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Abstract—We present the novel micro-architectural features,
supported by an innovative and novel pre-silicon methodology
in the design of POWER10. The resulting projected energy
efficiency boost over POWER9 is 2.6x at core level (for SPECint)
and up to 3x at socket level. In addition, a new feature supporting
inline AI acceleration was added to the POWER ISA and
incorporated into the POWER10 processor core design. The
resulting boost in SIMD/AI socket performance is projected to
be up to 10x for FP32 and 21x for INT8 models of ResNet-50 and
BERT-Large. In this paper, we describe the novel methodology
deployed and used not only to obtain these efficiency boosts for
traditional workloads, but also to infuse AI/ML/HPC capability
directly into the POWER10 core.

Index Terms—POWER10, energy efficiency, AI acceleration,
microprocessor design methodology, pre-silicon modeling.

I. INTRODUCTION

POWER10 is the latest processor in IBM’s POWER systems

roadmap [43]. The processor chip (Fig. 1) is a 7nm CMOS

design, with a die size of 602 mm2, using an 18-layer metal

stack. It is available in single-chip or dual-chip sockets.

The top-level system architectural attributes are captured in

Table I. Two of the major distinguishing operational features

of POWER10 over POWER9 include: (a) significant improve-

ments in energy efficiency; and (b) AI enhancement of the core

featuring ISA extensions and inline MMA (Matrix-Multiply

Assist) acceleration. In this paper, we focus on these two

aspects of the micro-architectural and design enhancement

of POWER10. Our principal focus in this paper is on the

fundamental building block: namely, the processor core.

The new micro-architectural design is built upon the founda-

tion of a novel, multi-faceted pre-silicon power-performance

modeling and analysis methodology. The baseline for com-

parison in this paper is the prior-generation POWER9 pro-

cessor [1], [23], [32], [39], [45]. In POWER10, the team

adopted a radically new (in-flight RTL optimization) pre-

silicon design methodology, in which the evolving RTL

model was used directly and continuously to track and tune

power-performance efficiency. This was in lieu of relying on
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Fig. 1. POWER10 chip die photo with core inset. The primary focus in this
paper is on the SMT8 core building block. Relative to the prior-generation
POWER9 core, POWER10 has: 2x general SIMD capability; (new) Matrix-
Multiply Assist (MMA) inline accelerator; 2x load and store processing
capability, backed by 4x memory management unit (MMU) resource; 4x
private L2 cache.

the cycle-accurate micro-architecture-level performance model

alone during early-stage definition. As such, in this revamped

methodology, there was a need to work with representative

abstractions (proxies) of key benchmark suites, such that

the relatively slow RTL simulation model could be used to

project power-performance numbers with acceptable levels of

accuracy. The benefit of having the prior-generation POWER9

hardware as an accurate reference platform, allowed us to

develop validated POWER9 models, with subsequent scaling

to project POWER10 specific numbers. At the same time, an

innovative new power simulation methodology called APEX

(exploiting IBM’s AWAN accelerator platform [18]) that en-

abled a ∼5000× speedup over traditional RTL simulation,

allowed us to validate full workload projections a bit later

in the design cycle.

In terms of the scalar core performance, in this paper we

focus only on SPECint codes [41] to show how the 2.6×

boost in power-performance efficiency (Table I) was achieved.

(The corresponding socket-level boost is up to 3×, relative to

POWER9). For the MMA-enhanced core, the socket AI perfor-

mance boost has been projected to be up to 21× for ResNet-50

and BERT-Large INT8 models, with an insignificant increase

in per-core power. In the backdrop of these amazing numbers,
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TABLE I
POWER10 CHIP FEATURES & EFFICIENCY PROJECTIONS

Chip Attributes Value (Enumeration)

Functional cores 15
SMT per core 8-way
L2 cache per core 2MB
L3 cache Up to 120MB (chip)
Mem. Mgmt Unit (MMU) 4× relative to POWER9
Open Memory Interface 16 ×8 @ up to 1 TB/s
PowerAXON Interface 16 ×8 @ up to 1 TB/s
Energy efficiency (dual-chip socket) Up to 3× relative to POWER9
Performance/watt (core) 2.6× relative to POWER9

the key contributions in this paper are:

• We provide a real-life industry perspective of how

micro-architectural innovations, coupled with an agile

pre-silicon power-performance methodology are used to

achieve the quoted efficiency boost figures in one gener-

ation, in a technology-independent evaluation.

• We describe the rationale and micro-architectural innova-

tions behind efficient AI-infusion at the core-level.

As an added benefit, the POWER10 experience has provided

modern-day insights about how to scale for energy efficiency

boost in the post-Moore/post-Dennard era such as:

• Power must be front and center from the start. Technology

improvements and traditional clock gating efforts after

mainline function entry are no longer sufficient. The mi-

croarchitecture must minimize wasted work, data move-

ment, control overhead, and table lookups and provide

power efficient acceleration for compute heavy work-

loads. Hence, POWER10 focused (among many other

things) on improved branch predictors, removal of reser-

vation stations, instruction fusion, Effective Address (EA)

based L1 cache and power efficient inline AI acceleration

support for AI/ML/HPC workloads.

• Designers need to shift to a mindset where all latch clocks

are off by default and only enabled when needed.

• Efficient clock and data switching reduction efforts re-

quire tool support that provides continuous quick feed-

back for a wide range of different workload behaviors.

• Accurate absolute power projections in support of

Workload-Optimized Frequency (WOF) and Power Fre-

quency Limited Yield (PFLY)/Core Limited Yield (CLY)

projections require chip models and large workload seg-

ments capturing the full chip behavior, which requires

hardware-accelerated simulation capabilities.

• Enabling a detailed power information flow from ac-

tual implementation (RTL/Physical Design) to higher

abstraction models is key to having a complete

power/performance efficiency view over the different

project stages.

• In addition to traditional synthetic test cases, early usage

of RTL runnable proxies of real applications with high

coverage is a must to permit early detection of core

power/performance optimization opportunities.

• It is essential to consider Reliability, Availability and

Serviceability (RAS) from an early stage of design in

order to ensure a high level of soft-error rate (SER)

resilience while minimizing power overheads.

• Full coverage of power behavior via a rich proxy work-

load set is needed to enable automated generation of

models which will then speed up adoption at different

levels in the design

II. CORE MICROARCHITECTURE OVERVIEW

In this section, we provide a high-level review of the

POWER10 core design, in the evolutionary context of the

prior-generation POWER9 design [32], highlighting some of

the main contributors to the much higher efficiency.

