Hardware-Software Co-Design
for Brain-Computer Interfaces

loannis Karageorgos*, Karthik Sriram*, Ja'n Vesely *, Michael Wu
Marc Powell ,David Borton , Rajit Manohar , Abhishek Bhattacharjee

ISCA 2020

Presented by Cheng Xuan, 10.12.2020

QA W

ool BROWN

Yale University

Executive Summary

B Problem: Current implantable BCls (as chips) are realized with custom ASICs (ASIC: Application-specific integrated circuit)
and therefore treat only certain diseases or perform specific tasks in specific brain regions (one architecture for one task) => low flexibility

B Goal: Design a general-purpose architecture for implantable BCls which realizes multiple tasks by one common architecture with

low power consumption to satisfy safety constraint for implantable BCls

B Challenge: Keep power consumption low while the circuit becomes complex
B General Idea: Using the principles of hardware-software co-design to preprocess the algorithms before implementing them into hardware

B Key Mechanism: Refactor the underlying algorithm of each task into distinct pieces that realize different phases of the algorithm

and then implement each piece into distinct hardware block (Processing Element)

* For each supported task: Configure all necessary processing elements into pipeline to execute it

B Result: Realizes an extensible and general-purpose hardware architecture for low-power implantable BCls

Outline

 Background

* Problems
 Goals

« Key Mechanism
 Implementation
 Evaluation

e Strengths

* Weaknesses

e Discussion

Brain-Computer Interfaces (BCI)

* Direct pathway between the brain and an external device

 “From brain to computer” direction: Collects neuronal signal from neurons,

digitize and then process

 “From computer to brain” direction: Change behavior of neurons by:
1.Stimulating the neurons directly (rough way)
2.Translating digital signals to a format which can be understood by neurons

=> Control neurons precisely : bottleneck of BCI

4

Brain-Computer Interfaces (BClI)

WE 4\;“ S8 - Technology of BCI has gained more attention

ot ~BRAIN -
&2 ACT‘"TY * Used by over 160K patients worldwide

e Neuralink

- Neurotechnology company
- Founded by Elon Musk

Applications of BCI

 Treatment of neurological diseases

E.g., epilepsy, Parkinson’s disease, anxiety

 Support research of brain functions

* Repair of perceptions (Cochlear implant)

Realization of BCI

1. Headsets or electrodes placed on the scalp

Do not require surgical deployment (safe and beneficial to commercialization)

2. Implantable BCIs (as chips embedded in brain tissue)

* Need surgical deployment but enable BCI to record from and simulate large number of

neurons with high signal fidelity, spatial resolution, and in real time

Outline

 Background

* Problems
 Goals

« Key Mechanism
 Implementation
 Evaluation

e Strengths

* Weaknesses

e Discussion

Problem of BCI as headsets (Non-invasive)

BCIl as headsets do not satisfy the performance requirements for forward-looking BCI| applications

Because:
1. Collected signals are noisy and low resolution

2. Less ideal for real time processing of signals

Problem of BCI as headsets (Non-invasive)

BCIl as headsets do not satisfy the performance requirements for forward-looking BCI| applications

Because:
1. Collected signals are noisy and low resolution

2. Less ideal for real time processing of signals

For this reason, this paper focuses on implantable BCl }
and aims to improve it

10

Basic structure of implantable BCI

o[£

Logic Controller Radio

Stim/Amp ASIC Clock Wireless
Recovery Power

nnj|t3

—ﬁ

Basic structure of implantable BCI

o[£

Logic Controller Radio

Stim/Amp ASIC Clock Wireless
Recovery Power

|13

1. Sensors: record & stimulate neurons (read & write)

- # Channels determine how many neurons can be processed

12

Basic structure of implantable BCI

1. Sensors: record & stimulate neurons (read & write)

- # Channels determine how many neurons can be processed

Rx
D_ < ._Y 2. Analog front-end: amplify and digitize data from sensors

>

- Via ADCs
Controller Radio - Sample resolution determines quality of digitization
Clock Wireless - Sample frequency determines speed of digitization

Recovery Power

TUL

13

Basic structure of implantable BCI

1. Sensors: record & stimulate neurons (read & write)

- # Channels determine how many neurons can be processed

D_ _Y 2. Analog front-end: amplify and digitize data from sensors
- Via ADCs

Logic Controller Radio - Sample resolution determines quality of digitization

Stim/Amp ASIC Clock Wireless - Sample frequency determines speed of digitization
Recove Power
o= > <ADC -
> D 3. Communication links: change data with the outer world
ot | | | - Via RF link
<]
DAC

Sensor

!
—
—eq]
-

14

Basic structure of implantable BCI

1. Sensors: record & stimulate neurons (read & write)

- # Channels determine how many neurons can be processed

Rx
D_ é _Y 2. Analog front-end: amplify and digitize data from sensors
Tx

- Via ADCs
Logic Controller Radic - Sample resolution determines quality of digitization
Stim/Amp ASIC Clock ireless - Sample frequency determines speed of digitization
Recovery Power

3. Communication links: change data with the outer world
- Via RF link

E E {anc

U1

4. Power sources:

- Single-use non-rechargeable batteries

- Rechargeable batteries by using wireless powering

15

Problems of implantable BCIS

1. Safety constraint: Implantable BCls dissipate of power (FDA, FCC, and
IEEE guidelines)

2. Low flexibility: (Caused by safety constraint)

- BCls targeting large numbers of neurons: To keep the circuit simple, they are realized with custom ASICs
(treat only certain diseases or perform specific tasks in specific brain regions)

When we want to realize multiple tasks: Design ASIC for each task, and then:

1. Combine them into one chip: called monolithic ASIC and exceed power constraint in many cases

2. Put each ASIC into one chip : #tasks = #chips => impractical

- The few programmable BCls: Solves flexibility problem to a certain extent, but process only a limited

number of neurons to meet the low-power requirements => impractical by real application

