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ABSTRACT
Near-memory processing (NMP) is a prospective paradigm
enabling memory-centric computing. By moving the com-
pute capability next to the main memory (DRAM modules),
it can fundamentally address the CPU-memory bandwidth
bottleneck and thus effectively improve the performance
of memory-constrained workloads. Using the personalized
recommendation system as a driving example, we devel-
oped a scalable, practical DIMM-based NMP solution tailor-
designed for accelerating the inference serving. Our solution
is demonstrated on a versatile FPGA-enabled NMP platform
called AxDIMM that allows rapid prototyping and evalua-
tion of NMP’s performance potential on real hardware un-
der a realistic system setting using industry-representative
recommendation framework. We experimentally validated
the performance of a two-ranked AxDIMM prototype which
achieves up to 1.89× speedup in latency and 31.6% mem-
ory energy saving for embedding operations. For end-to-end
recommendation inference serving, AxDIMM improves the
throughput up to 1.5× and latency-bounded throughput up to
1.77×, respectively.

1. INTRODUCTION
Personalized recommendation is a fundamental building

block of many internet services used by search engines, social
networks, online retail, and content streaming [1, 2, 3, 15].
Today’s personalized recommendation systems leverage deep
learning (DL) to maximize accuracy and deliver the best user
experiences [4, 6, 10, 13] These models also consume the
majority of the datacenter cycles spent on AI. In 2019, the
recommendation models collectively contribute to more than
80% of all AI inference cycles across Facebook’s production
datacenters [18].

To suggest personalized contents to individual users, generic
recommendation models are structured to take advantage of
both continuous (dense) and categorical (sparse) features.
The latter are captured by large embedding tables with sparse
lookup and pooling operations. These embedding operations
dominate the run-time of recommendation models and are
markedly distinct from other layer types in term of opera-
tional intensity, presenting unique challenges: First, while the
sparse lookup working set is comparatively small (MBs), the
irregular nature of the table indices exhibits poor predictabil-

ity, rendering typical prefetching and dataflow optimization
techniques ineffective. Second, the embedding tables are on
the order of tens to hundreds of GBs, overwhelming the af-
fordable capacity of on-chip memory. Finally, the operational
intensity of embedding operations is orders of magnitude
lower than that of the FC layers. This low intensity dwarfs
the full potential of custom hardware such as the specialized
datapaths and on-chip memories often found in CNN/RNN
accelerators. It suggests that unlike CNNs and RNNs, rec-
ommendation models exhibiting low compute-intensity and
little to no regularity [12, 18] are incompatible with existing
acceleration techniques that exploit regular, reusable dataflow
patterns and spatial locality. Given the volume of personal-
ized inferences and their rapid growth rate in datacenters, an
effort to improving performance of these predominant models
will render substantial impact.

To address these memory-bounded challenges, prior work
have proposed near-memory processing as a solution to ac-
celerate the embedding operations for DL-based recommen-
dation [12, 19]. However, much of these work are studied
with speculative simulation results, lacking rigorous exper-
imental evidence to support and demonstrate the potential
of such technology in real hardware. In this work, we intro-
duce AxDIMM , an FPGA-based prototyping platform that
can directly map near-memory processing capability onto
its programmable fabric using a DIMM-compatible interface
built on top of standard DRAM technology. Similar to prior
work, we focus on DDR4-based near-memory processing
at the DIMM and rank levels [5, 19] instead of resorting to
specialized 2.5D/3D integration processes (e.g. HBM) [9,11],
as the capacity needed for production-scale recommendation
models can easily reach hundreds of GB and requires the
adoption of commercial DDR DIMM devices at a low cost.

The proposed AxDIMM design exploits rank-level par-
allelism of the DRAM for a range of sparse embedding in-
ference operators. By performing local lookup and pooling
functions inside the specialized FPGA modules near mem-
ory, AxDIMM can effectively expose higher intra-DIMM
bandwidth and provide signficant performance and energy
benefits. Overall, AxDIMM leads to significant embedding
access latency speedup (1.71–1.89×) and memory energy
saving (31.6%), and improves end-to-end recommendation
inference throughput (1.2–1.5×) and reduces the tail-latency
(34.5–54.6%). With the reduced tail-latency, AxDIMM sys-
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tem improves the latency-bounded throughput up to 1.77×.
This work makes the following contributions:

• With its programmable FPGA fabric, AxDIMM pro-
vides a versatile platform for fast prototyping of near-
memory solutions. It supports both in-order general-
purpose processors and specialized accelerator modules.
It is lightweight and DDR4 DIMM-compatible.

