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Executive summary

Problem: Lack of specialized hardware for execution of protein discovery algorithms

Special function not supported
Element-wise operations not optimized

Motivation: Reduce costs for protein discovery / validation processes
Determine drug-target affinity
Determine protein structure

Goal: Create a hardware accelerator to efficiently tackle these problem
Power and area efficient
Support for specialized functions
Applicable to multiple problems

Evaluation:

Up to 7x speedup with respect to non-specialized GPU and TPU
Up to 2 order of magnitude more power efficient



Background - Proteins

* Building blocks of a cell
Involved in:
—> Structure of cells
— DNA replication
- Transportation of molecules
—> Triggering / inhibiting reactions
2.

* Chains of amino acids
- Code formed by 20 amino acids

Wikipedia
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Background - Proteins

Non-covalent interactions between amino
acids generates a three dimensional structure

—> Correct structure is essential to function

— Does not change the amino acids sequence
- Very difficult to detect

- Well-defined (Anfinsen et al., 1961)

(a) Primary structure Chain of amino acids

Heme units

(c) Tertiary structure

(d) Quaternary structure Hemoglobin
(globular protein)

Wikipedia



Background — Natural Language Processing

Natural Language Processing
* Next sentence prediction
* Translation
* Question answering

Protein Design Applications
* Fluorescence
e Stability
* Binding Affinity
e Structure Prediction

Main differences:
* Pre-trained parameters
* Inputlength

ETH:zurich
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Background — Natural Language Processing

Biological structure and function emerge from scaling
unsupervised learning to 250 million protein sequences

Alexander Rives®P12(, Joshua Meier®", Tom Sercu®'®, Siddharth Goyal®', Zeming Lin®, Jason Liu?, Demi Guo®?,
Myle Ott?, C. Lawrence Zitnick?, Jerry Ma®*3, and Rob Fergus®
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Cambridge, MA 02138; 9Booth School of Business, University of Chicago, Chicago, IL 60637; and ®Yale Law School, New Haven, CT 06511

e (Can lead to a cut down of the cost of
drug discovery/validation

AlphaFold Protein Structure Database Home About FAQs  Downloads

- S80 B per year
- ~90% failure rate AlphaFold
— 12 years for research and validation iter Protein Structure Database

Developed by DeepMind and EMBL-EBI

Examples: i At1g58602 Q5VSL9 E.coli Help: AlphaFold DB search help
Feedback 5 Mind




Background - BERT

BERT: Bidirectional Encoder Representation for Transormers

* Technique invented by Google researcher Jacob Devlin in 2018
 Implemented in the Google search engine in 2019

* (Can be pre-trained and fine-tuned

* Transformer based

Attention Is All You Need
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Background - BERT

Cutput

2robabilities

Feed
Forward

l Add & Norm I?:

A0 & o Multi-Head
Feed Attention
Forward P §)
—
N Add & Norm
Add & Nom Masked
Multi-Head Multi-Head
Attention Attention
ATy S
= J . fr—
Positiona z Positional
Encocing ®_(9 @_® Encoding
Input Output
Embedding Embedding

InpLis Cutputs
(shifted right)

Source: Vaswani and al, «Attention is all you need»., 2017

The
animal
didn’t
Cross
the
road
because

Self-attention model

9 a)) E}_)

ST ke,
> %, ks
>,
>, ks,
>, e,
>, )
>3, ks,
> %, ks
> Gug, ko,

9 ﬁl @)}
2 @; k121

o
V11

—
V12

@s - ko)vi
The The
animal animal
didn’t didn’t
Cross Cross
the the
road road
because because
it — it
was was
too too
wide wide

ETH:zurich


https://arxiv.org/pdf/1706.03762.pdf

Background - BERT

Output
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* BERT Profiling
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BERT profiling

BERT execution time and memory footprint
increases quadratically as function of input length!

