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Executive summary
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Problem: Lack of specialized hardware for execution of protein discovery algorithms
Special function not supported
Element-wise operations not optimized

Motivation: Reduce costs for protein discovery / validation processes
Determine drug-target affinity
Determine protein structure

Goal: Create a hardware accelerator to efficiently tackle these problem
Power and area efficient
Support for specialized functions
Applicable to multiple problems

Evaluation:
Up to 7x speedup with respect to non-specialized GPU and TPU
Up to 2 order of magnitude more power efficient



Background - Proteins
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• Building blocks of a cell
Involved in:
à Structure of cells
àDNA replication
àTransportation of molecules
àTriggering / inhibiting reactions
à…

• Chains of amino acids
à Code formed by 20 amino acids

Wikipedia



Background - Proteins
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Non-covalent interactions between amino 
acids generates a three dimensional structure

àCorrect structure is essential to function
àDoes not change the amino acids sequence
àVery difficult to detect
à Well-defined (Anfinsen et al., 1961)

Wikipedia
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Background – Natural Language Processing

Natural Language Processing
• Next sentence prediction
• Translation
• Question answering
• …

Protein Design Applications
• Fluorescence
• Stability
• Binding Affinity
• Structure Prediction

Main differences:
• Pre-trained parameters
• Input length



7

Background – Natural Language Processing

• Success of NLP in protein modelling

• Can lead to a cut down of the cost of 
drug discovery/validation

à $80 B per year
à ~90% failure rate
à 12 years for research and validation iter
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Background - BERT

BERT: Bidirectional Encoder Representation for Transormers
• Technique invented by Google researcher Jacob Devlin in 2018
• Implemented in the Google search engine in 2019
• Can be pre-trained and fine-tuned
• Transformer based
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Background - BERT
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https://arxiv.org/pdf/1706.03762.pdf
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Background - BERT
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BERT profiling

BERT execution time and memory footprint 
increases quadratically as function of input length!
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BERT profiling

The distribution of execution time changes with longer input sequence
à Time spent evaluating element-wise operations increases
à Time spent evaluating matrix multiplications decreases
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BERT profiling

BERT model programs require support for special functions:
à GELU: Gaussian Error Linear Unit
à Exp
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ProSE architecture

Left-rotation-capable 
output-stationary
streaming
systolic array



17

ProSE architecture

Left-rotation-capable 
output-stationary
streaming
systolic array

MatMult mode
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ProSE architecture

Left-rotation-capable 
output-stationary
streaming
systolic array

SIMD mode



19

ProSE architecture vs TPUv2 architecture

Streaming from the Host vs Unified Buffer
+ Power saving
+ Reduced latency
+ Simplified hardware
- Bandwidth between host and systolic array has to be managed
- Requires specialized software to dissemble/reassemble matrices

Output-stationary vs Weight-stationary
+ Matrices can be streamed at the same time
- Does not optimize for minimal weight readings

Data Reuse Buffer

ProSE

TPU
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ProSE architecture vs TPUv2 architecture

Performing MulAdd 𝑎×𝐴 + 𝐵
ProSE: 
1. Loads 𝑎 into the scalar register
2. Loads 𝐴 into the systolic array
3. Loads 𝐵 column-wise into the vector register
+ Only requires one matrix to be loaded in the systolic array

TPU:
1. Passes 𝐴 through the systolic array
2. Normalizes it to 𝑎 in the normalization stage
3. Passes 𝐵 through the systolic array and stores it in the 

accumulation stage
4. Passes 𝑎×𝐴 through the array and accumulates it to 𝐵 in the 

accumulation stage
- Requires three matrices to be loaded in the systolic array

TPU

ProSE
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ProSE architecture

Three types of systolic array based on SIMD calculation capability:

M-Type: MatMult and SIMD ALU operations

E-Type:   MatMult, SIMD ALU operations and Exponential functions

G-Type: MatMult, SIMD ALU operations and GELU special functions
GELU: Gaussian Error Linear Unit
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ProSE architecture

Special functions

Implemented using two-level lookup tables

𝐺𝐸𝐿𝑈(𝑥) is evaluated:
• Approximated to zero for 𝑥 < −4
• Using the lookup table for −4 ≤ 𝑥 ≤ 3
• Approximated by a linear function for 𝑥 > 3

This preserves the precision of the bfloat16 datatype

One copy of this table is stored per each special ALU
+ Better performance
- Larger area 
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ProSE design

Implementation methodology

• PyTorch frontend
à Instructed to produce raw sequences of backend tensor and operations

• Connection to the host with 6 lanes at 45 GB/s each

• Matrix multiplications are executed with a 1.6 GHz clock frequency
• SIMD/GELU/Exp-capable systolic array run at 800 MHz

• Compiled in Verilog
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ProSE design

We now want to maximise the performance of these systolic arrays.