• We develop the full software stack to carry out end-
to-end evaluation of industry-representative recommen-
dation workloads. AxDIMM can seamlessly integrate
with production inference serving framework to take
into account common datacenter practices and repre-
sentative production configurations.

• Our experimental results demonstrate that AxDIMM ac-
celerates the execution of a broad class of recommen-
dation models and provides up to 1.89× speedup and
31.6% memory energy savings for embedding opera-
tion. Overall, AxDIMM achieves up to 1.5× and 1.77×
end-to-end inference throughput and latency-bounded
throughput improvement.

2. BACKGROUND
This section describes the general architecture of DL-based

recommendation models with prominent sparse embedding
features and their performance bottlenecks. As a case study,
we conduct a thorough characterization of the Deep Learning
Recommendation Model (DLRM) released by Facebook [13].
The characterization illustrates the unique memory require-
ments and access behavior of production-scale recommenda-
tion models and justifies the proposed near-memory accelera-
tor architecture.

2.1 Overview of Recommendation Models
Personalized recommendation is the task of recommending

content to users based on their previous interactions and
predicted interests. For instance, video ranking (e.g., Netflix,
YouTube) recommends a small number of videos, out of
potentially millions, to each user. Thus, delivering accurate
recommendations in a timely and efficient manner is critical
to the business success.

Most modern recommendation models have an extremely
large feature set to capture a range of user behavior and
preferences. These features are typically separated out into
dense and sparse features. While dense features representing
continuous inputs in vectors and matrices are processed by
typical DNN layers (i.e., FC, CNN, RNN), sparse features for
categorical inputs are processed by indexing large embedding
tables [13, 18]. A general model architecture of DL-based
recommendation systems is captured in Figure 1(a). Similar
mixture of dense and sparse features are broadly observable
across many alternative recommendation models [4, 6, 14, 15,
20].

Embedding tables are organized as a set of potentially
millions of vectors. Their lookup and pooling operations rep-
resent sparse features learned during training and generally
exhibit Gather-Reduce pattern. Caffe2’s family of Sparse-
Lengths (SLS) operators are widely employed to carry out the
embedding operation in production-scale recommendation
applications. Our work aims to alleviate the performance
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Figure 1: (a)Simplified model architecture reflecting
production-scale recommendation models; (b) Parame-
ters of representative recommendation models.

bottleneck attributed to embedding operations and improve
system throughput by devising a novel NMP solution to of-
fload the SLS-family embedding operations used in a broad
class of recommendation systems.

2.2 DLRM Benchmark Case Study
We use the case study on Facebook’s DLRM benchmark [13]

to demonstrate the advantages of near-memory processing for
at-scale personalized recommendation models. As illustrated
in Figure 1(a), dense features in DLRM models are initially
processed by the BottomFC operators, while sparse input
features are processed through the embedding table lookups.
The output of these operators are combined and processed
by TopFC producing a prediction of click-through-rate of the
user-item pair.

This paper focuses on performance acceleration strategies
for two recommendation models representing two canoni-
cal classes of the models, RMC1 and RMC2 [18]. These
two recommendation model classes consume significant ma-
chine learning execution cycles at Facebook’s production
datacenter, with RMC1 over 29% and RMC2 over 31%. The
configuration parameters are shown in Figure 1(b). The dis-
tinguishing factor across these configurations is the number
of the embedding tables. RMC1 is a comparatively smaller
model with fewer embedding tables.

2.3 Performance Characterization
Detailed characterizations of the open-source, production-

scale DLRM benchmark have been performed in earlier
work [12, 18]. They quantify the potential benefits of near-
memory processing in accelerating recommendation infer-
ences and provide the intuition for co-designing the NMP
hardware with the algorithmic properties of recommendation
models.

A quantitative comparison of the raw compute and memory
access requirements is shown in Figure 2(a). Sparse embed-
ding operations, represented by SLS operator, consist of s
small sparse lookup into a large embedding table followed by
the element-wise summation of the embedding entries. So,
circular points in Figure 2(b) show the operational intensity
of SLS is orders of magnitude less than FC layers.