16

Problems of implantable BCIS

1. Safety constraint: Implantable BCls dissipate of power (FDA, FCC, and
IEEE guidelines)

2. Low flexibility: (Caused by safety constraint)

n Y
-
.-

>

8
. 0) ’. -
‘A oN P,
\ N~
b y L ¢
.." y .
-
) N <l
. AU
.1’ 0 1)
R Y.
o

Flexibility and Performance: One of them as victim to satisfy power constraint f

‘g L e e wq /- D o —~ PR e ok - - I Prr e e ey e =S gz 2 P Py - R PP = o . . P oo - e e A = a]" o g ; = . ‘o e o 3 - - - Az~ T e Wl - o Sat 3 >a- e o, Lmrw) ~ e g = o 3 S . > - - - Al e .. o ~V’al .~ - PR - S o e S . 2 - o . ol el =~ S S - - . e g o a - o 5 cces v B\
2 e S A e B D S T S B e B R e T R B R A T e B R I N S S RPN o DS TS E o T
- o Lo . _ N o o n Y oy N SR ~ & N - F Y ia Ck - i “,' . L i ha . el g N e e e e A i ar § e i y-v;f,.\ - : e e L. v Ne-a” = ¥ ‘ L g VPR ST NS
. \J ¢ J U J. C 9 (J C 9 A JU (U C C C

2. Put each ASIC into one chip : #tasks = #chips => impractical

- The few BCls: Solves flexibility problem to a certain extent, but process only a

to meet the => Impractical by real application

17

Outline

 Background

* Problems
 Goals

« Key Mechanism
 Implementation
* Evaluation

e Strengths

« Weaknesses

e Discussion

18

Goals

Design a general-purpose architecture for implantable BCls

- Realize multiple tasks by one common architecture

- Also target large number of neurons with high sampling frequency and resolution

- No need to design ASIC individually for each task

While:

Meeting power constraint of 15-40mW (adequately low-power)

- For safe and chronic implantation in the brain

19

Hardware Architecture for Low-power BCIs

(HALO)

HALO & BCIS based on ASIC : Comparison

Medtronic Neuropace Aziz Chen Kassiri Neuralink NURIP HALO

[10] [106] 23] [37] [56] [74] [84]
Tasks Supported
Spike Detection X X X X X X X v
Compression X X v X X X X v
Seizure Prediction X v X v v X v v
Movement Intent v X X X X X X v
Encryption X X X X X X X v
Technical Capabilities
Programmable v Limited X Limited V X Limited
Read Channels 4 8 256 4 24 3072 32 96
Stimulation Channels 4 8 0 0 24 0 32 16
Sample Frequency (Hz) 250 250 5K 200 7.2K 18.6K 256 30K
Sample Resolution (bits) 10 10 8 10 - 10 16 16
Safety (<15mW) v v v X v X v v

21

HALO & BCIS based on ASIC : Comparison

e HALO can realize all listed tasks

Medtronic Neuropace Aziz Chen Kassiri Neuralink NURIP HALO

[10] [106] [23] [37] [56] [74] [84] - Configurable and flexible

/Tasks Supportea\ RN
Spike Detection X X X X X X X v
Compression X X v X X X X v
Seizure Prediction X v X v v X v v
Movement Intent v X X X X X X v

\F\ncryption X X X X X X X v
Technicat Capabilities ~—
Programmable v Limited X Limited V X Limited
Read Channels 4 8 256 4 24 3072 32 96
Stimulation Channels 4 8 0 0 24 0 32 16
Sample Frequency (Hz) 250 250 5K 200 7.2K 18.6K 256 30K
Sample Resolution (bits) 10 10 8 10 - 10 16 16

Safety (<15mW) v v v X v X v v

22

HALO & BCIS based on ASIC : Comparison

e HALO can realize all listed tasks

Medtronic Neuropace Aziz Chen Kassiri Neuralink NURIP HALO

[10] [106] [23]1 [371 [56] [74] [84] - Configurable and flexible
Tasks Supported
Spike Detection X X X X X X X v
Compression X X v X X X X v : :
Seizure Prediction) y s) Sy * HALO has high sample frequency & resolution
Movement Intent v X X X X X X v
Encryption X X X X X X X v
Technical Capabilities
Programmable v Limited X Limited V X Limited
Read Channels 4 8 256 4 24 3072 32 96
Stimulation Channels 4 8 0 0 24 0 32 16
_Samplie Frequency (Hz) 250 250 5K 200 7.2K 18.6K 256
—Sample Resolution (bits) 10 10 8 10 - 10 16

Safety (<15mW) v v v X v X v v

23

HALO & BCIS based on ASIC : Comparison

e HALO can realize all listed tasks

Medtronic Neuropace Aziz Chen Kassiri Neuralink NURIP HALO

[10] [106] [23]1 [371 [56] [74] [84] - Configurable and flexible

Tasks Supported

Spike Detection X X X X X X X v

Compression X X v X X X X v : :

Seizure Prediction) P x s) Ly * HALO has high sample frequency & resolution

Movement Intent v X X X X X X v

Encryption X X X X X X X v

Technical Capabilities . -

Programmable v Limited X Limited V X Limited V HALO meets Safety constraint

Read Channels 4 8 256 4 24 3072 32 96 :

Stimulation Channels 4 3 0 0 24 0 32 16 - Safe for chronic use

Sample Frequency (Hz) 250 250 5K 200 7.2K 18.6K 256 30K : : :

Sample Resolution (bits) 10 10 8 10 i 10 16 16 - While achieve the outstanding performance
—Safety (<15mW) v v v X v X v v =

—

—_— ——

24

HALO & BCIS based on ASIC : Comparison

Medtronic Neuropage Aziz Chen Kassiri Neuralink/ NURIR HALO
[10] [106] 23] [37] [56] [74] [84]

Tasks Supported | | |
Spike Detection X X X X X X X v
Compression X X v X X X X v
Seizure Prediction X v X v v X v v
Movement Intent v X X X X X X v
Encryption X X X X X X X v
Technical Capabilities - —
Programmable v lelted X Limited V X ante v
Read Channels 4 8 256 4 24 3072 32 96
Stimulation Channels 4 8 0 0 24 0 32 16
Sample Frequency (Hz) 250 250 5K 200 7.2K 18.6K 256 30K
Sample Resolution (bits) 10 10 8 10 - 10 16 16
Safety (<15mW v v v X v X v v

25

HALQO can realize all listed tasks

- Configurable and flexible

« HALO has high sample frequency & resolution

HALO meets safety constraint
- Safe for chronic use

- While achieve the outstanding performance

HALO & BCIS based on ASIC : Comparison

TN * HALO can realize all listed tasks
Medtronic Neuropace Aziz Chen Kassiri{ Neuralink| NURIP HALO
(10) [106] [23] [371 [56] _[74]) [84] - Configurable and flexible

Tasks Supported

Spike Detection X X X X X X X v
Compression X X v X X X X v : :
Seizure Prediction) P x s) Ly * HALO has high sample frequency & resolution
Movement Intent v X X X X X X v
Encryption X X X X X X X v
Technical Capabiliti :