A. Core Pipeline Depth Analysis

Selection of pipeline depth and associated clock frequency

target places significant constraints on what microarchitecture

structures can be used to provide a power/performance ef-

ficient design. It is hence one of the first decisions made

in defining a new microarchitecture family. POWER9 [23],

[32], [39] represented a brand new microarchitecture with

POWER10 being a significant augmentation thereof but with

a similar pipeline structure. To determine whether a change

in pipeline depth, (or equivalently fanout-of-4 (FO4) per

pipeline stage) was motivated going forward, a study was

performed early in the POWER10 concept phase based on

the mature POWER9 design. The POWER9 M0/M1 micro-

architecture performance models (see Fig. 7) were used to

analyze the optimal pipeline depth [42] in light of different

target efficiency metrics as originally explained in [13], [52].

The pipeline-depth-dependent power model used detailed

Einspower [20] reports separating out latch-clock, logic data-

switching, array and register file components. These power

contributors were individually scaled according to functions

of the new target design pipeline depth. A range of different

pipeline depths (FO4 per stage values) was explored for dif-

ferent core power targets to find the pivot points for potential

product offerings as illustrated in Fig. 2. The modeling further

accounted for the power limited frequency constraints to the

core as dictated by the target power envelope of the chip. Thus,

if the core power for a given FO4 depth exceeds the power

envelope, the voltage and frequency is adjusted accordingly

with a subsequent impact on the performance. The analysis

in Fig. 2 showed that the optimal pipeline depth point held

stable at 27 FO4 for the throughput metrics and range of

power targets of interest (0.5x-1.0x of POWER9 baseline

power) for the POWER10 core. While higher FO4 points

were indicated as optimal for lower core power targets, those

power/performance points were not of particular interest to

current IBM POWER systems. Note that the earlier POWER4-

based research [42] also illustrated the optimal pipeline depth

to be quite stable, even under accuracy deviations in the early-

stage power-performance modeling. As a result of this analy-

sis, the base pipeline structure and nominal frequency target

did not change significantly from POWER9 to POWER10.
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Fig. 2. Optimal Pipeline Depth Analysis: The x-axis shows pipeline depth
expressed as logic FO4. The y-axis shows performance in BIPS (billions
of instructions per second) at power limited frequencies for different power
targets expressed as a fraction of baseline power. Performance is normalized
to the baseline optimal FO4 and power target.

B. Improvements of POWER10 over POWER9

Fig. 3 shows the main processor core pipeline microarchi-

tecture, as reported in [43]. POWER10 builds on the founda-

tional modular architecture of POWER9 [32], and introduces a

significant redesign of many micro-architectural aspects with

a focus on performance efficiency. The target was to achieve

at least a 25% boost in per-core throughput for general-

purpose integer code, a significant improvement in single-

thread performance and dramatically improve AI, ML, and

HPC processing capability.

The design team was able to over-achieve on the above

goal by delivering ∼30% additional throughput performance,

while at the same time reducing power by ∼50% based

on pre-silicon modeling. This computes to 2.6× increase in

performance-per-watt per core. The figures quoted here are

iso-voltage and frequency, in that it does not factor in any

additional boost resulting from voltage-frequency advantages

in going from the prior technology node (14nm) to the current

(7nm). This improvement was sufficient to also enable up to

2.5× more cores per socket with operating efficiencies up to

3× measured at the socket level.

Obviously, for a design as complex as the POWER family, a

large number of different micro-architectural design decisions

cumulatively account for the large boost in performance and

efficiency. In terms of performance, the enterprise-strength

POWER10 core improves upon the POWER9 core in several

directions. As indicated earlier in Fig. 1, the POWER10 core

reflects selective doubling (or even quadrupling) of computa-

tional and cache resources. It doubles the traditional SIMD en-

gine resources and corresponding load-store bandwidths, while

integrating a brand-new inline AI/HPC accelerator - the Matrix

Multiply Assist (MMA). POWER10 addresses larger working

sets by increasing the L1 instruction cache, L2 and TLB sizes,

while simultaneously reducing latency cycles across the entire

cache hierarchy and TLB. POWER10 also provides deeper

and wider out-of-order instruction windows and increases

decode bandwidth by 33%. These and many other performance

oriented improvements provided for a significant uplift in

overall throughput and single thread performance along with

dramatic improvements in AI / HPC throughput and efficiency.
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Fig. 4 shows the effect of select design changes in different

units from POWER9 to POWER10, and the consequent per-

formance improvement. Improvements are shown for several

design changes, including branch prediction, cache latencies,

memory bandwidth, L2 cache, SIMD engines, instruction

decode and queue sizes. We observe an average performance

benefit of 4% from optimized branch execution, 10% from

improved latency and bandwidth, 9% from the increased L2

cache size, 5% from optimizing decode and SIMD engines and

4% from the increased queue sizes when running SPECint

workloads on SMT8 cores. While Fig. 4 also identifies the

impact to select workload groups, individual workloads of

importance often see much more significant impacts from

specific design changes. For example, we observe machine

learning and analytic workloads that gain close to twofold the

performance from doubling the number of VSX SIMD units

per core.

Many of the fundamental structures and micro-architectural

mechanisms were re-designed with power-efficiency as a fo-

cus. All major blocks were either re-designed or updated with

structural efficiency changes that focused on reducing dynamic

power consumption through switching reduction.
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For instance, reservation stations were removed in favor

of an unified sliced configuration for the main register files

made from smaller building blocks. In the most prominent

example, an unified register file was designed to hold the data

for both general purpose (GPR) and vector-scalar (FPR/VSR)

registers with a significant growth in out-of-order rename

capacity, but trading off the addition of stages to the main

execution pipeline compared with POWER9. The result was a

significant reduction it total switching capacitance, and a net

boost in performance. The improved structural elements are

more efficient with only two write ports each, while the entire

structure supports up to eight concurrent writes for each set

of up to two threads.

Some of the highest impacts to overall performance effi-

ciency came from changes that both boosted performance and

reduced energy consumption per unit of work. Improvements

to various aspects of branch prediction including the addition

of new predictors for direction and indirect targets along

with the doubling of selective prediction resources not only

improved raw performance, but also reduced wasted / flushed

instructions by 25% on average for SPECint in comparison

to POWER9. For interpreted languages and business analytics

workloads, the reduction is even higher, reaching 38%.

Significant changes for efficiency were made in the load-

store (LSU), and memory management units (MMU) along

with the instruction cache pipeline. The fundamental pipelines

supporting load and store instructions as well as instruction

fetch were re-designed with effective-address (EA) tagging

in each L1 cache. The effective to real address translation

is a relatively power-hungry operation that must be performed

on each access to a real-address tagged cache. In POWER10,

this address translation is only required for an L1 cache miss

for both instructions and data. Additionally, the structure of

the LSU was changed fundamentally from address-oriented

units in POWER9 to slice-oriented units in POWER10 that

were streamlined for the EA based cache. The result was not

only a reduction in translation power, with a single translation

pipeline for the core, but also reduced switching capacitance

from basic load and store operations as they are able to utilize

the cache index as an address proxy for typically accesses.