Applying the roofline model [16], it has been observed
that recommendation models typically lie in the memory
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saturation with increasing number of parallel SLS threads and batch sizes.

bandwidth-constrained region, within 35% of the theoretical
roofline performance bound [12]. Figure 2(b) presents the
roofline data points for the models, RMC1 and RMC2, as
well as their corresponding FC and SLS operators separately.
The SLS operator has low compute but higher memory re-
quirements; the FC portion of the model has higher compute
needs; and the combined model is in-between. With increas-
ing batch sizes, SLS has low and fixed operational intensity,
and FC moves from the region under the memory-bound
roofline to the compute-bound region. For the full model,
both RMC1 and RMC2 are located in the memory-bound
region, as the operational intensity is dominated by embed-
ding operations. It also reveals that, with increasing batch
size, the performance of SLS, as well as the entire RMC1 and
RMC2, is approaching the theoretical performance bound of
the system, and there is tiny room for further improvement
without increasing the system memory bandwidth.

It has also been shown experimentally that executing em-
bedding operations can saturate memory bandwidth of real
systems at high model- and data-parallelism [12]. Figure 2(c)
depicts the memory bandwidth consumption as the number
of parallel SLS threads (model-parallelism) is increased for
different batch sizes (data-parallelism). The green horizontal
line represents the ideal peak DRAM bandwidth (76.8 GB/s,
4-channel, DDR4-2400) and the red curve is an empirical
upper bound measured with Intel MLC [7]. The memory
bandwidth can easily be saturated by embedding operations
especially as both the batch size and the number of threads in-
crease. The memory bandwidth saturates at 51.8GB/s (batch
size = 256, number of SLS threads = 30) where 67.4% of
the available bandwidth is taken up by SLS. In practice, a
higher level of bandwidth saturation beyond this point be-
comes undesirable as memory latency starts to increase sig-
nificantly [8].

2.4 Related Work on NMP Architecture
Considering the unique memory characteristics and the

sparse, irregular access pattern of personalized recommen-
dation, a number of NMP solutions have recently been pro-
posed [12, 19] to accelerate the predominant embedding op-
erations. Using RecNMP as an example, these DIMM-based
NMP solutions often employ NMP processing unit (PU) at
DRAM rank-level, as shown in Figure 3. The hardware ar-
chitecture is minimally modified, locating inside buffer chip
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Figure 3: The hardware architecture of prior NMP ac-
celerators [12, 19]

on a DIMM module without requiring any change to the
commodity DRAM devices. The NMP PU performs the lo-
cal embedding lookup an pooling functions at memory-side,
producing the general Gather-Reduce execution pattern. The
embedding entries are fetched from the concurrently activated
ranks, which expands the aggregated memory bandwidth by
the number of ranks in the channel (rank-level parallelism).
The element-wise summation of the embedding entries is
performed inside the NMP PU, and the final pooling result
is transferred back to host. The data transfer energy is also
reduced, since the embedding entries are pooled inside the
NMP PU and only the final results transferred from memory
to host.

3. AXDIMM DESIGN
AxDIMM stands for accelerator DIMM and it is a DDR4-

compatible FPGA-based platform with standard memory in-
terfaces and compact footprint. With the programmable
FPGA fabric inside the buffer chip on the high capacity
DIMM, AxDIMM supports both in-order general-purpose
processor and specialized accelerator modules. By expanding
internal memory bandwidth with multi-rank parallel opera-
tions and reducing data movement energy through memory-
side data processing, AxDIMM can significantly improve the
performance and energy efficiency of the system, making it
an ideal prototyping platform for near-memory processing. It
can be easily integrated with the host through the standard
memory channel interface. In our recommendation appli-
cations, the FPGA module of AxDIMM is programmed to
instantiate domain-specific accelerators for the embedding
operations with gather-scatter pattern to facilitate the near-
memory acceleration of personalized recommendation.
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3.1 Hardware Architecture
As illustrated in Figure 4(a), the AxDIMM system is an

FPGA board with standard DIMM interface that serves as a
real-system near-memory processing implementation to ex-
ploit rank-level parallelism of its DDR4 memory modules
and accelerate embedding lookup and pooling operations.
Figure 4(b) present the detailed hardware architecture of the
FPGA module instantiated on the AxDIMM board. The inter-
nal DRAM ranks are activated in parallel to load embedding
entries and the element-wise summation is performed inside
the Rank-NMP modules. Two ranks (Rank-0 and Rank-1)
are shown in Figure 4(a) and (b). The final pooled results are
transferred to the host through the standard memory interface.

