and accomplish it using depth-first

search (DFS) on the ERT sub-tree. This DFS is accomplished

by considering and decoding each base-pair (A,T,G,C) path

in the ERT and maintaining a stack of ERT node indices that

need to be explored. Nodes are decoded and traversed just as in

the Tree Walker, however, the Leaf Gatherer does not need to

perform string matching (required for early path compression

and UNIFORM nodes), and does not include string comparison

hardware.

395

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 06,2022 at 19:59:37 UTC from IEEE Xplore.  Restrictions apply. 



DRAM 
Channel 

0

Control Processor

Data Fetcher

AXI Read 
Channels

AXI W
rite 

Channels SMEM 
Result 4-Butterfly 

Network
4-Butterfly 
Network

SM SM SM SM SM SM SM SM

DRAM 
Channel 

1

DRAM 
Channel 

2

DRAM 
Channel 

N

TW 
0

TW 
1 IF 0 LG 0 LG 1

Tree Walkers Index 
Fetchers

Leaf 
GatherersTW 

2

Command
Queue

Context 
Memory

Context 
Memory

Seeding Machine 
(SM)

K-mer Reuse Cache

K-mer Reuse 
Table

Read 
Batch

K-mer 
Sorter

N:1 Arbiter

2:1 
Arbiter

2:1 
Arbiter

2:1 
Arbiter

2:1 
Arbiter

Context
Switch

Context
Switch

Context
Switch

Context
BRAM

/
URAM

Logic
K-mer 
Reuse 

Hardware
Read Id Position 

in read
Tree 

Offset Node Data LEPCurr. 
State

Fig. 10. Seeding Accelerator architecture. Each Tree Walker (TW) is responsible for scanning a read, walking ERT Trees, and computing candidate SMEMs.
Each Tree Walker can switch between multiple contexts to help hide memory latency. The Data Fetcher (DF) is responsible for serving ERT and reference
fetch requests to DRAM. The Control Processor (CP) coordinates read fetch, and k-mer reuse phases.

C. Control Processor

The SMEM search algorithm consists of several input-

dependent conditional branches that are hard to predict in

general-purpose processors. Our control processor overcomes

this by implementing the high-level algorithm for SMEM

search in hardware. For example, if a forward walk finishes,

the control processor looks at the start and end point, de-

termines the condition of the finished walk, and issues a

new command (e.g., get the leaves associated with the walk

if the walk produced an SMEM, or start a new backward

search if the walk failed to produce an SMEM) to the cor-

responding processing element command queue. To simplify

tree walking hardware, walker PEs do not have separate

hardware for forward or backward walks; the control processor

issues a forward or backward walk command by providing

a start index and the forward read (for forward searches)

or reverse complemented read (for backward searches). The

control processor maintains a queue of pending tree walks to

deal with variable tree traversal times and schedules walks

from other reads to ensure good compute utilization. Our

accelerator is designed to be flexible enough to also implement

other algorithms based on the FMD-index. This would require

adding new control FSMs to the Control Processor, while all

other hardware structures (index fetchers, tree walkers, leaf

gatherers, crossbar, and I/O) can be reused.

D. K-mer Reuse Metadata Storage and Sorting

In order to perform k-mer reuse (Section III-C, Figure 6), all

backward search LEPs for a forward match in a read must be

exported to the k-mer metadata table. Backward searches that

share the same k-mer are grouped together using the parallel

hardware sorter [49] to group entries for the same k-mer

(Phase 2 in Figure 6). We also implement a specially designed

cache structure–the k-mer reuse cache–to cache index table

lookups, ERT root node accesses, and other ERT accesses. It is

sized conservatively using high-coverage human reads (details

in Section V, Table III, batch size = 1000), taking into account

potential high-reuse use-cases e.g., high coverage input reads

and reads from other repetitive genomes like wheat. We saw

little reuse benefit from increasing batch size beyond 1000 and

reuse cache size beyond 4 MB. The k-mer reuse cache is also

direct-mapped. We settled on a direct mapped cache, since the

observed hit rate was within 1.2% of a fully-associative cache.