Across the core pipeline, a number of improvements in

peak throughput and instruction window sizes were efficiently

enabled with instruction pairing. The decode and completion

pipelines for example, manage instructions in pairs to achieve

higher throughput with reduced controls, enabling up to eight

instructions per cycle versus six on POWER9. Additionally,

the branch execution pipeline was completely re-designed

and control flow and register renaming were merged into the

same structures that manage basic arithmetic operations. This

resulted in reduced energy overhead through structure removal,

and also in improved performance by allowing for the reduced

(as low as zero cycles) latency exchange of data between

general purpose (GPR) and branch target registers.

A dramatic expansion in instruction fusion capabilities also

paid double dividends to performance and efficiency. Over

200 different pairs of instruction types are detected in the

instruction cache pre-decode stage and can be fused at decode

resulting in reduced work (one operation instead of two), as

well as reduced or zero latency for dependent operations. For

example, dependent ALU operations can either be reduced to

a single operation or can be issued from a single shared issue

queue entry supporting optimized latency. In another example,

store instructions to consecutive addresses are fused, resulting

in a single address generation pipeline operation supporting

two stores up to 16 bytes in length each –and for stores of

eight bytes or less consuming only a single store queue entry–.

In addition, stores to consecutive address blocks in the store

queue can be merged dynamically, enabling the retirement of

up to two store queue entries (up to four store instructions)

per cycle to the L1 and L2 caches.

A pervasive focus on power efficiency continued with de-

sign entry. From the start, designers were expected to provide

designs where latch clocks would be off by default, and

enabled only when a related instruction required that portion

of the logic. This was in contrast to previous designs, where

robust clock gating was largely added only after the full logic

function was in place. This new mentality of design resulted in

a significant reduction in the latch clock activity and reduced

the total cost of implementation by avoiding design re-work

breakage (timing or functional) due to subsequent changes for

clock gating improvements.

Clock gating, ghost and data switching were all tracked and

made a focus for designers. Ghost switching is switching on

data inputs that does not reflect a write to a latch, register

file or array. Data switching for arrays and register files was

explicitly tracked in RTL simulation and correlated with write

actions; data input switching that did not correspond to a write

was then flagged and addressed. Ghost switching of logic

cones was minimized by careful attention to clock gating of

upstream latches.

A specific example of power-performance efficient design

at the circuit level is in the design of floating point (FP)

arithmetic units. Several different power levels of carry save

adders (CSAs) were provided to enable power and delay

optimization at the different levels of the logic cones. Efficient

classical symmetric CSAs were used at the widest parts of

the logic cones to save power at the expense of delay. Later

stages in the logic cone used progressively optimized CSAs

with duplication of the carry along with layout optimization to

recapture the delay of the early stages. In parallel, the design

team optimized across the boundary of two clock cycles to

yield the lowest power level within the target cycle time.

The net cumulative effect of these optimization steps have

yielded significant power and area efficiency improvement in

POWER10. Similar optimizations that also used a novel “sum”

pass gate circuit have been shown to yield a remarkable 36%

area reduction and >40% power reduction (for the FP unit)

in an earlier 14nm processor product.

Additional research-mode ideas regarding register file opti-

mization, coupled with layer-specific metal pitch reduction,

improved utilization of multi-layer wiring and congestion

control, preplacement of latches to reduce horizontal and
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vertical wiring needs for the CSA tree, etc. promise significant

additional improvements in power-performance efficiency for

future processors.

C. The Inline AI/ML Accelerator - MMA

Dense numerical linear algebra computations are the basis

of several important algorithms for scientific and AI/HPC

workloads. To accelerate such workloads, the latest Power

ISA Version 3.1 [36] introduces a new set of instructions

–collectively known as the Matrix-Multiply Assist (MMA)

facility– that implement numerical linear algebra operations

directly on small matrices. These instructions are meant

to accelerate computation-intensive kernels, such as matrix

multiplication, convolution and discrete Fourier transform,

with additional application to AI workloads including neural

networks. These instructions are complemented by a doubling

of general purpose SIMD units (8×128b units per core) and

a doubling of load and store bandwidth (including new 32-

byte load and store instructions) to address a broad range of

machine learning and data preparation use cases.

The introduction of the MMA facility to the POWER ar-

chitecture, combined with its area- and power-efficient design

in POWER10, delivers high performance and high efficiency

execution of AI and other workloads. The MMA unit leverages

a 4×4 grid of processing elements and a set of local accumu-

lators (a set of 8 architected 512-bit wide registers) to achieve

area and power efficiency. This implementation leads to an

efficient execution of the kernels resulting from two aspects.

First, an increase in the overall computational throughput

capacity. From the theoretical peak of 8 and 16 double-

precision flops/cycle of vector code executed on POWER9

and POWER10 respectively to a maximum of 32 double-

precision flops/cycle of MMA code on POWER10. Second, a

significant reduction of data movement, thus reducing power

consumption. Through the implementation of outer-product

operations, MMA instructions can produce 512 bits of result

data from just 2×128-bit vector inputs, while using the local

accumulators as the additional inputs and outputs of the

operations. Specific instructions are architected to move data

from/to these local accumulators [36]. Overall, in comparison

to existing approaches of wide vector facilities [3], [28], [40],

MMA provides unique features that are listed below:

• The MMA unit is added with no impact on the rest of the

architecture and minimal impact on the microarchitecture

(as shown in Fig. 3), whereas widening the register

file [26] or switching to a scalable vector [44] approach

requires complex changes to existing structures and archi-

tecture. Also, the decoupled design allows for an effective

power gating mechanism of MMA, which is leveraged

by the Workload Optimized Frequency (Section IV-A) to

boost performance when the unit is not utilized.

• MMA unit minimizes data movement for outer-products

by keeping input/output operands on local accumulators,

thus avoids the consecutive reads and writes to the

register file that existing approaches require for each

operation.

• MMA’s 2D design grid aligns with the structure of the

outer-product computation, whereas vector computations

are one dimensional and need additional constructs to

fold into a 2D arrangement.

• MMA provides direct support of outer-product operations

(BLAS Level 2 operations [11], [31]), which are key for

dense numerical linear algebra kernels, whereas vector

instructions require additional steps –e.g. extra load or

splat instructions– to convert the BLAS2 operations into

one dimensional (BLAS Level 1 [11], [31]) operations.

• MMA design allows efficient back-to-back execution

latency of MMA instructions in contrast to comparable

vector instructions by having accumulators already in the

functional unit.

• MMA instructions are more fine-grained than a complete

matrix multiply unit and they can also be used as the

building blocks of other computations such as convolu-

tion, triangular solve and discrete fourier transform.

The rest of the section provides an analysis of the signif-

icant efficiency improvements of these design decisions for

the MMA implementation on POWER10 for key targeted

workloads.