Impact of Input Sequence Length on
BERT Model Inference Performance

@
g 4 x 64x64 Homogeneous Systolic Arrays
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BERT profiling

The distribution of execution time changes with longer input sequence

- Time spent evaluating element-wise operations increases
- Time spent evaluating matrix multiplications decreases

100%
90%
e - = Matrix Multiply
g 70% mBatched Mat Mul
= 60% Softmax
E 8 50% - - B e B s - aGELU
DS 40% Matrix Add
§§ 30% m Matrix Div
§u’j 20% Other
a 10%
0%

32 64 128 256 512 1024 2048
Input Sequence Length (Number of Tokens)
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BERT profiling

BERT model programs require support for special functions:

—> GELU: Gaussian Error Linear Unit
- Exp

Dataflow 1
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Dataflow 3
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 ProSE architecture
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ProSE architecture
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ProSE architecture
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ProSE architecture
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ProSE architecture vs TPUv2 architecture

ProSE [
. L o Stream from Host INPUT MAT B
Streaming frc?m the Host vs Unified Buffer R —
+ Power saving sroshmom st/ .
+ Reduced latency e =l =D
+ Simplified hardware NPT MAT A : :
- Bandwidth between host and systolic array has to be managed —
- Requires specialized software to dissemble/reassemble matrices L) Lo
Output-stationary vs Weight-stationary TPU T s
+ Matrices can be streamed at the same time I I
- Does not optimize for minimal weight readings m4mm L o
Hoot 1 | e | (BT [WeGT]
Data Reuse Buffer .. s
R = ==
l [ ]
T (a) Simpifed TEU ] ]
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ProSE architecture vs TPUv2 architecture

ProSE S—
Performing MulAdd axA + B o 1
ProSE: Ny -
1. Loads a into the scalar register Host are s e
2. Loads 4 into the systolic array et ; -
3. Loads B column-wise into the vector register gt [Acoum] [[Accum |
+ Only requires one matrix to be loaded in the systolic array ISR
TPU: TPU ormamtomoon ) VIS
1. Passes A through the systolic array : .
2. Normalizes it to a in the normalization stage I I _ =
3. Passes B through the systolic array and stores it in the ouren | |MTAl | 4 !
accumulation stage s wesm
4. Passes axA through the array and accumulates it to B in the ‘ ] I
accumulation stage e
- Requires three matrices to be loaded in the systolic array @ — lwmiou
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ProSE architecture

Three types of systolic array based on SIMD calculation capability:

M-Type: MatMult and SIMD ALU operations
E-Type: MatMult, SIMD ALU operations and Exponential functions

G-Type: MatMult, SIMD ALU operations and GELU special functions

GELU: Gaussian Error Linear Unit

ETH:zurich




ProSE architecture

Special functions

Implemented using two-level lookup tables

GELU(x) is evaluated:

 Approximated to zero for x < —4

 Using the lookup tablefor—4 < x < 3

e Approximated by a linear function forx > 3

This preserves the precision of the bfloat16 datatype
One copy of this table is stored per each special ALU

+ Better performance
- Larger area
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* ProSE design
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ProSE design

Implementation methodology

* PyTorch frontend
- Instructed to produce raw sequences of backend tensor and operations

* Connection to the host with 6 lanes at 45 GB/s each

* Matrix multiplications are executed with a 1.6 GHz clock frequency
* SIMD/GELU/Exp-capable systolic array run at 800 MHz

 Compiledin Verilog
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ProSE design

We now want to maximise the performance of these systolic arrays.

Problem: Rules are different depending on the mode the array is operation in:

Matmult mode: Big arrays minimise the number of blocks the matrix has to be divided into
SIMD mode: Small arrays maximise the ratio ALUs to PEs

—> Solution: heterogeneous systolic arrays
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ProSE design

Hardware Configurations for Design Space Exploration

Systolic Array Type | Systolic Array Size | Maximum Count | Counts Explored

Different configuration are tested M Type 64x64 2 1.3
G-Type 32X 32 15 1..18
16X16 31 131
- Number of PEs constant e i - e
(equivalent to a TPU 128x128 systolic array) Homogeneous 64X 64 4 4
—> Every configuration must have a count of
1 or more 18 - 18 -
16 - 16 -
, o 14 2 14 v
- The number of lanes assigned to each array o EERLE v@‘z AreaEffcient
. . o < ]
type is swept as part of the design space géw_ | gg,_o_ \
. ue : -
exploration 530-8- el gg B8 € *. BestPer
E 06 06 - \
g 04 , / g 04/ | /
02 AA 02 L 2 4
00 ; v " 0.0 Y T : T 1
40 45 50 35 60 4 46 48 50 52 54
Power(W) Area(mm*2)