Since k-mer reuse forces the algorithm to generate MEMs out-

of-order for a particular read, we must also store all MEMs for

each read in intermediate on-chip storage, to perform MEM

containment checks and finally produce SMEMs in a final

reconciliation step.

E. System Integration and Programming API

1 /* Create batch of 2-bit encoded reads in host */
2 void encode(uint8_t* h_buf, char** reads, int* len);
3 /* PCIe DMA transfer of ’sz’ bytes from host buffer
4 to accelerator memory at offset d_off */
5 int writeData(uint8_t* h_buf, int sz, int d_off);
6 /* Write configuration register
7 on accelerator to begin processing batch */
8 int startCompute();
9 /* Read status register

10 on accelerator to determine completion */
11 int waitForFinish();
12 /* Read ’sz’ bytes from offset d_off
13 in accelerator memory to host buffer o_buf */
14 int readResult(uint8_t* o_buf, int d_off, int sz);

Listing 1. C Programming API for accelerator

Host-Accelerator Interface: We adopt a system configura-

tion similar to that in AWS EC2 F1, with both the host and

the accelerator having their own physical memories (DRAM).

We assume the existence of two communication channels

from the host to the accelerator, similar to the AWS-F1

shell interface; one for data transfer to/from the accelerator

custom logic (CL), for example, using 512-bit AXI-4 DMA

transactions (XDMA) on PCIe Gen3 ×16 links; and another

for issuing control commands and accessing memory-mapped

status registers using an interface such as the 32-bit AXI4-Lite

interface (OCL).
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Listing 1 shows the C API for programming our accelerator

which builds on the AWS FPGA management libraries. The

libraries include APIs for reading/writing large chunks of data

to the accelerator via PCIe DMA and handling interrupts.

Memory-mapped registers on the accelerator are used for con-

figuration and status monitoring. We also implement overflow

handling in the accelerator for reads with too many SMEMs

that overflow the on-chip MEM result buffers. Our accelerator

flushes these results into a designated overflow region in the

accelerator DRAM to be later processed in the host.

Runtime System: We extend the multi-threading model in

BWA-MEM to provide a separate worker thread, one each for

managing our seeding and optional seed extension accelerators

interfaced over PCIe. These worker threads communicate via

non-blocking producer-consumer queues.

The main CPU thread first allocates a buffer for the ERT-

index and copies it to the accelerators’ DRAM using XDMA

transactions. Reads are then pre-processed in a worker-CPU

thread which allocates a 64-byte buffer for each read, encodes

each base using 2-bits (reads with ambiguous bases such as

N are processed on the host) and copies the buffer to the

accelerators DRAM. This thread also acquires a lock to one

of the accelerator status registers using the OCL interface and

signals the accelerator to begin computation. It continues to

monitor the status of this register, till the accelerator updates

it with a done seeding command. At this point, another CPU

thread retrieves SMEMs from the accelerator DRAM using

XDMA transactions and processes any result-buffer overflows.

These SMEMs pass through a chaining step and can optionally

be processed similarly using a seed-extension accelerator.

We implement double buffering on our accelerator, so that

memory transfers to/from the accelerator over PCIe can be

overlapped with computation. Seeding results are encoded in

the same format as the baseline prior to chaining (i.e., (seed

start position in read, seed length, list of seed hits in the

reference genome)) to eliminate overheads due to additional

data structures for format conversion.

V. METHODOLOGY

Reference genome and input reads: ERT was built using

the latest build of the reference human genome assembly

(GRCh38) from the UCSC genome browser [33]. Decoy

contigs and mitochondrial DNA are filtered out and only chro-

mosomes 1-22, X and Y are used to build the ERT index. For

the input reads, we choose the single-ended Illumina Platinum

Genomes benchmark dataset (ERR194147_1.fastq) [22]

consisting of 787,265,109 reads of 101 bp length also used

in prior work [25]. Reads containing ambiguous base pairs

(non-A/C/G/T) are processed on the host-CPU and ambiguous

base pairs in the reference genome are converted to one of

the standard nucleotides (A/C/G/T) using the same procedure

as [43], [44].