S AP — — — « HALO meets safety constraint
Programmable v Limited X Limited V X Limited
Read Channels 4 8 256 4 24 ¢€:D 32 96 :

Stimulation Channels 4 8 0 0 24 ' 32 16 - Safe for chronic use

Sample Frequency (Hz) 250 250 5K 200 7.2K 18.6K 256 30K : : :

Sample Resolution (bits) 10 10 2 10] 10 16 16 - While achieve the outstanding performance

Safety (<15mW) v v v X v X v v

26

HALO & BCIS based on ASIC : Comparison

e HALO can realize all listed tasks

Medtronic Neuropace Aziz Chen Kassiri Neuralink NURIP HALO

[10] (1061 231 371 561 (741 [34] - Configurable and flexible
Tasks Supported
Spike Detection X X X X X X X v
Compression X X v X X X X v : :
Soizure Prediction) p v y) y . * HALO has high sample frequency & resolution
Movement Intent v X X X X X X v
Encryption X X X X X X X v

Technical Capabilities

 HALO meets safety constraint

Programmable v Limited X Limited V X Limited

Read Channels 4 8 256 4 24 3072 32 96 :

Stimulation Channels 4 8 0 0 24 0 32 16 - Safe for chronic use

Sample Frequency (Hz) 250 250 5K 200 7.2K 18.6K 256 30K : : :

Sample Resolution (bits) 10 10 2 10] 10 16 16 - While achieve the outstanding performance
Safety (<15mW) v v v X v X v v

HALO is comprehensive and outperforms existing BCls

27

Outline

 Background

* Problems
 Goals

« Key Mechanism
 Implementation
 Evaluation

e Strengths

* Weaknesses

e Discussion

28

Key Mechanism

. Seizure prediction, Movement intent, Spike detection
Encryption, Compression (LZ4, LZMA, DWT)

« Determine a list of tasks that we want to support by HALO

29

Key Mechanism

. Seizure prediction, Movement intent, Spike detection
Encryption, Compression (LZ4, LZMA, DWT)

« Determine a list of tasks that we want to support by HALO

 For each task: Refactor the underlying algorithm of it into
L distinct pieces that realize different phases of the algorithm
Algo Encryption: Algo LZ4 Algo DWT:
Begin Begin Begin
Sy o gt

30

Algo Encryption/ Algo LZ4:
Bei in Begin

One phase of algo l

If (x=0) {

}e'l 'S'é {

4

One “piece”

Seizure prediction, Movement intent, Spike detection
Encryption, Compression (LZ4, LZMA, DWT)

Key Mechanism

« Determine a list of tasks that we want to support by HALO

 For each task: Refactor the underlying algorithm of it into

distinct pieces that realize different phases of the algorithm

31

One phase of algo l

Algo Encryption;
Bei in

If (x=0) {

Jelse {

4

One “piece”
If (x=0) {
Jelse {

Algo LZ4.

Begin

Seizure prediction, Movement intent, Spike detection
Encryption, Compression (LZ4, LZMA, DWT)

data=input.get()

Key Mechanism

« Determine a list of tasks that we want to support by HALO

 For each task: Refactor the underlying algorithm of it into

distinct pieces that realize different phases of the algorithm

* |dentify shared pieces among algorithms

32

Key Mechanism

! Seizure prediction, Movement intent, Spike detection | ° Determine alist of tasks that we want to support by HALO

. Encryption, Compression (LZ4, LZMA, DWT) .

= '« For each task: Refactor the underlying algorithm of it into
One phase of algo L distinct pieces that realize different phases of the algorithm

Algo Encryptiof Algo LZ4: Algo DWT:

=, Begin « |dentify shared pieces among algorithms
e - > e .

Implement these pieces into distinct hardware blocks (PESs)

If (x=0) { While (y>0) { for(....{
}e'l's,'é co| 0 T
} } }

4

One “piece”

If (x=0) { While (....) {

telse { o,

} VU s : ar ,‘

{1 Level |

| Software {
! Level

33

data=input.get() : '

Compression
Movement Intent
Seizure Prediction
Spike Detection

One processing element

Key Mechanism

! Seizure prediction, Movement intent, Spike detection | ° Determine alist of tasks that we want to support by HALO

. Encryption, Compression (LZ4, LZMA, DWT) .

= '« For each task: Refactor the underlying algorithm of it into
One phase of algo L distinct pieces that realize different phases of the algorithm

* RC

Algo Encryptiof Algo LZ4: Algo DWT:

BeIin Begin Begin * ldentify shared pieces among algorithms

‘ Implement these pieces into distinct hardware blocks (PES)

[] Compression
| Movement Intent
I seizure Prediction

* Arrange all PEs together in a suitable way

RISC-V Microcontroller

If (x=0) { While (y>0) { for(....){ = Spike Deteton
el B . « Now for each (supported) task: controller chooses all
b Ty o required PEs and configure them into pipeline to execute it

4

One “piece”

If (X=0) { While () { data=input.get0 E : @D Compression
soo0 0 P o600 : 1 @3 Movement Intent
}else { ... : ' : — Seiure Prcicn
............... ' , @ Spike Detection
} . 0 i Software{ : { Hardware |

i Level {] Level |

One processing element
34

General Idea

While executing LZMA:

LIC

MA — RC

-l

—l

Compression

Movement Intent
I Seizure Prediction
[] Spike Detection
[] Encryption

RISC-V Microcontroller

@ Routing Switch

35

General Idea

While executing LZMA:

LIC

-l

. X— MA

Compression

Movement Intent
I Seizure Prediction
[] Spike Detection
[] Encryption

RISC-V Microcontroller

@ Routing Switch

36

LIC

MA — RC

-l

—l

RISC-V Microcontroller

General Idea

Compression

Movement Intent
I Seizure Prediction
[] Spike Detection
[] Encryption

While executing LZMA:

&

37

Routing Switch

MA

RC

General Idea

While executing LZMA:

LIC

. X— MA — RC

Compression

Movement Intent
I Seizure Prediction :
I spike Detection : ---mmom 1
B Encryption :

RISC-V Microcontroller

& Routing Switch (Optional)

38

Outline

 Background

* Problems
 Goals

« Key Mechanism
 Implementation
 Evaluation

e Strengths

* Weaknesses

e Discussion

39

ADC

ADC

ADC

ADC

MUX

Basic structure of HALO

REEEX.