To support the interaction with the host, one DDR4 slave
PHY is instantiated to receive the DRAM commands and
NMP instructions from the host side. With two Rank-NMP
modules implemented to interface with the two internal ranks,
one AxDIMM can theoretically provide 2× memory band-
width expansion by exposing the internal memory interface.
The memory interface generator (MIG) supports the inter-
nal rank accesses between the Rank-NMP module and the
commodity DRAM devices.

The execution of Rank-NMP modules is supported in two
modes– non-acceleration mode and acceleration mode. In
the non-acceleration mode, the host can directly access the
end-point DRAM ranks, and AxDIMM functions in the same
way as a normal DDR4 DRAM DIMM. All accesses from the
host bypass the logic of the Rank-NMP modules. In the accel-
eration mode, NMP-instructions are issued by the host to per-
form the embedding lookup and pooling operation inside the
Rank-NMP modules and all the regular DRAM accesses from
the host are blocked internally. The communication between
the host and the Rank-NMP module is performed by normal
DDR read/write commands to offload the NMP-instructions
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and deliver the final results. As shown in Figure 4(c), each
64-bit NMP-instruction is compatible with the number of the
DQ pins of standard memory interface.

The Rank-NMP module is operates following the mecha-
nism of memory-mapped I/O (MMIO). The memory-mapped
configuration registers (CONF REG) are set by the host to
choose between the two execution mode of a Rank-NMP mod-
ule. The instruction buffer (INST BUF), a 256KB SRAM,
stores NMP-instructions from the host-side; and the partial
sum (Psum) buffer (PSUM BUF), also a 256KB SRAM,
holds the intermediate Psum values for embedding pooling
operations. To load the embedding and Psum vectors from
the DRAM devices and Psum buffer, the instruction decoder
loads and decodes NMP-instructions from the instruction
buffer. The command generator generates the data loading
commands to DRAM and Psum buffer to load the embedding
and Psum vectors. One DRAM read cycle bursts 64-byte
embedding data. The adder array contains 16 floating-point
(FP32) adders performing the vector element-wise summa-
tion of the loaded embedding entry and Psum vector.

3.2 Execution Flow
The execution flow of embedding operations between the

host and the AxDIMM is processed in the following three
steps: (1) initializing embedding tables, (2) offloading NMP-
instructions, (3) performing NMP operations and loading the
results.

First, all the embedding tables are initialized by the host in
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the non-acceleration mode. The embedding tables are written
into the DRAM with normal DRAM write commands with
no additional control required. Figure 5(a) shows the mem-
ory map of AxDIMM . The instruction buffer, the memory-
mapped configuration registers, and the Psum buffer are
placed at the top of each DRAM rank and exposed to the
host, followed by the embedding tables in the memory space.

Next, the Rank-NMP modules are configured to accelera-
tion mode by the host setting the configuration registers. The
NMP-instructions for one group of embedding pooling are
offloaded from the host by DDR write commands and stored
in the instruction buffer.

Then, the Rank-NMP performs the embedding lookup and
pooling operation and finally sends the results to the host. The
Rank-NMP internal operation is triggered by the host writing
the SLS execution register in the configuration registers. The
instruction decoder starts loading the NMP-instruction from
the instruction buffer and delivers to the command generator.
According to the NMP-instruction, the command generator
generates the DDR read commands to load the embedding
entry from the DRAM rank and load the Psumt vector from
the Psum buffer to its internal FP32 adder array. In one
cycle, 64 bytes of embedding and Psum data are loaded to
the adder array. The 16 FP32 adders perform element-wise
summation of the embedding and Psum vectors, and then
store the updated Psumt+1 back to the Psum buffer. The
host checks the execution status register to track the progress
of the embedding operations. When all the operations for
one group of embedding pooling are done, the host reads
the results from the Psum buffer with a normal DDR read
command.