Experimental Setup: We compare the software and FPGA/A-

SIC versions of ERT against BWA-MEM (v0.7.17 release) and

BWA-MEM2 (commit ebc2378) (refer Table II). ERT-PM

adds the prefix-merging optimization while ERT-KR includes

both prefix-merging and k-mer reuse. All software compar-

isons were performed on one of the best-available CPU in-

stances from AWS EC2, c5n.18xlarge running 72 threads.

BWA-MEM, BWA-MEM2 and software ERT scale well with

thread count, given sufficient memory bandwidth. The detailed

system configuration is shown in Table I. CPU power was

estimated using Intel’s RAPL interface. In software, the k-mer

reuse optimization resulted in a 1.2% slowdown over prefix-

merged ERT. This comes from the overheads of sorting k-mers

prior to backward search, maintaining backward searches by

k-mer in a metadata table and querying the software managed

k-mer reuse cache on each index table/tree access. All reported

results consider the three stages of seeding computation in

BWA-MEM2: SMEM generation, reseeding, and LAST. We

verified that our implementation produces identical seeds as

BWA-MEM2 for the complete Illumina Platinum genomes

dataset. To estimate the performance of different configura-

tions of ASIC-ERT, we developed a cycle-accurate model

using our software implementation and generated memory

traces from the corresponding software runs for a representa-

tive set of 1 million reads from ERR194147, containing ∼80

% perfect matching reads and ∼20 % non-perfect matching

reads similar to the full ERR194147 dataset. Ramulator [38]

(commit 7ce65d) was used to estimate performance and

DRAMPower [16] (commit 6c5ebe) was used to estimate

DRAM power and energy.

c5n.18xlarge Intel Xeon Platinum 8124M
(AWS EC2 instance) 3 GHz; 2 sockets; 36 cores; 72 threads

L1 I&D cache 18 x 32KB Instruction; 18 x 32KB Data
L2 cache 18 x 1MB
L3 cache 18 x 1.375MB
Memory 192 GB DRAM

TABLE I
BASELINE SYSTEM CONFIGURATIONS.

Configuration Description
CPU-BWA-MEM Baseline BWA-MEM: 72 threads

CPU-BWA-MEM2 Baseline BWA-MEM2: 72 threads

CPU-ERT Best configuration of ERT: 72 threads

ERT Baseline ERT

ERT-PM ERT with prefix merging

ERT-KR ERT with prefix merging and k-mer reuse

TABLE II
COMPARISON CANDIDATES FOR EVALUATION

ASIC Configuration, Synthesis, and Frequency: Our RTL

model for the seeding accelerator was synthesized using

Synopsis Design Compiler 2018.2, HPC 28nm process, LVT

standard cell library and 12t cells, at 1V (Table III). The

seeding processor achieves a 1.38 GHz clock frequency, and

is limited by the operating frequency of SRAMs used for

context memories. Each SRAM structure in our ASIC was

compiled separately: considering word size, number of words,

single/dual port requirement. TSMC’s 28nm memory compiler

is used for power/area estimation.

FPGA Prototype: We prototyped and verified our seeding

accelerator on Amazon’s EC2 F1 FPGA cloud environment.

We chose the f1.4xlarge instance with 2 FPGAs and

equivalent bandwidth as the CPU configuration (64 GB/s peak
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Component Configuration SRAM Area (mm2) Power (mW)
(total)

Seeding Machines Total 16× 2.72 MB 9.598 11,768.38

K-mer Sorter + Metadata Table 1× 8.26 MB 14.94 9,593.87

K-mer Reuse Cache 1× 4.02 MB 6.99 1,526.76

Seeding Accelerator Total — — 31.53 22,889.01

DRAM Power 8 channels — NA 2,185.7

Total System Power — — — 25,074.71

TABLE III
ASIC CONFIGURATION AND SYNTHESIS RESULTS.