INT

INT

INT

INT

AES

—-

RADIO

INT

RISC-V MICRO-CONTROLLER

Frequently used BCI tasks pipelines

Compression (LZ4):
Compression (LZMA):
Compression (DWT):
Movement Intent:
Encryption:

Spike Detection (NEO):
Spike Detection (DWT):

Seizure Prediction:

40

ADC - MUX - INT - LZ - LIC - [AES]

ADC - MUX - INT - LZ -~ MA - RC - [AES]

ADC - MUX - INT - DWT - TOK - MA - RC - [AES]
ADC - MUX = INT - FFT - THR - [GATE] - [AES]
ADC - MUX - GATE - AES

ADC - MUX - INT - NEO - THR - GATE - [AES]

ADC - MUX — DWT - THR - GATE - [AES]

)
)
)
)

&

secce P
- —
INT

Compression
Movement Intent

Seizure Prediction
Spike Detection

Routing Switch
Byte stream

Token Stream
Bit stream

Interleaver

ADC - MUX - INT - {FFT, XCOR, BBF} - SVM - THR -[GATE]- [AES]

ADC

ADC

ADC

ADC

MUX

Basic structure of HALO

INT

INT

INT

X

INT

AES

Rk«DIO

¢

INT

RISC-V MICRO-CONTROLLER

Fregfiently used BCI tasks pipelines

ompression (LZ4):
Compression (LZMA):
Compression (DWT):
Movement Intent:
Encryption:
Spike Detection (NEO):

Spike Detection (DWT):

) Compression
ADC MUX INT LZ LIC AES Movement Intent
- - oo - [AES] @ Seizure Prediction
ADC - MUX - INT - LZ -~ MA -~ RC - [AES]) Spike Detection
v Routing Switch
ADC — MUX - INT — DWT - TOK -~ MA - RC - [AES] XS
—» Byte stream
ADC - MUX = INT - FFT - THR - [GATE] - [AES] -t » Token Stream
- =p Bijt stream
ADC — MUX — GATE — AES | T |nter|eaver

ADC — MUX — INT -~ NEO — THR - GATE - [AES]
ADC - MUX — DWT - THR - GATE - [AES]

ADC - MUX - INT - {FFT, XCOR, BBF} - SVM _AHR -[GATE]- [AES]

For each BCI task :Controller assembles all required PEs for this task into pipelines to execute the task

41

Basic structure of HALO

For each BCI task :Controller assembles all required PEs for this task into pipelines to execute the task

Each single PE operates at:

) Compression
Q| INT Frequently used BCI tasks pipelines i
ADC > Compression (LZ4): ADC - MUX - INT - LZ - LIC - [AES] - Movement Intent
' - - T - @ Seizure Prediction
(X INT Compression (LZMA): ADC - MUX - INT - LZ - MA - RC - [AES] 3 Spike Detection
ADC —» Compression (DWT): ADC — MUX — INT — DWT - TOK — MA — RC - [AES] @ Routing Switch
—>®> INT —— Byte stream
MUX Movement Intent: ADC - MUX - INT - FFT - THR - [GATE] - [AES] = =e*** » Token Stream
- = Bit stream
ADC > (X)»{ INT AES |—={RADIO Encryption: ADC - MUX - GATE - AES INT| Interleaver
Spike Detection (NEO): ADC - MUX - INT -~ NEO - THR - GATE - [AES]
Spike Detection (DWT): ADC - MUX - DWT - THR - GATE - [AES]
ADC (—» 8 INT
RISC-V MICRO-CONTROLLER Seizure Prediction: ADC - MUX - INT - {FFT, XCOR, BBF} -~ SVM - THR - [GATE] - [AES]

 a frequency catered to its specific computational needs => reduces power consumption (while ASIC ran all logic at same frequency)

e private memory => cannot share large amounts of data (“Locality Refactoring ” by PE decomposition)

 adapter to communicate over the interconnect

=> PEs communicate with each other via lower-power circuit-switched network built on an asynchronous communication fabric

42

Basic structure of HALO

For each BCI task :Controller assembles all required PEs for this task into pipelines to execute the task

Each single PE operates at:

) Compression
_>®> Frequently used BCI tasks pipelines P
ADC —»> Compression (LZ4): ADC - MUX - INT - LZ -~ LIC - [AES &3 Movement intent
P ' - - oo - [AES] @ Seizure Prediction
X Compression (LZMA): ADC — MUX — INT — LZ — MA - RC - [AES] @3 Spike Detection
ADC (—» Compression (DWT): ADC — MUX — INT — DWT - TOK — MA — RC - [AES] @ Routing Switch
—— Byte stream
MUX & Movement Intent: ADC - MUX - INT - FFT - THR - [GATE] - [AES] = =e*** » Token Stream
- =p Bit stream
ADC X AES —»|RADIO Encryption: ADC - MUX - GATE - AES INT Interleaver
Spike Detection (NEO): ADC - MUX - INT -~ NEO - THR - GATE - [AES]
ADC Spike Detection (DWT): ADC - MUX - DWT - THR - GATE - [AES]
RISC-V MICRO-CONTROLLER Seizure Prediction: ADC - MUX - INT - {FFT, XCOR, BBF} -~ SVM - THR - [GATE] - [AES]

 a frequency catered to its specific computational needs => reduces power consumption (while ASIC ran all logic at same frequency)

e private memory => cannot share large amounts of data (“Locality Refactoring ” by PE decomposition)

 adapter to communicate over the interconnect

=> PEs communicate with each other via lower-power circuit-switched network built on an asynchronous communication fabric

RISC-V Micro-controller: Assembles PEs into pipelines for each task and interrupts PEs by power overshoot

43

PE decomposition

--

44

PE decomposition

--

Compression
Movement Intent

Seizure Prediction
Spike Detection

------1

 PE decomposition: Process that refactoring underlying algorithm of tasks into distinct pieces
and then implement pieces into distinct hardware blocks (Processing Elements)

« Complexity depends on how clearly separated the algorithmic phases are

45

PE decomposition: Example

LZMA: One algorithm to realize data compression
=> reduces radio transmission and useful for high-bandwidth brain interaction

Algorithm 1 LZMA pseudocode

1: function LZMA_COMPRESS_BLOCK(znput)
2: output = list(lzma_header);
while data = input.get() do
best_match = find best_match(data);

TObmatch = count(tablematch, beSt
/count_total(tablematch);
rl = range_encode(Probmatch);
output.push_back(rl);

: ncrement_counter(tablematch, best :
10: end while
11: return output,
12: end function

3:
4.
5:

46

PE decomposition: Example

#5,6
Algorithm 1 LZMA pseudocode N N
. , TABLE [SYM]
1: function LZMA_COMPRESS_BLOCK(znput)
. 2= SRR 2 A
2: output = list(lzma_header); A AL o2
3: while data = input.get() do | |
4: best_match = find best_match(data); 478 *
5: TObmatch = count(tablematch, beSt INT DIV

Low, high,

/count_total(tableqatch); range

i
rl = range_encode(Probmatch); P"Lb, —
output.push_back(rl);

: ncrement_counter(tablematch, best : it
10: end while 4o
11: return output; meﬁ?ng « sym
12: end function
1
T3 |4
ALU: + ALU: +, &
Initial Version: implement Algorithm line by line into hardware blocks STL(‘,RE |

-
TABLE [SYM], SUM

47

PE decomposition: Example

Algorithm 1 LZMA pseudocode

1: function LZMA_COMPRESS_BLOCK(znput)
2: output = list(lzma_header);
3: while data = input.get() do

4: best match = find_best_match(data);
<Z Probmatcn = count(tablemqatch, best_match) >
: /count_total(tableatch);
7: rl = range_encode(Probmatch);
8: output.push_back(rl);

0: increment_counter(tablematch, best_match);
10: end while

11: return output,

12: end function

/<

Line 5&6: use Markov (MA) chains to calculate the probability of the current input value

based on observed history (frequency table)

-
TABLE [SYM], SUM

48

#5,6
LOAD
TABLE [SYM]
I A |
ALU: +
N
H7,8 v [
INT DIV T
Y range
Prob
= B
ALU: +,<<, &
| | ou
#9
LOAD
TABLE [sym] | LM
P
ALU: + ALU: +, &
Yy l
STORE

PE decomposition: Example

Algorithm 1 LZMA pseudocode

1: function LZMA_COMPRESS_BLOCK(znput)
2: output = list(lzma_header);

3: while data = input.get() do
4: best_match = find_best_match(data);
5: Probmatcn = count(tablematch, best_match)
6: /count total(tableatcn);
q rl = range_encode(Probmatch); > M
: output.push_back(rl);
9: increment_counter(tablematch, best_match);
10: end while
11: return output,

12: end function

Line 7&8: try to pick more efficient encoding of the input signal based on the calculated
probability in the last step

49

#5,6
LOAD
TABLE [sym] |+ L >"™™
vy =y Y v
ALU: + ALU: +,&
ALV + -
,8 Y
INT DIV TS
Y range
Prob
s 2
ALU: +,<<, &
| | [o
#9
LOAD
TABLE [sym] | TL__>3YM
P |]
ALU: + ALU: +, &
Yy l
STORE

-
TABLE [SYM], SUM

PE decomposition: Example

Algorithm 1 LZMA pseudocode

1: function LZMA_COMPRESS_BLOCK(znput)

2: output = list(lzma_header);
3: while data = input.get() do
4: best_match = find_best_match(data);
5: Probmatch = count(tablematch, best_match)
6: /count_total(tablematch);
7: rl = range_encode(Probmatch);
8: output.push_back(rl);
O increment_counter(tablematch, best_maich];
10: end while
11: return output,

12: end function

N
#5,6
LOAD
TABLE [sym] |+ L_>"™
\AL:+ /' \ALU:+&/
#7,8 Y *
INT DIV o Tr
Y range
Prob

\ALU: +,<<,&/

1 1 Ou

Line 9: update frequency table

50

TABLE [SYM]

LOAD

1

Y

I

i
TABLE [SYM], SUM

STORE

\

PE decomposition: Example

#5,6 —~
Algorithm 1 LZMA pseudocode /r/on o N
. , TABLE [SYM]
1: function LZMA_COMPRESS_BLOCK(znput) < —)
2: output = list(lzma_header); NRh _+' 7
3: while data = input.get() do T
4: best_match = find_best_match(data); s *
5: Probmatcn = count(tablematch, best_match) INT DIV P
6: /count_total(tablematch); P' " range
7: rl = range_encode(Probmatch); — i
8: output.push_back(rl); NN/
9: increment_counter(tablemaqtch, best_match); P o
10: end while
11: return output; meLLgA[.?vM] -
12: end function

* Duplication of hardware component with similar / same functionality

 Line 5,6 & 9 share the same table, but they are separated into two PEs TABLES[;‘::; o
Since each PE has private memory=> unnecessary data movement

51

PE decomposition: Example

LZ

Algorithm 1 LZMA pseudocode

1: function LZMA_COMPRESS_BLOCK(znput)

2: output = list(lzma_header);

while data = input.get() do
best_match = find_best_match(data);
Probmatch = count(tablematch, best_match)

/count_total (tablematen);

rl = range_encode(Probmatch);
output.push_back(rl);

0- increment_counte’r(tablematch , best_match))

10: end while

11: return output,

12: end function

XIS ED

MA

LOAD

TABLE [SYM]

< SYM

1

i

Y

i}

ALU: +

STORE
TABLE [SYM], SUM

!

ALU: +,&

ALU: +

* Bring together phases that operate on the same data structures

» Separate the PEs => operate independently with minimal data movement

52

RC

Y

Y

INT DIV Low, high,
L range
Prob
—v ¥
ALU: +,<<,&

PE decomposition: Example

LOAD
TABLE [SYM]

Algorithm 1 LZMA pseudocode

1: function LZMA_COMPRESS_BLOCK(znput)
output = list(lzma_header);

1 l \ 4
l ALU: +,&

while data = input.get() do
best_match = find_best_match(data); ALU: + ;
Probmatch = count(tablematch, best_match) ' ALU: +
> STORE <

{ﬁwo\lcmn#—ww

[count_total (tabl Cmatch) ; BLE [SYM], SUM
rl = range_encode(Probmatch);
output.push_back(rl); RC ¥ ;
increment_counter(tablematch, best_match); — INT DIV Low, high,
10: end while p:,b range
11: return output; —y
12: end function ALU: +,<<,&

Green part: operations related to frequency table

53

PE decomposition: Example

LZ

MA
Algorithm 1 LZMA pseudocode e it SYM

1: function LZMA_COMPRESS_BLOCK(znput) | l

2: output = list(lzma_header); 1 _l \

3: while data = input.get() do ,l | i

4: best_match = find_best_match(data); ALY + R

5: Probmatch = count(tablematch, best_match) v ALU: +

6: / count_total(tablemmgﬁh); TABLE-“&S::L i

7. r1 = range_encode(Probmatch);

<8; output.push_back(rl); > i ;