3.3 Software Stack
To provide a seamless programming interface, the AxDIMM

software stack integrates the compatible AxDIMM Python
library at the user level and the device driver at the kernel
level to run recommendation workloads. As shown in Fig-
ure 6(a), the AxDIMM Python API is implemented at the
user level and supports embedding operations, replacing the
existing SLS operators in Caffe2. The AxDIMM library
binds the user virtual address to the kernel virtual address
for AxDIMM requests, generates the NMP-instructions, and
polls the embedding operation output and return results to
the recommendation model. The AxDIMM device driver
manages the memory allocation and maps the kernel virtual
address to the physical address.

The software stack enables a seamlessly integration of
AxDIMM with DeepRecSys [17], a production inference
framework. In Figure 6(b), the load generator models the
production query arrival rate and working set size patterns for
at-scale recommendation inference. The scheduler optimizes
the latency-bounded throughput for at-scale execution ex-
ploiting the data- and model-parallelism. To satisfy the strict
latency target set by the Service Level Agreement (SLA),
large queries are split to multiple sub-queries with smaller
batch sizes, and then the sub-queries are processed by parallel
inference threads. Same as [17], we adopt the hill-climbing
based scheduling policy to achieve the peak latency-bounded
throughput by tuning the batch size progressively. On the
AxDIMM system, the each main inference thread calls a
backend AxDIMM thread. The AxDIMM thread manages
the AxDIMM resources and handles the AxDIMM requests
from the inference threads by calling AxDIMM APIs.

Figure 6(c) shows the detailed SLS offloading flow dur-
ing recommendation inference. At beginning, the AxDIMM
memory region is reserved by the BIOS and excluded from
the kernel usage. The AxDIMM device driver maps the
physical addresses (PA) to kernel virtual addresses (VA) by
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Table 1: System Parameters and Configurations
Baseline System AxDIMM System

Processor 18 cores @ 1.2 GHz 18 cores @ 1.2 GHz

Memory Channel 4 RDIMM channels
@DDR4-800 Mbps

2 RDIMM channels
@DDR4-800 Mbps,
2 AxDIMM channels
@DDR4-800 Mbps,

DIMM Configuration 2 Ranks x8, 16 Gb
Density 64 GB (SLS) + 64 GB (OS + FC)

Memory Bandwidth
for SLS

2 channels
× 800 Mbps

2 channels ×
2 rank × 800 Mbps

memremap. During the initialization stage, the AxDIMM thread
calls AxDIMM API, ax.initialize_table, writing embedding
tables to a specified DRAM rank according to AxDIMM
address mapping and the AxDIMM library maps the kernel
VA to user VA by mmap. When the embedding initializa-
tion finished, the main inference thread calls AxDIMM API
ax.EmbeddingLookup to perform the embedding operation.
During the pre-processing stage, the NMP-instructions are
generated and offloaded to AxDIMM hardware. Then the
AxDIMM starts the embedding operation based on the of-
floaded NMP-Instruction. Finally, during the post-processing
stage, the results are polled from the AxDIMM to host, and
the main inference thread performs the execution of the fol-
lowing FC layers.

4. EXPERIMENTAL METHODOLOGY
To set up the experimental evaluation in real hardware, we

run production-scale recommendation models on the server-
class Broadwell CPU. This allows us to measure the impact
of accelerating embedding operations on AxDIMM for end-
to-end inference serving. Figure 7(a) and (b) show the base-
line system and the AxDIMM system used in our evaluation.
Both systems contain four memory channels. In the baseline
system, all the four memory channels are normal registered
DIMM (RDIMM), while in the AxDIMM system, two chan-
nels are normal RDIMM and two channels are AxDIMM .

On the AxDIMM system, the memory space of AxDIMM un-
der memory channel CH1 and CH3 is reserved for embedding
operations and separated from the main memory space. The
rest of the normal processes reside in the normal RDIMM
under CH0 and CH2. Similar to the AxDIMM system, CH0
and CH2 of normal RDIMM in the baseline system are also
allocated for the normal processes. CH1 and CH3, operated
also as normal RDIMM, are exclusively reserved for storing
embeddings.

Due to the internal timing constraints of the DDR IO buffer
in Xilinx XCZU19EG FPGA on AxDIMM , the overall sys-
tem speed was purposely slowed down to keep up with the
FPGA IO speed. If the DDR IO buffer is implemented with
ASIC as will be done in a real product, AxDIMM will op-
erate at the normal speed. As depicted in Table 1, we fixed
the IO speed of DDR4 interface of both the baseline and
the AxDIMM to 800 Mbps (1/3 of a normal DDR4 memory
channel). In commensurate with the memory channel speed
degradation, the CPU frequencies for both the baseline and
the AxDIMM are also lowered down from 3.2 GHz to 1.2
GHz, the minimum CPU frequency supported by Intel Xeon.