1) Evaluation of individual compute kernels: The power

consumption of common computational loops has been ana-

lyzed using pre-silicon models at iso voltage-frequency be-

tween POWER9 and POWER10 to estimate the energy effi-

ciency benefits from the MMA. Fig. 5 shows the FLOPs/cycle

and core power consumption of an OpenBLAS-representative

DGEMM Kernel of MMA and VSU code relative to the

POWER9 baseline for single thread (ST) run. Note that the

VSU version has not been specifically optimized to POWER10

microarchitecture. Performance and Core Power results are

average measurements across multiple 5K cycle windows of

the kernel to reduce data variability coming from cross-inner

loop transitions and data switching effects, which we observed

to be significant for the MMA unit.

In the VSU code, we observe the POWER10 performance

is significantly increased, with a FLOPs/cycle 1.95× that

of POWER9, and a reduction of 32.2% of in-core power

consumption. When comparing POWER10 MMA code vs

POWER9 VSU code, the performance is increased by 5.47×,

while the power is reduced by 24.1%. Note that the MMA

version of the code performs more work per instruction

–i.e. 27.9 double precision FLOPs/cycle (87.1% of peak)–

whereas the vector version achieves 9.94 FLOPs/cycle (62.1%

of peak)– on POWER10. We expect higher utilization ratios

once the kernels are fully optimized for POWER10 and higher

SMT levels are used.

Overall, both versions of code –whether leveraging the new

MMA unit or not– increase performance per cycle and also

reduce core power, providing a significant increase of overall

core energy efficiency that stems from the new energy efficient

core design (POWER9 VSU vs POWER10 VSU) as well

as from leveraging the new MMA execution unit (POWER9

VSU vs POWER10 MMA). As an example of that, during

development of the MMA version of the code, we observed
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Fig. 5. Performance and core power normalized to POWER9 base-
line VSU code showing the performance and power benefits of the new
POWER10 core design. Same POWER9 VSU code on POWER10 achieves
1.95× FLOPs/cycle, and the new code leveraging the MMA unit achieves
5.47× FLOPS/cycle. In both cases, the core power consumption is also
decreased by 32.2% and 24.1%, increasing the overall core energy efficiency
significantly.

0.0

1.0

2.0

3.0

4.0

GEMM inst ratio Total Instructions CPI Cycles Total speedup

R
e

la
ti

v
e

 V
a

lu
e

ResNet-50

3.55X

2.25X

0.0

1.0

2.0

3.0

4.0

GEMM inst ratio Total Instructions CPI Cycles Total speedup

R
e

la
ti

v
e

 V
a

lu
e

BERT Large

POWER9 (baseline) POWER10 (w/o MMA) POWER10 (w/ MMA)

3.64X

2.08X

Fig. 6. Performance Comparison of POWER9 core, and POWER10 core (with
the MMA disabled and enabled) running a PyTorch-based FP32 ResNet-50 and
BERT-Large models. The figures show the fraction of SGEMM instructions,
and the total instructions, CPI, total execution cycles and overall speedup
relative to the POWER9 core baseline. Due to the larger proportion of GEMM
instructions the MMA-induced speedup in BERT-Large is slightly higher than
in Resnet-50

that a not-fully optimized MMA version of the kernel was

already achieving significant performance gains at lower core

power when compared to the vector version of the code on

POWER10.

2) Evaluation of end-to-end AI workloads: In addition to

GEMM kernels, we modeled the benefit of the MMA when

applied to end-to-end CPU-based AI inference workloads.

Most AI inference applications spend a significant fraction

of their execution in GEMM operations, and hence show

substantial MMA utilization. We evaluate workload traces cor-

responding to two pre-trained PyTorch-based models, namely

an image classification application using a ResNet-50 [24]

model on the ImageNet validation dataset [19] and a question-

answering application using a BERT-Large [49] model on the

SQuAD v1.1 dataset [35]. We use batch sizes of 100 and 8

for ResNet-50 and BERT-Large respectively. The MMA is

enabled by linking to an optimized OpenBLAS library [50]

during execution, which computes 8x16 SGEMM panels on

the MMA.

Fig. 6 compares the estimated performance of a POWER10

core (with the MMA disabled or enabled) relative to a

POWER9 core, for the ResNet-50 and BERT-Large models.

When the MMA is disabled, the SGEMM kernels are mapped

to the vector unit (VSU) executing Vector Multiply-Add

instructions, and when enabled, they are mapped to MMA-

dedicated Matrix Multiply instructions. These instructions are

much more efficient in expressing the computations, since

a single matrix-multiply instruction replaces several vector

multiply-adds, resulting a much smaller instruction count when

the computations are mapped to MMA instead of the VSU.

We observe speedups of 3.55× and 3.64× for an MMA-

enabled POWER10 core over POWER9, and 2.25× and

2.08× for the MMA-disabled, POWER10 core, when running

ResNet-50 and BERT-Large respectively. Note that while the

MMA-enabled POWER10 speedup is greater in BERT-Large

than in ResNet-50, the speedup without the MMA is lower.

This can be attributed to the core-level microarchitecture

improvements being less impactful in BERT-Large due to its

larger model size (> 10× more parameters than Resnet-50)

and consequently, the greater contribution of data-loading and

preprocessing to the overall execution time. We observe further

improvements of 2.5× by increasing the per-socket core count

from 24 to 60 and an estimated 1.1× due to improvements

in bandwidth, software and other system-level configurations.

This yields overall socket-level estimated speedups of up to

10× for both the Resnet-50 and BERT-Large models running

on an MMA-enabled POWER10 processor. For INT8 models,

our pre-silicon estimates project an additional increase in

performance leading to as much as 21× that of POWER9.

Our evaluations on pre-production POWER10 hardware are

consistent with these projections and the hardware results show

a difference of < 5% when compared to the above simulation

results.

III. NEW PRE-SILICON MODELING METHODOLOGY

POWER10 was targeted to provide a major microarchitec-

tural update, while also adopting a new high performance

CMOS fabrication technology (Samsung 7nm HP, versus

POWER9's 14nm HP GlobalFoundries technology). It was im-

portant to adopt a pre-silicon definition and modeling regimen

that provided a much more agile environment (Fig. 7) than the

traditional flow [29], [30], [37], [51]. As such, the decision

was made to rely on in-flight RTL optimization for power-

performance analysis. In other words, power-performance

trade-offs and optimization decisions were made directly using

analysis based on the evolving RTL model, starting from the

reference POWER9 RTL baseline. There was less reliance

on the POWER10/M1 model in the early stages of design;

rather the prior-generation POWER9/M1 model was useful

in establishing fundamental power-performance trade-offs that

led to sound decisions on features to add to the POWER10/M3

model. Due to the significant magnitude of micro-architectural

changes from POWER9 to POWER10, the POWER10/M1

model developed into full maturity later during the design

cycle, as it factored in brand new elements of the design (e.g.
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Fig. 7. High-level view of new pre-silicon modeling.

changes for power efficiency detailed in Section-II or the inline

MMA accelerator detailed in Section II-B).