9: increment_counter(tablematch, best_match); INT DIV Low, high,
10: end while — KNGS
11: return output, T
12: end function ALU: +,<<,&

Blue part: operations related to encoder state

54

Key Mechanism: Recap

Seizure prediction, Movement intent, Spike detection
Encryption, Compression (LZ4, LZMA, DWT)

55

Key Mechanism: Recap

Algorithm 1 LZMA pseudocode

1: function LZMA_COMPRESS_BLOCK(tnput)

2 output = list(lzma_header);

3 while data = input.get() do

4: best_match = find_best_match(data);

5: Probpmatch = count(tablematch, best_match)
6.
7
8

Spike detection
DWT)

Encryption, Compression (LZ4,

/count_total (tablematch);
rl = range_encode(Probmatch);
output.push_back(rl);

9: increment_counter(tablematch, best_match);
10: end while
11: return output;

12: end function

(D Choose LZMA task and its underlying algorithm to process at first

56

Key Mechanism: Recap

LZ

Algorithm 1 LZMA pseudocode
function LZMA_COMPRESS_BLOCK(tnput)

MA

Seizure prediction, Movement intent, Spike detection

output = list(lzma_header); LOAD

Encryption, Compression (LZ4, DWT)

I:

2:

3: while data = input.get() do @ TABLE [SYM]

4: best_match = find_best_match(data); / A l_I_l
5: @awh = count(tablematch, best_'r@ 1

6.

7

8

[count total (table_match); l _l ALU: +,&
v
+

@ : 'ﬁlran ge_encode(PTObmatch) >
. & t,’!,if] Qh_hﬂ ck L rl), ALU: +

9: <—_increment counter(tablematch, DeST_MALTED; v
10: end while o _ALU: +/

11: return output; TABLE [SYM], SUM -
12: end function
RC Y I
. . . . INT DIV Low, high,
(D Choose LZMA task and its underlying algorithm to process at first V B
Prob
@2 & @ Implement line 5,6,9 into processing element “MA” ‘—v P A
\ALU: #,<<,&/
@ Implement line 9 into processing element “RC”
3
\J

57

Key Mechanism: Recap

Algorithm 1 LZMA pseudocode

5\
Seizure prediction, Movement in Spike detection I: function LZMA_COMPRESS_BLOCK(input)
2: output = list(lzma_header); LOAD ’ e
: : 3: while data = input.get() do @ TABLE [SYM]
Encryption, Compression (LZ 4, DWT) 4 best_match = find_best_match(data); / \ ﬁ
5: match = count(tablematch, best_@ 1
6: dgj,nt total (table_match); l _l ALU: +,&
@ 7: =Tange_encode(PT00match); — \V |
8: wtpush bhack(rl): \ﬁ[;_.,./ ' i
9: <—_increment counter(tablematch, DeST_MALTED; N
10: end while S ORE _ALE/
11: return output; [SYM], SUM ~
12: end function /

Ny
Low, high,

(D Choose LZMA task and its underlying algorithm to process at first

range
& (3 Implement line 5,6,9 into processing element “MA” —
@ @ p p g \ALU:\J{«,&
@ Implement line 9 into processing element “RC” §
3

® & ® The resulting processing elements corresponds
to square blocks MA and RC in the figure @

1
]
]
]
]
1
]
]
]
]
]
]
]
]
]
]
]
]
1
]
]
]
1
]
]
]
]
]
]
1

Compression
Movement Intent

Seizure Prediction
Spike Detection

58

Key Mechanism: Recap

Encryption, Compression (LZ4,

RISC-V Microcontroller

Algorithm 1 LZMA pseudocode

function LZMA_COMPRESS_BLOCK(tnput)
output = list(lzma_header);

Spike detection
DWT)

[count_total(tablematch);

: =Tange_encode(PTrobmateh

. qlbgpjpa‘:qeh_hnrkL 'r(]): &)
9: <—_increment counter(tablematch, DeST_MALTED;
10: end while
11: return output;

12: end function

(D Choose LZMA task and its underlying algorithm to process at first
@2 & @ Implement line 5,6,9 into processing element “MA”
@ Implement line 9 into processing element “RC”

® & ® The resulting processing elements corresponds
to square blocks MA and RC in the figure

(@ Arrange the resulting PEs together and get the final architecture

1:

2:

3: while data = input.get() do @

4: best_match = find_best_match(data); /
5: match = count(tablematch, DEST

e < o (i

7

8

LOAD
TABLE [SYM]

STORE
[SYM], SUM

1
]
]
]
]
1
]
]
]
]
]
]
]
]
]
]
]
]
1
]
]
]
1
]
]
]
]
]
]
1

|| Compression
[] Movement Intent :
I Seizure Prediction

[] Spike Detection 59

[] Encryption

Compression
Movement Intent

Seizure Prediction
Spike Detection

Encryption, Compression (

While executing LZMA:

-

MA

Routing Switch

(Optional)

RISC-V Microcontroller

Algorithm 1 LZMA pseudocode

function LZMA_COMPRESS_BLOCK(tnput)
output = list(lzma_header);
while data = input.get() do
best_match = find_best_match(data);

Spike detection
DWT)

[count_total(tablematch);

: =Tange_encode(PTrobmateh

. qlbgpjpa‘:qeh_hnrkL 'r(]): ")
9: <——_ancrement_counter(tablematch, DeST_MALTE;
10: end while
11: return output;

12: end function

(D Choose LZMA task and its underlying algorithm to process at first
@2 & @ Implement line 5,6,9 into processing element “MA”
@ Implement line 9 into processing element “RC”

® & ® The resulting processing elements corresponds
to square blocks MA and RC in the figure

(@ Arrange the resulting PEs together and get the final architecture

When executing LZMA: configure the corresponding pipeline

Key Mechanism: Recap

1:

2:

o

: /
5: dmatch = count(tablematch, best@

6.