ETH:zurich




ProSE design

Select ProSE Instance Configurations for Further Evaluation

M M G G E E Power | Area
Config size |count | size |count | sze | count | (mW) (mm2)
: : BestPerf |64x64 | 2 | 16x16| 10 |16x16| 22 | 12994 | 1275
Best conflguratlons 16K PEs | MostEfficient | 64x64 2 32%32 3 16X16 | 20 12306 | 1249
- MostPowerkEfficient and MostAreaEfficient are Somopemeons [Sxea]l 4 leMes] N [ASKG] S JARSR:lAL
. . - BestPerf+ | 64x64 | 2 [32x32| 5 [32x32| 7 | 16918 | 4850
the same configuration, that is called 20K PEs | MostEfficient+ | 64x64 | 2 [32¢32| 5 [32x32| 7 | 16918 | 4850
MostEfficient Homogencous+ | 64x64 | 2 [ 64x64 | 1 | 64x64| 2 13315 | 1492
Also configurations with 20k PEs are 18 5 18
1.6 1 16 -
tested 2 14 Mos 2 144 Most
. . owerEfficie AreaEffici
- These configurations are not compute-bound 8312 S S g121 AR
until 360 GB/s Eg‘-o- AT 19 \
08 A S =08y <. *.BestPer
Ego.e | // £5 06 .‘ /
& 04 . g 04 !
02 4 AA 02- \ 4 4
0.0 ' . : ; 0.0 R ——
45 50 55 60 4 46 48 50 52 54
Power(W) Area(mm*2)
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* Performance evaluation
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Performance evaluation

-2 Input sequence of 512 tokens

NVLink 2.0 @ 80% 240 GB/s mNVLink 2.0 @ 90% 270 GB/s
NVLink 3.0 @ 80% 480 GB/s mNVLink 3.0 @ 90% 540 GB/s

il
Ik
:

 4x with 16K PEs va. A100 ve. TPUV3
e 5.5Xx With 20K PEs Host-Accelerator Communication Bandwidths

ProSE speed up Protein Design Application
up to

* 4.5x with 16K PEs
e 7x with 20K PEs

O=NWhAUOOO~N ®

compared with a Nvidia A100 GPU and
up to

BestPerf
BestPearfs
MostEfficient =
MostEfficiant+
BestPerfs
MostEtficient :
MostEfficients

Homogenaous :_

ProSE and ProSE+ Speedup

dall
{3
18

compared with a Google TPUV3.
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Performance evaluation

200
- Input sequence of 512 tokens 180
8 140
. . - 120
ProSE power consumption is up to 531%
Z¢c 60
50x lower %é% 1 LI T |J -
w 0 - A
. Qe 5 = + = é w § = § € é o §
compared to a Nvidia A100 GPU and up to ?é § § % 3 g ; i § é § g :
170x lower % 2|8 g g 2|8 g g
2 ?
compared to a Google TPUv3. ve. A100 va. TPUV3

Host-Accelerator Communication Bandwidths
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* Strengths and weaknesses
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* First publication proposing a systolic engine implementing special
functions for BERT model algorithms

* Provides a system-wide implementation of the model
* Very comprehensible also while explaining complicated topics
* Does not sacrifice generality

* Results are presented clearly, evaluation is done in a very
extensive way
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Weaknesses

* Implementation of the exp LUT is ambiguous

* Does not mention whether every problem addressed delivers the same
speedup / power efficiency

* Software side is barely spoken about

e Details
For GELU, we designed the lookup table such that it only computes the output when the exponent

is between -4 and 3 [...]Jwhen the input is with an exponent smaller than -3, it can be approximated
as 0. When the input is with an exponent larger than 4, it can be approximated by a linear function.
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Discussion

Another article' proposes an accelerator based on quantization of data

that delivers a 1.17x speedup and a 12x power efficiency.

- Uses a series of vector-matrix multiplication PU
- Approximates weights to 4 bits and other values to 8 bit
- Features a module to combine 8 and 4 bit multiplications

- Features a input/output buffer

Do you think these two approaches
could coexist in a single device?

CPU

Off-chip
Memory

Controller Iﬁeif"t% Bias Buf Scale Buf
K 2 L 2 k 2
K Attn | | G & PU_H
PU 1
W PU_O|
3 | PE_N
Input/ 1 Q Buf
Output 5 * K Buf
Buf 3 BIM Accu| [Psum Bu € g
- —> - g _—
T E ] | gl
2 e — Attn Buf
[y
s Layer Norm
LN core < Barat Bt Softmax Core

v v v
Output Buf

Fig. 2. The overall architecture of the proposed accelerator for fully quantized BERT.