A. Generation of Workload Proxies and Traces

In order to pursue an in-flight RTL optimization-based

microarchitecture definition process, there was a need to

develop an accurate abstraction of the workload suite. This

abstraction had to contain a variety of representative code

snippets that are simple and small enough for the partial –i.e.

not complete– and lower-speed RTLSim to process the code

correctly and in reasonable time, but still accurately reflect

the full-suite power-performance trade-offs. These snippets, in

conjunction with well-known code kernels – e.g. daxpy – and

synthetic microbenchmarks targeted to various aspects of the

microarchitecture [4], [6]–[8], [17], [46] –which are designed

to understand design corners– provided a rich coverage of

workload behaviors from an early stage.

In order to generate early projections of power and per-

formance for the SPECint benchmark suite, SPECint proxy

workloads were generated using the Chopstix tool [15]. The

top 10 most executed functions of each benchmark were

extracted for each benchmark, achieving a coverage between

41% (e.g. gcc which has execution spread on many small

functions) and 99% (e.g. xz which has the execution concen-

trated on few functions). Multiple invocations of these top

most-executed functions of each benchmark, with the code

and data state captured from memory, are used to generate the

executable payload for RTLSim. The original captured core

and data state of each traced invocation was automatically

transformed into L1-contained (endless) loops running in real

mode (without address translation) to have consistent and

repeatable results during the duration of the project. In the end,

1935 SPECint proxy workloads were generated in total from

the SPECint benchmarks and were selected for POWER10

processor characterization. These proxy workloads provided

an average coverage of 70% for the SPECint suite.

Despite the limited size of these code snippets (ranging

from few hundred to up to 22K instructions), the large

variety of proxy workloads provided three main benefits.

First, by avoiding interference of other (still being developed)

elements that would require larger workloads to assess their

performance, such as caches and branch predictors, these

proxy workloads enabled designers to focus very early on

core pipeline implementation issues using real code from

applications not covered by traditional synthetic test suites

inherited from previous generations. Results of these snippets

were tracked and compared against POWER9 results to detect

performance regressions (lower performance vs POWER9) and

to pinpoint cases where core performance does not achieve the

generational performance improvement goals for the project.

Second, the L1-contained steady-state nature of the proxies

allow them to be used on all the development stages: from

RTL simulation right through to final hardware. At every

stage, one can execute the workload proxies to perform cross-

model/cross-environment validations on a large variety of

behaviors, avoiding measurement granularity issues coming

from the time scale disparities of each environment. Finally,

the rich set of workloads enables generation of first-order

power/performance projections for the entire suite (based on

the weight assigned to each snippet with respect to the entire

application). These projections can also be readily compared to

the previous design, on which the proxies have been similarly

executed.

As an alternative to detailed latch-accurate simulations using

workload proxies, it is also possible to achieve highly accurate

performance estimations (within 5% of hardware) by means

of M1-model based simulations. However this requires repre-

sentative instruction traces, both for validation against existing

processors as well as projection on future processors. Existing

Simpoint-based techniques [34] or their variations [16], [33],

currently used for generation of representative traces, have

several limitations, particularly in the case of AI workloads.

The offline evaluation phase requires end-to-end simulation

of the entire application which can take several days or

weeks. Traces are generated in Simpoints by clustering Basic

Block Vectors (BBVs) from the application. However, BBVs

may not be the correct granularity for evaluation as several

architecture parameters such as LLC misses, branch misses

and application characteristics such as periodicity cannot be

effectively captured. Finally, Simpoints have been empirically

shown to be less accurate for interpreted languages such as

Python which is the basis for most AI workloads.

To address these shortcomings, we devise a methodology

called Tracepoints based on hardware performance counter

data instead of simulation-generated BBVs. Performance

counter information is collected at an epoch-level granularity

of a few ms and these epochs are assigned to different

histogram bins based on their CPI and/or other performance

metrics such as number of cache misses, branch mispredic-

tions, Integer, FPU and Vector operations. Individual epochs

are picked from histogram bins, so as to match the aggregate

performance of the actual application, and concatenated to

form a trace. Tracepoint-based methods have also been em-

pirically found to produce traces that closely match hardware

performance for interpreted language-based workloads.

Since the MMA in POWER10 is capable of executing

GEMM operations more efficiently than the Vector Unit in

POWER9, this would result in a difference in the number of
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instructions, cycles, compute operations and other parameters

across the same instance of execution on the two machines.

This makes it difficult to establish an equivalence between

traces generated from hardware performance counter data

collected on POWER9 and projected on POWER10. Hence,

we generate MMA-aware traces using the Tracepoints method-

ology, that are representative of the end-to-end application,

not only in terms of CPI, but also in terms of the number

of BLAS [11], [31] API calls comprising of GEMM kernels

dictating MMA utilization. Traces are validated against real

hardware measurements on a POWER9 system.

B. Power Modeling with RTLSim

In previous generations, power modeling was performed

continuously on well-known workloads of interest, includ-

ing maximum power stressmarks, using IBM’s Einspower

methodology [20]. The increased focus on energy efficiency

for POWER10 required that developers focus not only on

feature implementation and performance, but also on power

consumption in the early design stages. This in turn required

new innovations in the existing power modeling of the RTL-

Sim methodology to increase the power behavior visibility and

to optimize power in the early stages.

New tools were developed to support the power optimization

flow during development. Specifically, the IBM EDA team

developed Powerminer to provide a full range of stats for

logic activity directly related to power consumption, including

logic/data/ghost switching stats and clock gating. The switch-

ing feedback from Powerminer helped designers to evaluate

and optimize the design without requiring to execute the full

and detailed Einspower characterization flow that involves

going through the time consuming physical design flow. This

complemented the existing range of tools available to the

designers and was key to supporting the goal of energy

efficient design and implementation as the designers were able

to implement their own quick optimization loop –based on

several metrics related to power consumption– without having

to rely on other steps of the design methodology.

An additional focus of the POWER10 early stage analysis

was to increase the behavioral coverage by expanding to use

many newly-developed proxy workloads. This work signif-

icantly increased the number of workloads used to regularly

evaluate the design, and provided more statistically meaningful

data as to where to focus additional design effort. Instead of

focusing on specific corner cases that showed maximum power

consumption for particular units, designers were able to glean

insight into the average power consumption and expected (i.e.

typical) power ranges, as well as quickly detect behavioral

outliers. Needless to say, the overall process required a much

higher degree of automation to overcome the challenges from

scaling-up the methodology. Not only were more workloads

being regularly evaluated, but more tools were also being

executed for each workload. The final implemented tool-flow

is shown in Fig. 8.