(a)

RDIMM

OS/FC/Others SLS Offload OS/FC/Others

HA0 HA1

CH1CH0 CH3 CH2

AxDIMM

OS/FC/Others SLS Offload OS/FC/Others

HA0 HA1

CH1CH0 CH3 CH2

(b)

(c)

Intel Broadwell Server

CH0: RDIMM

CH1: AxDIMM

Figure 7: (a) Baseline system configuration; (b)
AxDIMM system configuration; (c) Real-system config-
uration AxDIMM integrated with Intel Broadwell.

5. EVALUATION
This section presents a quantitative evaluation of AxDIMM .

We first evaluate the latency improvement and energy saving
of the offloaded SLS operators on AxDIMM system. Then, an
end-to-end evaluation of throughput, tail-latency and latency-
bounded throughput for the entire recommendation model is
present.

5.1 SLS Operator Speedup
Performance Gain. Since AxDIMM exploits the rank-

level parallelism, the memory bandwidth will be scaled lin-
early with the number of ranks under the memory chan-
nel. We validated the speedup of embedding operations
on AxDIMM from the expanded memory bandwidth. In
Figure 8(a), we sweep the size of memory footprint (0.08–
1.25 MB) of the SLS operator by batch size from 16 to 256.
The AxDIMM system achieves 1.71–1.89x latency speedup
by utilizing the doubled internal bandwidth of 2 ranks on
AxDIMM .

Energy Gain. Compared with the baseline system, the
AxDIMM system also demonstrates a significant memory en-
ergy saving by reducing the data movement between the host
and AxDIMM performing the embedding pooling in memory-
side. As shown in Figure 8(b), AxDIMM system achieves
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Figure 9: (a) Throughput, (b) tail-latency and (c) latency-
bounded throughput of RMC2 on baseline system and
AxDIMM system.

31.6% energy saving over the baseline system. In the baseline
system, illustrated in Figure 8(c), every loaded embedding en-
try must be transferred from the DRAM, via the long circuit
trace on the motherboard, back to the CPU. Worse yet, such
swarm of short-lived data will evict other useful data from
the cache hierarchy, destructing on-chip data locality. On the
contrary, in the AxDIMM system, embedding accesses and
their corresponding pooling operations are to be performed
directly inside the NMP modules at the memory-side. There-
fore, the host only needs to send the NMP-instructions, check
the register status, and read the result from the DRAM when
these operations are finished.

5.2 End-to-end Model Speedup
To evaluate the improvement of end-to-end recommenda-

tion inference, we measured the model-level throughput and
tail-latency with the integrated recommendation inference

serving framework [17] for RMC2 on baseline system and
AxDIMM system. With the accelerated embedding operation
on AxDIMM , in Figure 9(a), the AxDIMM system achieves
1.2–1.5× inference throughput improvement measured in
QPS (queries per second), and reduces the tail-latency (p95)
by 34.5–54.6% varying inference batch size from 16 to 256.

As a latency-critical service, the recommendation sys-
tems must satisfy strict SLA latency targets, therefore rec-
ommendation systems are optimized to achieve the high
latency-bounded throughput. The reduced inference latency
by AxDIMM system allows the inference scheduler tunes
the batch size to a higher level while still satisfying the la-
tency target. In Figure 9(c), we observed that the latency-
bounded throughput of RMC2 is improved by 1.39–1.77×
on AxDIMM system.

6. CONCLUSION
In this work, we present a versatile FPGA-based near-

memory processing prototyping platform called AxDIMM and
demonstrate its application in accelerating embedding pro-
cessing of personalized recommendation systems. Our mea-
surement results of a two-ranked AxDIMM achieve up to
1.89× latency speedup and 31.6% energy saving for embed-
ding operation. For the end-to-end recommendation infer-
ence, the inference serving throughput is improved up to 1.5×
and the tail-latency reduced up to 54.6%. With the reduced
tail-latency, AxDIMM system improves the latency-bounded
throughput up to 1.77×.
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