Component Configuration LUT (%) BRAM (%) URAM (%)
Index FU 1 × 8 0.32 0 0

Walker FU 3 × 8 13.76 0 0

Leaf Gathering FU 2 × 8 3.36 0 0

Command Queues 0.72 KB x 8 1.92 6.08 0

Context Memories 17.6 KB x 8 0 15.04 3.28

Control Processors 1 × 8 0.56 0 0

Data Fetcher 1 × 8 3.68 0 0

SMEM Result Buffer 2.3 KB x 8 0 0 13.28

MISC. 1.12 0 0

Seeding Machines Total 1 × 8 24.72 21.12 16.56

K-mer Sorter — 1.95 0.3 26.77

K-mer Reuse Cache 4.01 MB 10.04 5 18.33

Seeding Accelerator Total 1 36.71 26.42 61.66

AWS Shell – 19.74 12.63 12.20

Total – 56.45 39.05 73.86

TABLE IV
PER-FPGA CONFIGURATION AND SYNTHESIS RESULTS.

bandwidth per FPGA). Each FPGA in the F1 instance is

a Xilinx XCVU9P with 2,586K logic cells, 36.1 Mbits of

Block RAM and 270 Mbits of UltraRAM. The accelerator

is implemented in System Verilog, placed-and-routed at 250

MHz. System configuration and synthesis results along with

the overheads of the AWS Shell interface are shown in

Table IV.

VI. RESULTS

Seeding Performance: Figure 11 shows the performance of

the seeding step expressed as Million reads/s across different

configurations. It can be seen that the software version of ERT

provides 2.1× speedup over the state-of-the-art BWA-MEM2

baseline running on 72 threads. This is because ERT greatly

reduces the amount of data fetched per read leveraging multi-

character lookup and optimizations for spatial locality.

Overall, ASIC-ERT achieves 8.1× improvement in seed-

ing throughput over multi-threaded BWA-MEM2. ASIC-ERT-

Baseline utilizes 256 contexts to saturate memory bandwidth

and achieves a 2.05× throughput improvement over the CPU-

version of ERT. Using prefix-merged radix trees, allows us to

reduce the number of backward extensions and further improve

throughput by 1.23×. By leveraging temporal locality in the

backward search pass, k-mer reuse further improves the overall

seeding throughput by 1.56×.

FPGA-ERT achieves a throughput of 3.6 Million reads/s

resulting in a speedup of 3.3× over baseline CPU BWA-

MEM2. Our FPGA-ERT prototype inherits some limitations

of the AWS FPGA-memory interface for ERT-style accesses,

not present in the ASIC configurations. For instance, we could

not customize the 3rd-party memory-controller IP to return

subsequent memory requests to the same DRAM page with

lower latency, unless AXI burst transactions with large burst

lengths (>64 B) were used. However, always using large burst-

length transactions for ERT accesses leads to data wastage.

Also, large burst lengths increase datapath complexity and

on-chip storage on the FPGA. By issuing 128 B requests

when possible, we observed ∼5–8 GB/s per-channel for ERT

accesses, although peak channel-bandwidth is 17 GB/s.
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Fig. 11. Seeding performance in Million reads/s.

Memory Access Characteristics: To further understand the

reasons for improvement in seeding throughput, we discuss the

memory access characteristics of different configurations. Fig-
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Fig. 12. (a) Memory requests per read (b) Data requirements per read (in
KB)

ure 12 shows the average number of memory requests and the

data fetched for BWA-MEM and the different configurations

of ERT. Compared to BWA-MEM (BWA-MEM2), ERT makes

6.7× (4.5×) fewer memory requests per read. This is because

ERT nodes are tightly packed into cache lines to improve

spatial locality. On average, ∼3 ERT nodes are traversed per

64 B, utilizing 50% of the data. Also, ERT-KR leverages the

k-mer reuse cache to further reduce the number of memory

requests by ∼2×. This leads to low data requirements per read

(15.1 KB).
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Fig. 13. DRAM page open breakdown for ERT-KR

Seeding Performance Breakdown and Efficiency: Fig-

ure 13 shows the distribution of DRAM page opens in ERT

for the different steps in seeding. Tree traversal and leaf

gathering only contribute to a small number of page opens

398

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 06,2022 at 19:59:37 UTC from IEEE Xplore.  Restrictions apply. 



indicating high spatial locality in these steps (15% and 5%

respectively). Furthermore, the multi-level index table in ERT

reduces the number of node traversals by allowing multi-

character lookups. In the baseline ERT, the penalty for index

table and radix tree root lookup must be paid for almost every

k-mer. Since these accesses are random, they contribute to

71% of the DRAM row buffer misses.
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Fig. 14. DRAM page opens per read across optimizations.