For each workload, the region of interest –i.e. the measure-

ment window in cycles and instructions– is computed based

Fig. 8. Continuous power and performance modeling with RTLSim.

on a baseline run (or previous runs). This ensures compa-

rable results over time, since the measurement window (in

cycles) may change as the RTLSim implementation evolves.

The workload is then executed on RTLSim, generating the

execution trace, performance stats and other logic activity

files required to drive Powerminer and Einspower. Powerminer

generates detailed logic activity stats, and Einspower generates

accurate power reports by taking into account the physical

design implementation. The execution trace is also converted

into an M1-compatible format, and fed into the M1 model

which generates its own higher-level performance stats. For

each workload characterized, the summary selects ∼40K stats

for modeling and analysis. The exact amount varies based on

the target purpose of the modeling and analysis process. Note

that this is a small subset of all the detailed stats that the

different tools generate, which are stored in a database for

deep-dive debugging and analysis if needed.

Finally, the enormous amount of data generated with the im-

proved continuous characterization process made it necessary

to also automate the process of summarizing and analysing the

results. Tools were developed to generate summaries and find

optimization opportunities. For instance, one can detect strong

relationships between power and logic activity, and/or other

high level performance metrics, outliers, mismatches between

RTLSim and M1 model etc. At the end of the process, the

designer obtains a unified view of power and performance

at various levels for each workload snippet (i.e. regions of

interest) being measured. This high level of automation also

enabled the systematization of other steps of the modeling

methodology, which are presented in Section III-D (the M1-

linked power model) and Section IV-C (Power Proxy hardware

definition).

During the duration of the POWER10 project, several

metrics of interest were continuously tracked in order to assess

the project execution. These metrics included, for instance,

the Instructions per cycle (IPC), the Core power consumption,

the Core efficiency, the Number of latches in the core, the %

of Clock enabled (inverse of % Clock gating), Potential latch

switching (potential latch activity when latch is clock enabled),

and Observed latch switching ratio (the latch is clock enabled

and signals actually switch) with respect to the number of

latches in the design.

By retrospectively analysing the data, we see the expected

variations during early stages of a design project, resulting

from both design changes and improvements in the physical

design synthesis methodology. As the project progresses, core
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efficiency improved due to two primary factors. First, per-

formance improvements (new features and performance fixes)

are implemented in the new design as described in Section II.

Additionally, the power consumption of design elements is

significantly reduced. Initially, this reduction comes from the

benefits of a new technology, but as the design matures, addi-

tional efficiencies are realized from improvements in both the

physical design synthesis and more efficient implementation

of features in the core design.

Overall, the tracking of these metrics, enabled by the pre-

silicon modeling methodology, allowed a notable increase in

core performance while maintaining the power consumption

efficiency by providing continuous feedback to guide designer

decisions. Specifically, these pre-silicon results of the SPECint

proxy workloads were cross-validated with longer SPECint

runs executed on APEX (See Section III-C) to project the

1.3× improvement in core performance at 0.5× the power con-

sumption when compared to POWER9. This results in a 2.6×

energy efficiency gain at the same voltage and frequency, with-

out including efficiency boosts available from other aspects

such as the compiler (i.e. using code specifically targeting the

POWER10 architecture) and Workload Optimized Frequency

(See Section IV-A). Overall, the new pre-silicon methodology

provided a high degree of confidence in the projections and

the initial measurements of test cases on early POWER10

hardware show significant improvements in efficiency in line

with the estimations.

C. Power Modeling Acceleration with APEX

The snippet sized proxy workloads described in III-A pro-

vide a good means to drive early power/performance analysis.

However, to accurately capture some effects such as branch

prediction, flushes, cache, TLB misses, instruction and data

prefetching, larger workload segments are needed. Power

analysis for large workload segments is too slow using the

software-based RTLSim simulator. A new methodology, the

Awan Power Extractor (APEX) methodology (Fig. 9), lever-

aging the IBM internal Awan hardware accelerated simulation

platform [18], was therefore developed. Awan can achieve

simulation speeds of well over 100k cycles/second even for

multi-core chip models. To track all clock and data switching

activity in the design, the RTL is instrumented with edge- and

level-triggered LFSR counters for the subset of signals used

by Einspower for its power calculations. The number of clock,

latch, array, and logic signals for which switching activity

is tracked for a core+L2+L3 APEX model amount to about

8M, the majority of which are primary inputs and outputs

and internal signals of logic macros. During simulation, a

batch routine is called by the Awan runtime at configurable

intervals, or at specific simulation events (such as start of stat

collection after warmup) and the activity is extracted from the

switching counters. The switching activity can be either stored

to a file, to generate detailed power reports using Einspower,

or a simplified power report can be generated on-the-fly

by APEX using pre-extracted activity signal groupings and

associated effective capacitance. This APEX solution provides

Fig. 9. APEX Tool Flow.

a 5000× speedup in power simulation over RTLSim, while

providing identical accuracy. Since activity is extracted for

every latch and signal of interest in power calculation, the

APEX-produced activity files can also be used with other IBM

tools, such as Powerminer, for further detailed switching and

power analysis. Signal event trace files can also be extracted

from the APEX runs providing a cycle-by-cycle trace of logic

signal events to support further power debug deep dives by

designers. Checkpoints corresponding to the event trace can

also be used with a RTLSim side model to provide simulation

based validation of eventual design fixes before being checked

in to the main code branch.

Additionally, as the design matures and the RTL for com-

ponents outside the core becomes available, it is desirable to

model the power at the full chip level using the larger workload

segments. A chip level model is therefore needed to account

for the full cache hierarchy and memory latencies impact on

power. The chip model provides the ability to detect and debug

power/performance anomalies for real workload scenarios un-

der real chip behavior. As an example, one power anomaly was

detected for the omnetpp SPEC workload, where the power

was unduly high relative to its IPC. The cause was quickly

identified as stemming from the sequential operation of the

memory unit in the core, causing undue performance driven

speculative reissues during certain high miss-rate conditions.

Enabling pipelining of the memory unit readily solved this

issue.

Executing large benchmarks under real cache and mem-

ory bandwidth and latencies provides significant additional

accuracy in modeling. Fig. 10 illustrates the difference in

performance and core power for an APEX core model with in-

finite L2 (circle shapes) versus an APEX chip model with full

cache and memory hierarchy (triangle shapes) for the SPECint

benchmark suite in SMT2 mode. Memory bound workloads,

such as illustrated by the gray colored entries in Fig. 10, have

a significantly different power/performance characteristics in a

chip model. This increased accuracy afforded by a chip model

and larger workload segments also allows analysis of absolute,

rather than relative power and performance measures. Absolute

power analysis in turn allows pre-silicon projections useful
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Fig. 10. POWER10 Core power for Core vs Chip RTL simulation models
for the SPECint benchmark suite represented by 160 simpoints run in SMT2
mode. Power/IPC points for the APEX chip model is represented by triangle
shapes and the APEX core model by circle shapes. The points are color coded
by benchmark.

for WOF design and also feeds into PFLY and CLY analysis

for product offering consideration. New APEX models are

generated for major new RTL chip versions that are typically

released at a monthly to semi-monthly cadence.