7

8

LOAD
TABLE [SYM]

STORE
[SYM], SUM

1
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
1

|| Compression

[] Movement Intent :
I Seizure Prediction

[] Spike Detection 60

[] Encryption

Compression
Movement Intent

Seizure Prediction
Spike Detection

Optimization of Processing elements

* Optimization in software level

* Does not change output

Optimization of Processing elements

* Optimization in software level
* Does not change output

Algorithm 2 XCOR naive implementation

1: function XCOR(nput, output)

2: // channel[][] stores input in appropriate channel location
3 channel|channel_num][sample_num| = input

4. // Calculate correlation

5: if channel. filled() then

6 for each ¢, 5 € channels do

7
8

Example:

data_1 = 0
: for each data € channel[i] do
9: data_i+ = data
10: end for
11: data_j3 =0
12: for Kk € [LAG,SIZE)]| do
13: data_j+ = channel[j]|k]
14: end for
15: avg_i = data_i/SIZE
16: avg_j = data_j/SIZE
17: output.push_back(avg_i,avg_j)
18: end for
19: return output;
20: end if

21: end function

62

Optimization of Processing elements

* Optimization in software level
* Does not change output

Algorithm 2 XCOR naive implementation

—fanction XCOR(input, output)
2: // channel[][] stores input in appropriate channel location
3 channel|channel_num][sample_num| = input
4. // Calculate correlation

* Process data in blocks instead of samples

if channel.filled() then
Examp|e: : o eaﬁfz, .) e s - Wait for all inputs in the block to arrive
7 data_1 =0
8: for each data € channel[i] do
9: data_i+ = data
10: end for
11: data_j3 =0
12: for k € [LAG,SIZE]| do
13: data_j+ = channel[j]|k]
14: end for
15: avg_i = data_i/SIZE
16: avg_j = data_j/SIZE
17: output.push_back(avg_i,avg_j)
18: end for
19: return output;
20: end if

21: end function

63

Optimization of Processing elements

* Optimization in software level
* Does not change output

Algorithm 2 XCOR naive implementation

function XCOR(znput, output) | | e Process data in blocks instead of samples
// channel[][] stores input in appropriate channel location

1:

2

3 channel|channel_num][sample_num| = input
4: // Calculate correlation
5.

6

nnel. filled()

for each 7,5 € channels

data_1 =0

for each data € channel[i] do
data_i+ = data

 Wait for all inputs in the block to arrive

Example:

10: end for * When all inputs arrive, computation occurs in a burst
11: data_j3 =0

12: for Kk € [LAG,SIZE)]| do

13: data_j+ = channel|j][k]

14: end for . .

15: avg_i = data_i/SIZE * Requires large buffers to sink the bursts,

16: avg_j = data_j/SIZE -

17: output.push_back(avg_i,avg_j) or high PE frequency

end for
return output,

64

Optimization of Processing elements

* Optimization in software level

* Does not change output

Example

Algorithm 3 XCOR spatial programming refactoring

1: function XCOR(nput, output)

2:

XN ED

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

// channel[][] stores input in appropriate channel location
channel|channel_num/|[sample_num| = input
// data[] stores sums of input received so far
data|count|+ = input
// data_lag[] stores sums of input till LAG
if count_2 == LAG then
data_lag|count] = data|count]
end if
// Finish correlation computation
if channel. filled() then
for each i, 5 € channels do
avg_t = datali|/SIZE
avg_j = (datalj] — data_lag|j])/SIZE
output.push_back(avg_i,avg_j)
end for
return output

end if

19: end function

65

Optimization: avoid the bursty computation

Optimization of Processing elements

* Optimization in software level
* Does not change output

Algorithm 3 XCOR spatial programming refactoring

l: function XCOR(input, output) | | Optimization: avoid the bursty computation
2: // channel[][] stores input in appropriate channel location

3: channel|channel_num/|[sample_num| = input

4 /] sums oI inpu '

data|count|+ = input
// data_lag[] stores sums of input till LAG
if count 2 == LAG then

a_lag|count| = data|count]

Example:

« Complete part of computation while reading inputs

9 end if

10: // Finish correlation computation

11: if channel. filled() then

12: for each i, 5 € channels do

13: avg_i = datali|/SIZE

14: avg_j = (datalj] — data_lag|j])/SIZE
15: output.push_back(avg_i,avg_j)

16: end for

17: return output

18: end if

19: end function

66

Optimization of Processing elements

* Optimization in software level
* Does not change output

Algorithm 3 XCOR spatial programming refactoring

function XCOR(input, output) | | Optimization: avoid the bursty computation
; // channel[][] stores input in appropriate channel location

1:

2

3: channel|channel_num/|[sample_num| = input

4: // data[] stores sums of input received so far
Exam ple: 5: data|count|+ = input
6:
7:
8

// data_lag[] stores sums of input till LAG « Complete part of computation while reading inputs
if count 2 == LAG then

: data_lag|count] = data|count]
9: end if

10: // Finish correlation computation Amount of computation needed in the final step is reduced
11: if nel. filled() then

for each i, 5 € channels do
avg_t = datali|/SIZE
: avg_j = (datalj] — data_lag|j])/SIZE
15: output.push_back(avg_i,avg_j)
' end for
return output
end if
ction

12;
. « Power savings of 2.2x over the original algorithm

67

Optimization of Processing elements

* Adapting the precision => reduce power consumption significantly while causing slight error

Example:

- Unnecessary high resolution by some of the signal processing algorithms (32 bit integers)

- Replace floating point arithmetic with fixed point arithmetic (e.g. in BBF PE)

- Results in only < 0.1% increase in relative error and an order of magnitude reduction in power

68

Outline

 Background

* Problems
 Goals

« Key Mechanism
 Implementation
* Evaluation

e Strengths

* Weaknesses

e Discussion

69

3

o
N
|

Total Power (mW)
=
o

HALO versus RISC-V and monolithic ASICs

— 12mW budget 1 HALO B HALO-no-NoC
[1 RISC-V B Monolithic-ASIC
64 Core
32 Core

8 Core 64 core

|64 core 64 Core

HALO can satisfy the constraint (red line) for all tasks

Move Intent

-
N
=
—
Q.
S
O
O

Seizure Pred

<
=
N
=
—
S
&
o
O

Spike Det (NEO)
Spike Det (DWT)
Compr (DWTMA)

Encrypt (Raw)

70

Power Analysis of HALO

PE Freq Logic (mW) Mem (mW) otal| Area
(MHz) Leak Dyn Leak Dyn mW) (KGE)
LZ 129 0.055 1.455 0.095 1.466 3.071 55
LIC 22.5 0.057 0.267 0.006 0.046 0.376 25
MA 92 0.127 2.148 0.067 0997 3.339 66
RC 90 0.029 0.763 0 0 0.792 12
DWT 3 0.004 0.002 O 0 0.006 2
NEO 3 0.012 0.003 O 0 0015 5
FFT 15.7 0.057 0.509 0.085 0.356 1.007 22
XCOR 85 0.07 4.182 0307 0.053 4612 81
BBF 6 0.066 0.034 0 0 0.1 23
SVM 3 0.018 0.018 0.081 0.033 0.15 8
THR 16 0.002 0.011 O 0 0013 1
GATE 5 0.003 0.006 0.067 0.054 0.13 17
AES 5 0.053 0.059 O 0 0.112 34
Tasks
Compr (LZ4) 0.112 1.722 0.101 1.512 3.447 80
Compr (LZMA) > 0211 4366 0.122 2.463 133
Compr (DWTMA) 0.16 2913 0.0123 0.33 3415 80
Seizure Prediction> 0.216 4.760 0.54 0.496 111
Spike Det (NEO) 0.017 0.02 0.067 0.054 0.158 24
Spike Det (DWT) 0.009 0.019 0.067 0.054 0.1499 20
Movement Intent 0.062 0.526 0.152 041 1.15 40
Encrypt (Raw) 0.053 0.059 O 0 0.112 34
RISC-V Control,; 25 0.341 0.137 0.248 1.080 1.800 70