'Zejian Liu and al., “Hardware Acceleration of Fully Quantized BERT for Efficient Natural Language Processing”, 2021
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https://arxiv.org/pdf/2103.02800.pdf

Discussion

* Applications to other fields?
DNA/RNA analysis, ...

* More support for the SIMD ALU instructions

In this architecture, the result of an ALU operation are streamed to the host, would it be
beneficial if they were streamed back into the array?

e Communication between different arrays on chip?

 Composition of older inventions?
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Thank you for your attention
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Additional material

M-Type; | i l ‘ | |
i ‘" '
. . E-Type | |
Threading in ProSE : ,
G-Type L] |
. Host-Accelerator Data Transfer B Host Compute T
Exe C Ut| on mo d e | C h osent h rou g h Accelerator Compute — - Data Dependencies
. . (a) Single thread orchestration and scheduling of dataflows executing on ProSE
experlmentatlon: |
mrype | | | B | l |
E-Type| [ 1 [
32 threads
G-Type i N | i
)
(b) Two-thread orchestration and scheduling of dataflows executing on ProSE
URVEEI S B D D DR R R
EType I | | | I
G-Type 0 1 1 1 [

T
(c) Four-thread orchestration and scheduling of dataflows executing on ProSE

e T i

ewee, [ |ILTELIETTETETTEEEETETEETETETT

G-Type LErrrrrrrrrrrrrerrrrr e
T

(d) 32-thread orchestration and scheduling of dataflows executing on ProSE
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Additional material

ProSE ProSE
. . . written in —{ generated in
Overview of the contributions of the Chisel | | Verlog
. Protein BERT ATen }
a. rt I C I e PyTorch Frontend: PyTorch Lib Calls Functional Simulation
Python |~ JIT (~ (eg. [ C‘I)I)nasttaﬂo:y - via
C++ Compiler MatMul, e Verilog Simulation
Java MatAdd)
Timing Simulation
viaa
[:‘ Our contribution Cycle-Accurate
’ ! Simulator written in
DOpen-source toolchain, compiler, etc. Python
Performance per number of PEs 50K pEs ek pes 1 PR (ixTPU ({25 TPy
7 - 60 systolic array) systolic array)
[e)
o_6 % B> 50 |
R 5 iz '
86 Z a2 4
EZ s 7 2% = 7 = 2
Zo 5 s Z 32 20 = 7 = 7
5 = Z €0 = 7 = 7
e 1 = 7— & 10 —= 7= 7
' ' Most I BestPerf Most
PowerEfficient PowerEfficient
Resources (# PEs) Resources (# PEs)

ETH:zurich



Additional material

Demystifying BERT: Implications for Accelerator Design

“« ” Suchita Pati!, Shaizeen Aga?, Nuwan Jayasena?, Matthew D. Sinclair!-
To what extent these “key take-aways 2 4
. 3 !University of Wisconsin-Madison 2Advanced Micro Devices Inc.
a re ta ke n I nto a CCO u nt . {spati,sinclair}@cs.wisc.edu {shaizeen.aga,nuwan.jayasena}@amd.com

1. Of the different layers in BERT, the transformer layers dominate its training time, while the output &
embedding layers have negligible contribution.

2. BERT’s gradient descent optimizer (LAMB), which updates the model weights, is the second highest
contributor to BERT’s training runtime, and its contribution increases with decreasing input token count
per iteration.

3. Both transformer and LAMB parameter update remain important as transformer layer count is increased.

4. Not all matrix multiplications in BERT are equal: only some of them can fully utilize highly parallel
accelerators.

5. Parameter updates using LAMB are extremely memory intensive.

6. The runtime proportion of matrix multiplications and LAMB update increase in wider models (larger
hidden dimensions).
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Additional material

Zejian Liu and al. ) as i eE ——_—
95 —25§3—§3§ 0 ~%-3-3-3 8
me o d i SR Sddg 3343
* Precision on two different data sets per weight ~ _" i = ® >
bitwidth §85 §7o
CLIP = Adjusting of the MAX and MIN value by ~ £# 8|
clamping. 7 | 0
70 40 }
* Different designs of the Bit-split Inner-Product T Bk

Module (BIM)

(b) Type B
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Additional material

CornBERT

Project applying BERT for given a gene’s regulatory
(promoter) sequence of maize DNA, can predict
how much that gene will be expressed in ten
different corn tissues.
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MAKING SENSE OF BIG DATA

Bringing BERT to the field: Transformer models
for gene expression prediction in maize
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