D. Power-Performance Modeling with M1 simulator

Early stage power modeling methodologies are important to

perform accurate scaling of an abstracted model and to enable

exploration of new microarchitectural features in the early

design stages. The new pre-silicon modeling methodology for

POWER10, with simultaneous development and experimenta-

tion in both the M1 and RTLSim models, was extended to

allow the continuous transfer of the power information from

the current RTLSim implementation to the higher-level M1

performance model. This capability provided an automatic

means to keep the M1 model in sync with the developing RTL,

and provided a means to investigate the power behavior of the

latest hardware implementation on much larger and realistic

workloads by running the fast M1 model using the latest power

model data.

The generation of the M1-linked power model relied on the

extensive power modeling performed at the RTLSim level. The

implemented tool-flow executes the workloads at the RTLSim

level and at the M1-level. By using the existing counter-

based power modeling methodologies based on machine learn-

ing techniques [8]–[10], [29], the set of performance stats

reported by the M1 model were systematically selected to

create accurate power models based on the current RTLSim

implementation. Overall, the large variety of workloads –

more than 25K–, including the workload proxies as well as

synthetic workloads, allowed the generation of robust M1-

linked power models. Fig. 11 shows the average error on active

power of the models generated for different number of inputs,

modeling methods and constraints. Active power is defined

as the workload-dependent part of the power consumption,

that excludes the leakage and active-idle power. Note that the

average error reported in this chart is further reduced when

all such static components are taken into account. The results

showed that when increasing the number of inputs, the error

%
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Fig. 11. M1 linked active power modeling accuracy for different number of
inputs and modeling constraints.

is reduced, achieving less than 2.5% on active power when

the number of inputs is maximized.

As the project progressed, the top-down core model was

superseded by a bottom-up one. Per-functional-unit power

models were implemented, thanks to the user-configurable

granularity of the Einspower reports which can provide, for

instance, hardware-macro level granularity. These fine-grain

power models provide more detailed insights about which

higher-level performance events are the drivers of the power

consumption of each different component, and allowed the

detection of corner cases and unusual power behavior. For

this project, 39 components were defined and a counter-based

power model was implemented for each of them by applying

similar modeling design explorations and techniques applied

for the coarse grained core power model but with the aim

of minimizing the number of inputs –within reasonable error

bounds–. The rationale for such an approach is to generate

models with the few key performance events driving the power

of each particular component. This results in simpler and

more interpretable models for designers to understand. The

breakdown was based on the contribution of each specific

macro/component to the overall power. After the modeling

process, besides regular validation of each and every model

accuracy, per macro models were added to create a bottom-

up core model and the estimations were validated against the

coarse grain core model for consistency. Fig. 12 shows the

correlation between the estimations of the two models when

applied to 1480 large workload traces executed on the M1

performance model. On average both modeling approaches

differ only by 3.42%, while still providing similar accuracy

levels when compared to the reference Einspower output. The

bottom-up macro model, which can be broken down into 39

separate power components, uses only a total of 72 events,

which is far less than the number of events used by the top-

down core model.

E. Power-Aware Latch Reliability Modeling and Optimization

Reliability is a key feature driving the POWER10 de-

sign right from an early stage. We introduce the SERMiner
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Fig. 12. M1 linked power models comparison.

methodology for mitigating processor vulnerability, partic-

ularly to radiation-induced soft errors, with minimal en-

ergy/performance overheads. SERMiner estimates vulnerabil-

ity based on switching characteristics derived from latch-level

simulations using RTLSim. It also determines key components

of interest from among the latches, register files and flip-

flops in the design that would most benefit from protection or

hardening. Such an approach enables us to establish a more

fine-grained and efficient method for RAS implementation.

Due to the fine granularity of clock-gating in POWER10,

SERMiner adopts clock utilization, or the fraction of cycles for

which a latch is clocked, as an effective proxy for vulnerability,

as opposed to data-residency-based evaluations used in prior

works [37]. This is because latch data is refreshed every cycle

that the latch is clocked, regardless whether the value changes

or not.

1) Latch Derating: A latch is said to be derated if an SER-

induced bit flip does not manifest in a change in other latch

values, and can be categorized as either Static- or Runtime-

derated. Most latches that never switch through the entire

execution period for any workload, with the exception of

some configuration latches usually set during initialization,

are assumed to be static-derated. Runtime-derated latches are

those that have non-zero switching across one or more target

workloads, but whose switching value falls below a specified

threshold known as the Vulnerability Threshold (VT). The

VT determines the minimum switching value required for a

latch to be termed as vulnerable. For instance, a VT=10%

would mean that latches whose switching activity is within

the top 10th percentile across all workloads, are considered

vulnerable. Higher the VT value, greater the number of latches

that will be classified as vulnerable. Functional clock gated

latches retain state even when not clocked, and are hence

potentially vulnerable throughout the period of execution,

including when they are clock-gated.

2) Evaluated Workloads: We carry out derating estimates

on a combination of synthetic testcases generated by the

Microprobe tool [8] for varying SMT (ST, SMT2 and SMT4),
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Fig. 13. Variation in static and runtime latch derating for different synthetic
and real testcase suites. The figure shows runtime derating for different
vulnerability threshold (VT) values of 10%, 50% and 90%.
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derating. The improved runtime derating in POWER10, in spite of a higher
latch count, can be attributed to a comprehensive RAS-aware design approach.

Dependency Distance (DD, 0 and 1 instructions) and latch

data initialization (zero, random) parameters, and SPEC CPU

2017 proxies described in Section III-A. Fig. 13 shows the

variation in derating observed across all workloads, for VT

values of 10%, 50% and 90%. Designers may either choose

to protect/harden all latches that are not statically derated as

a conservative RAS protection policy, or may adopt more

aggressive policies that protect only highly utilized latches.

For instance, only around 25% of the total latches would be

vulnerable for VT=10% , while VT=90% would result in 52%

of the total latches being classified as vulnerable.

Fig. 14 compares derating between POWER9 and

POWER10 cores (higher derating is better). We observe a

higher runtime derating in POWER10, with the difference

becoming larger with increasing VT. This implies that a

smaller fraction of latches needs to be protected in POWER10

compared to POWER9 to achieve a comparable degree of

resilience between the two processors. In contrast, static

derating in POWER10 is lower by ∼10%, resulting in fewer

inactive latches during execution. The higher runtime derating

in POWER10 results in a more efficient RAS implementation,

and hence a lower power overhead required to attain the

same level of resiliency. As a result, POWER10 is able to

enhance RAS while reducing the associated power overheads,

compared with POWER9.
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IV. CORE POWER MANAGEMENT

This section describes the core power management infras-

tructure developed as a key piece in optimizing power and

performance of the system.