Figure 14 shows how prefix-merging and k-mer reuse can

be leveraged to reduce the number of row buffer misses in

each of these steps. Prefix-merged radix trees reduce the work

done during backward search and reduce index table lookups

by 24.4%, tree root lookups by 25.5% and tree traversal by

30.4%. In addition, k-mer reuse amortizes the cost of backward

searches across several k-mers and leverages temporal locality

using the k-mer reuse cache to reduce index table lookups by

37.9%, tree root lookups by 34.3% and tree traversal by 66.7%

compared to baseline ERT. Note that reference fetch to obtain

the complete strings stored at leaf nodes accounts for 9% and

incurs nearly the same cost for all three configurations. Since

k-mer reuse does not impose the right-to-left order for the

backward extensions of a given read it cannot take advantage

of the early termination of backward searches as described in

(Section III-F). This results in a slight increase in DRAM page

opens for leaf gathering over baseline ERT.

System Area Efficiency Energy Efficiency
(KReads/s/mm2) (Reads/mJ)

BWA-MEM (CPU) 0.38 2.89

BWA-MEM2 (CPU) 1.13 8.59

CPU-ERT (best.) 2.32 17.56

ASIC-GenAx [25] 24.23 379.16

ASIC-ERT (best.) 276.36 347.51

TABLE V
SEEDING EFFICIENCY.

Table V compares the area efficiency and energy efficiency

of CPU-BWA-MEM, CPU-BWA-MEM2, ASIC-GenAx [25]

and the best configuration for ASIC-ERT. ASIC-GenAx is a

recent sequence alignment accelerator that leverages CAM-

based intersections to perform seeding. When compared to

ASIC-GenAx [25] which use large on-chip SRAMs, ASIC-

ERT uses lightweight tree walker units and improves area

efficiency by 11.4×.

Overall Read Alignment Performance: To match the

seeding throughput of FPGA-ERT, we augment ERT with

8 seed-extension accelerator lanes from state-of-the-art seed-

extension accelerator SeedEx [26]. Each seed-extension ac-

System Instance Throughput
(Mreads/s)

BWA-MEM c5n.18xlarge 0.216

BWA-MEM2 c5n.18xlarge 0.43

FPGA-ERT (best.) + [26] f1.4xlarge 0.903

TABLE VI
OVERALL READ ALIGNMENT PERFORMANCE ON AWS EC2

celerator lane consists of 3 banded Smith-Waterman units

(each with 41 PEs, band-size=41) and 1 edit-distance

unit. Table VI compares the overall read alignment perfor-

mance of the software versions of BWA-MEM, BWA-MEM2

and our FPGA accelerated read alignment system. When

integrated into BWA-MEM2, our FPGA accelerated read-

alignment system provides 2.1× higher throughput compared

to the software version of BWA-MEM2. Table VII shows the

resource consumption of both the seeding and seed-extension

accelerators on one FPGA.

Component LUT (%) BRAM (%) URAM (%)
Seeding Accelerator Total 36.71 26.42 61.66

Seed-Extension Accelerator Total 17.32 2.38 0.68

AWS Shell 19.74 12.63 12.20

Total 73.77 41.43 74.54

TABLE VII
ESTIMATED PER-FPGA RESOURCE UTILIZATION FOR FPGA-ERT + [26]

VII. RELATED WORK

CPU-/GPU-based Seeding: FMD-index based seed-

ing [24], [42] involves many irregular memory accesses and

has been found to be bottlenecked by LLC and TLB misses on

CPUs [15], [58]. Prior work has explored reordering memory

accesses [58] and performing n-character lookups on an n-step

FMD-index [15] to improve the locality and data requirements

of FMD-index based seeding. However, these implementations

focus on exact-match search and do not natively support

SMEM computation.