/1

Power Analysis of HALO

G /Freqx Logic mW) Mem (mW) Total Area
/{\ Leak MDyn, Leak MDyn, (mW) (KGE)
LZ 129 0.055 / 1.45 0.095 / 1.466\ 3.071 55
LIC 22 5 0.057 0.263\ 0.006 [0.046\ 0.376 25
MA 92 0.127(2.148\ 0.067 | 0.997) 3.339 66
RC 90 0.029] 0.763 | O 0 0.792 12
DWT 3 0.004| 0.002 | O 0 0.006 2
NEO 3 0.012f 0.003 | O 0 0015 5
FFT 15.7 0.057| 0.509 | 0.085 0.356 | 1.007 22
XCOR 85 0.07 | 4.182 | 0.307 O 053 | 4.612 81
BBF 6 0.066f 0.034 | O 0.1 23
SVM 3 0.018| 0.018/ 0.081 O 033/ 0.15 8
THR 16 0.002 \ 0.0 11 0 0013 1
GAT 5 0.003 O 0.067 O 05 0.13 17
E 0.053 0 0.112 34
Tasks A
Compr (LZ4) 0.112 1.722 0.101 1.512 3.447 80
Compr (LZMA) 0211 4366 0.122 2463 7.162 133
Compr (DWTMA) 0.16 2913 0.0123 0.33 3.415 80
Seizure Prediction 0.216 4.760 0.54 0496 6.012 111
Spike Det (NEO) 0.017 0.02 0.067 0.054 0.158 24
Spike Det (DWT) 0.009 0.019 0.067 0.054 0.149 20
Movement Intent 0.062 0.526 0.152 041 1.15 40
Encrypt (Raw) 0.053 0.059 O 0 0.112 34
RISC-V Control.i 25 0.341 0.137 0.248 1.080 1.800 70

(2

-
(92

PE Power (mW)
=

o

(O3

BN XCOR [0 LZ

©
ot
<
mI
o)
Q
x

+spt-prg

T MA-unsplit

PE Power (mW)

Optimization of PE: Impact

201

-
Ul

=
o

Ul

o

B MA

[1 RC

L
=
<
<
=
N
—

/3

For XCOR (left diagram):

» Before optimization: over 15 mW

e After: Spatial reprogramming saves 50% power

For LZMA (right diagram):

Spatial reprogramming saves 1.5x power

locality refactoring: reduces power further to 11.2mW

Conclusion

HARDWARE-SOFTWARE CO-DESIGN concept:

* Provides idea of refactoring the underlying algorithm of each task and implement each piece into a PE

* Provides idea of optimizing each PE in software level (spatial programming by XCOR PE)

HALO meets the safety constraint by realizing each task (under 15mW)

* Run each PE at minimum clock frequency catered to its need while ASICs run all logic at same frequency=> saves power

* Optimize each PE separately

HALO realizes many tasks (general-purpose architecture) , not a specific one like in ASIC

* For each task, controller configures required PEs into pipeline to execute it

HALO is extensible

* While realizing new BCI tasks: refactor algorithm, design PE for each piece, add new PEs into existing HALO architecture

74

Outline

 Background

* Problems
 Goals

« Key Mechanism
 Implementation
 Evaluation

o Strengths

* Weaknesses

e Discussion

75

Strengths

Design:

* Great improvement with respect to flexibility => wider BCIl adoption
 Low power consumption => safe for chronic use

* Extensible (benefit from its modularity) => can support new tasks by adding PEs into current HALO directly

Paper:
* Can understand the paper without prior background knowledge about BCI
* Highlight the advantage of HALO against BCls as ASIC through comparison

* Basic structure and concept of HALO well explained

/6

Outline

 Background

* Problems
 Goals

« Key Mechanism
 Implementation
 Evaluation

e Strengths
 Weaknesses

e Discussion

(77

Weaknesses

Paper:

* Problems /constraint that HALO meets: not mentioned in the paper => discussion point

* Lack of performance evaluation with respect to processing speed (time to execute a task)

- Tables focus on evaluation of power consumption and achieved flexibility

/8

Outline

 Background

* Problems
 Goals

« Key Mechanism
 Implementation
 Evaluation

e Strengths

* Weaknesses

e Discussion

79

Discussion
About HALO:

In the paper, author only claims : “ HALO meets a different set of constraints ”, but doesn’t explain it explicitly

Constraints that HALO meets / Problems of HALO/ Places that still need to be improved ?

80

Discussion
About HALO:

In the paper, author only claims : “ HALO meets a different set of constraints ”, but doesn’t explain it explicitly

Constraints that HALO meets / Problems of HALO/ Places that still need to be improved ?

 Power constraint is still a great limitation by designing since HALO belongs to implantable BCI (Key problem of implantable BCI)

Related work: http://www.cs.yale.edu/homes/abhishek/abhishek-micro17.pdf

* Need finer grained design than monolithic ASICs

* Does not solve the bottleneck problem of application of BCl in “From computer to brain” direction

81

Discussion
About HALO:

In the paper, author only claims : “ HALO meets a different set of constraints ”, but doesn’t explain it explicitly

Constraints that HALO meets / Problems of HALO/ Places that still need to be improved ?

 Power constraint is still a great limitation by designing since HALO belongs to implantable BCI (Key problem of implantable BCI)

Related work:

* Need finer grained design than monolithic ASICs

* Does not solve the bottleneck problem of application of BCl in “From computer to brain” direction

About BCI in general:

Future prospects of brain-computer interface?

* Fields in which BCI can be applicated?
 As headsets vs. implantable (as chips embedded on brain) : tradeoff ?

e Problems/Difficulties that BCI will meet ?

82

Thank you for Listening and Participating