A. Workload Optimized Frequency - WOF

Power management techniques are used by most modern

processors to provide maximum performance for a given

power and thermal envelope [2], [14], [27], [38]. The

POWER10 processor design supports Workload Optimized

Frequency, where the frequency operating point and instruc-

tion throughput is adjusted to stay just under the power and

thermal limits of the socket, providing a performance boost

for typical workloads. This allows workloads that do not

consume as much power as the system's thermal and voltage

regulation design points (TDP/RDP) to operate at a higher

clock frequency than specified by the nominal baseline, giving

such workloads increased performance. IBM’s WOF power

management is unique in that it offers a deterministic perfor-

mance boost which is a requirement for many customers. The

same workload running on two POWER chips from the same

sort (offering) with identical system configurations will deliver

the same performance under typical ambient conditions. While

frequency (and corresponding voltage) is the primary lever

utilized by firmware to optimize the performance/power of the

processor, the POWER10 core also employs a power proxy

based core throttling scheme (see IV-C) which can control

the throughput of individual cores.

The Workload Optimized Frequency (WOF) boost projec-

tions were primarily made using the SPECint benchmark

suite as a representative customer workload. APEX (see

Section III-C) was used to extract the activity from the

SPECint workloads, and Einspower to calculate the power

consumption. The resulting difference between the workload

and the supported system design point is represented as an

Effective Capacitance ratio which is fed into the PFLY and

CLY analysis for workload specific frequency and performance

projections.

In addition to workload driven variations in power, WOF

also takes advantage of idle regions of the chip that are

powered off by power management firmware. For the core

power management, one such example is the MMA unit which

can by dynamically powered off to save leakage power that

is instead applied to achieve higher performance. The MMA

architecture was carefully planned to minimize the impact

of power on latency by not requiring array initialization or

restoration of scan rings, other than scan latches required

for circuit performance or timing in response to process

variation. To minimize the impact of MMA power-on latency

on performance, special hint instructions are provided in the

architecture to proactively wake up the MMA unit. In addition,

the firmware can select how long the MMA must be idle before

powering off.

B. Core Throttling

To support per core power and voltage droop management

beyond DVFS, WOF supports two flavors of core throttling

mechanisms. For customers that require a fixed frequency

operation or in situations where the core already operates

at Fmin, a fine-grained instruction throttling mechanism is

provided to ensure the system operates within allowed current

and thermal limits. In this operation mode core power proxy

feedback allows for faster learning, yielding more efficient

adaptive control loops.

Additionally, a set of coarse grained throttling mechanisms

are employed at numerous control points in the core pipeline,

execution engines, and caches/queues to respond to voltage

droops caused by a sudden change in workload. This can

manifest as an instantaneous swing in active current causing

on-chip droops on the local power grid or a system level

droop on the voltage supply rail caused by over-currenting

the voltage regulator [7]. A Digital Droop Sensor (DDS) –i.e.

a new generation CPM-like sensor [46]– is embedded in each

core to measure timing margin as seen by the transistors in

the sub 1ns timescale, where it is used to quickly detect and

engage the coarse throttle controls to preserve adequate circuit

timing margin.

C. Core Power Proxy

The use of power proxies is common in most high-

performance processor designs [12], [22], [47] to generate

fast predictions of power consumption, which are utilized by

the power management mechanisms such as WOF. Previous

implementations relied on designer expertise to manually

define the set of inputs to track [5], [21], [22], [25], [47],

[48]. With the new POWER10 methodology, the process of

defining the inputs and their validation now leverages a rich

data-set to automatically select the tracked inputs from the set

of signals available in the design. This minimizes the risk of

escapes by guaranteeing that the right set of inputs is selected.

During the continuous RTLSim power modeling process

flow many regular signals, as well as instrumentation counters

added by designers to debug and validate design functionality

and efficiency, were tracked. While the debug counters are

not implemented in the final core, they were used in the

POWER10 power proxy design. These counters were analyzed

using machine learning techniques similar to those used when

generating the M1-linked power model [8]–[10]. In contrast to

the M1 software based power model, actual implementation

constraints, e.g. number of counters to implement, had to

be taken into account. From the ∼500 counters analyzed,

thousands of models were generated with different modeling

constraints, such as number of inputs, coefficient ranges (all

positive or not), intercepts (with and without). The detailed

design space analysis allowed the selection of the most

effective set of counters for the final design power proxy

implementation. Once the power proxy implementation was

selected, the design was included in subsequent RTLSim runs,

and the analysis was repeated to validate counter selection.

Overall, this methodology minimized the risk of escapes and

40

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 14:28:00 UTC from IEEE Xplore.  Restrictions apply. 



Active Power Average % Error

%
 E

rr
o

r

Number of inputs

(a)

Power Proxy Average % Error vs Time Granularity

(b)

Fig. 15. (a) Power Proxy active power accuracy for different number of inputs
and modeling constraints. (b) Average error in core power predictions versus
time granularity in cycles.

built confidence in the design. Fig. 15(a) shows the accuracy

trade-off for different numbers of input counters. The figure

shows modeling accuracy of the active power consumption.

For POWER10, a simple design with 16 counters was selected

with a 9.8% error on active power, which reduces to <5%

when including static power contributors (i.e. leakage and

active-idle). Another key aspect of the design was to determine

the time-granularity at which the Power Proxy is capable

of generating accurate information. The time-granularity has

implications on the efficiency of the power management

mechanisms that rely on the Power Proxy –for example, noise

mitigation mechanisms require very fast reactions to power

variations–. Given a specific Power Proxy definition, Fig. 15(b)

shows the average error of the total core power prediction

at different time-scales. Predicting every 50 cycles or more,

yields a near-best case accuracy, although the error starts to

increase dramatically as we reduce the granularity further.

V. CONCLUSIONS

We highlight a number of the micro-architecture and

logic/circuit innovations of a new server-class processor core

(POWER10) focused on improving performance and energy

efficiency. We describe the use of novel, agile and accurate

pre-silicon modeling methodologies to help achieve a SPECint

performance increase by 30% at the core-level, while at the

same time, reducing power consumption by 50% in com-

parison with the prior generation POWER9 based on pre-

silicon projections. In terms of domain-specific acceleration,

the inline accelerator (matrix multiplication assist - MMA)

was estimated to boost socket-level performance of a class of

AI/ML/HPC workloads by up to 10× over POWER9 for FP32

computations and up to 21× for INT8 precision inferencing.
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