Problem: Rules are different depending on the mode the array is operation in:

Matmult mode: Big arrays minimise the number of blocks the matrix has to be divided into

SIMD mode: Small arrays maximise the ratio ALUs to PEs

à Solution: heterogeneous systolic arrays
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ProSE design

Different configuration are tested

à Number of PEs constant 
(equivalent to a TPU 128x128 systolic array)

à Every configuration must have a count of 
1 or more

à The number of lanes assigned to each array 
type is swept as part of the design space 
exploration
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ProSE design

16K PEs

20K PEs

Best configurations
à MostPowerEfficient and MostAreaEfficient are 

the same configuration, that is called 
MostEfficient

Also configurations with 20k PEs are 
tested
à These configurations are not compute-bound 

until 360 GB/s
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Performance evaluation

à Input sequence of 512 tokens

ProSE speed up Protein Design Application 
up to

• 4.5x with 16K PEs
• 7x with 20K PEs

compared with a Nvidia A100 GPU and 
up to

• 4x with 16K PEs
• 5.5x with 20K PEs

compared with a Google TPUv3.
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Performance evaluation

à Input sequence of 512 tokens

ProSE power consumption is up to

50x lower

compared to a Nvidia A100 GPU and up to

170x lower

compared to a Google TPUv3.
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Strengths

• First publication proposing a systolic engine implementing special 
functions for BERT model algorithms

• Provides a system-wide implementation of the model

• Very comprehensible also while explaining complicated topics

• Does not sacrifice generality

• Results are presented clearly, evaluation is done in a very 
extensive way
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Weaknesses

• Implementation of the exp LUT is ambiguous

• Does not mention whether every problem addressed delivers the same 
speedup / power efficiency

• Software side is barely spoken about

• Details
For GELU, we designed the lookup table such that it only computes the output when the exponent 
is between -4 and 3 […]when the input is with an exponent smaller than -3, it can be approximated 
as 0. When the input is with an exponent larger than 4, it can be approximated by a linear function.
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Discussion
Another article¹ proposes an accelerator based on quantization of data 
that delivers a 1.17x speedup and a 12x power efficiency. 
à Uses a series of vector-matrix multiplication PU
à Approximates weights to 4 bits and other values to 8 bit
à Features a module to combine 8 and 4 bit multiplications
à Features a input/output buffer

Do you think these two approaches 
could coexist in a single device?

¹ Zejian Liu and al., “Hardware Acceleration of Fully Quantized BERT for Efficient Natural Language Processing”, 2021

https://arxiv.org/pdf/2103.02800.pdf
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Discussion

• Applications to other fields?
DNA/RNA analysis, …

• More support for the SIMD ALU instructions
In this architecture, the result of an ALU operation are streamed to the host, would it be 
beneficial if they were streamed back into the array?

• Communication between different arrays on chip?

• Composition of older inventions?
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Thank you for your attention
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Additional material

Threading in ProSE

Execution model chosen through 
experimentation: 

32 threads



39

Additional material

Overview of the contributions of the 
article

Performance per number of PEs
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Additional material

1. Of the different layers in BERT, the transformer layers dominate its training time, while the output & 
embedding layers have negligible contribution.

2. BERT’s gradient descent optimizer (LAMB), which updates the model weights, is the second highest 
contributor to BERT’s training runtime, and its contribution increases with decreasing input token count 
per iteration.

3. Both transformer and LAMB parameter update remain important as transformer layer count is increased.
4. Not all matrix multiplications in BERT are equal: only some of them can fully utilize highly parallel 

accelerators.
5. Parameter updates using LAMB are extremely memory intensive.
6. The runtime proportion of matrix multiplications and LAMB update increase in wider models (larger 

hidden dimensions).

To what extent these “key take-aways” 
are taken into account?
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Additional material

Zejian Liu and al.

• Precision on two different data sets per weight 
bitwidth
CLIP = Adjusting of the MAX and MIN value by 

clamping.

• Different designs of the Bit-split Inner-Product 
Module (BIM)
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Additional material

CornBERT

Project applying BERT for given a gene’s regulatory 
(promoter) sequence of maize DNA, can predict 
how much that gene will be expressed in ten 
different corn tissues.