Data-parallel architectures such as GPUs have also been

leveraged to accelerate FMD-index search [14] by virtue

of high available memory bandwidth and memory level

parallelism. However, ERT traversal is inherently not data-

parallel and causes significant memory divergence in GPU’s

SIMD units. When compared to GPU-based aligner SOAP3-

dp [45] which achieves 0.48 million reads/s on a Tesla V100

GPU, FPGA-ERT coupled with seed-extension accelerator,

SeedEx [26] can improve read alignment throughput by 1.9x×.

While this work focuses on FMD-index based seeding, there

exists a rich body of work that uses hash-tables for seeding [6],

[34], [56] and have optimized its cache behavior [29], [30].

However, hash-based seeding coupled with filtration algo-

rithms [9], [10], [37], [55] are less effective in FMD-index

mappers such as BWA-MEM that already produce fewer seeds

prior to seed-extension.

Read Alignment Accelerators: Seeding accelerators based on

the FMD-index use custom bit-wise operations to traverse the

index and improve memory parallelism [17], [20], [53]. How-

ever, these implementations soon hit the memory-bandwidth

roofline because of character-by-character processing of reads.

As a result, the performance of prior FMD-index based FPGA-

accelerated solutions for read alignment [7] are on par with
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BWA-MEM2 [47]. Several hardware accelerators have also

been proposed for read alignment [1], [11], [25], [46], [48],

[52]. For instance, Edico Genome’s FPGA-based DRAGEN

achieves 2.3 million reads/s on a f1.4xlarge instance.

But since the algorithms used are proprietary, and the output

produced is different from BWA-MEM, a direct comparison

is difficult. Our FPGA implementation of ERT maintains

binary equivalency with BWA-MEM and achieves 3.6 mil-

lion reads/s for seeding. ASIC-GenCache [48] is a recent

sequence alignment accelerator that improves upon ASIC-

GenAx [25] seeding by leveraging in-cache operations and

reduces redundant work using Bloom filters. When compared

to ASIC-GenAx [25] and ASIC-GenCache [48], ASIC-ERT

has 11.4× and 2.27× higher iso-area throughput respectively.

Darwin [52] is a recent work which demonstrates impressive

throughput for long read alignment. However this work fo-

cuses on short reads, since long read technology has higher

error rates and their seeding algorithms are still evolving.

Radix Tree Applications and Tree Traversal Accelera-
tion: When compared to conventional radix trees and suffix

trees [21]: (1) ERT eliminates long singleton-path tails and

is space-efficient (<64 GB for the human genome). (2) ERT

is customized for MEM-based seeding. For instance, ERT

encodes prefix information at leaf nodes to re-use work across

multiple tree traversals and exposes temporal locality for re-

using trees across a batch of reads. (3) ERT is asymmetric,

i.e., supports both forward and backward search by leveraging

the reverse complementary nature of reference DNA strands.

Radix trees have also found wide utility as a general-

purpose indexing structure for main-memory database sys-

tems. ERT leverages several optimizations used in modern

database indices [12], [39], [41] to accelerate tree traversal.

For instance, cache-line based sub-tree organization to improve

spatial locality [27], [35] and leaf node pointer elimination

(structural reduction [57]). ERT removes pointers to leaf nodes

and uses variable-width pointers (2–4 B) to reduce node size.

Internal node pointers are retained because ERT-nodes have

variable size. Tree-walking hardware in graph accelerators [8],

[31] may also be re-purposed to traverse ERT. However,

they cannot leverage all the locality opportunities specific to

ERT-based seeding. Our seeding accelerator features custom

hardware to support bandwidth-efficient SMEM computation

using ERT. For instance, we add hardware sorters and k-mer

reuse cache to take advantage of re-use across reads.

VIII. CONCLUSION

Seeding is an important bottleneck of industry standard

DNA alignment genomics pipelines. Current state-of-the-art

FMD-Index based seeding algorithms are bandwidth ineffi-

cient, and have little spatial or temporal locality. This paper

demonstrates a hardware-software co-design approach to ac-

celerate seeding by optimizing for memory bandwidth, rather

than memory capacity. The proposed seeding accelerator

implemented on AWS F1 cloud combined with state-of-the-

art seed extension accelerators can achieve 2.1× speedup over

BWA-MEM2 while maintaining binary compatibility. This

work can potentially serve as a case study for domain specific

acceleration of memory-bound algorithms.
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