
Focusing Processor Policies 
via Critical-Path Prediction

ISCA 2001

Brian Fields* Shai Rubin* Rastislav Bodík*
*University of Wisconsin-Madison

Presented by

Jan Mantsch



Executive Summary
Motivation: 

- Egalitarian scheduling policies in processors waste resources
- Increasing parallelism and sophistication in processors justify 

critical path analysis

Key Idea:
- Predict whether an instruction is on the critical path

in hardware while keeping cost for graph model as low as possible

Challenges:
- Compile-time optimizations only consider data dependences
- Processor only ever sees fraction of program 

-> How to optimize for global critical path?

Key Mechanism:
- Token-passing algorithm to estimate criticality of nodes

Results:
- Better scheduling improves CPU performance up to 21%
- Optimized prediction improves CPU performance up to 5%

2



Overview

- The Model of the Critical Path

- Predicting the Critical Path in Hardware

- Applications of the Critical Path Detection

- Conclusion

- Paper Analysis

- Discussion

3



Compiler Model of Dependences
I0: r5 = 0
I1: r3 = ld[r2]

L1 I2: r1 = r3*6
I3: r6 = ld[r1]
I4: r3 = r3+1
I5: r5 = r6+r5
I6: cmp R6,0
I7: br L1
I8: r5 = r5+100
I9:   r0 = r5/3
I10: ret r0

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

4

Compiler optimizes 
execution by analysing 
data dependences



Weaknesses of Compiler Based 
Approaches

Compiler models critical path solely based on 
data-dependece

-> Other dependences and hardware 
constraints are not considered, i.e:
- Control dependences
- In-Order dependences
- Re-order buffer limitations
- ...

5



Model of the Critical Path

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Dispatch Node Di
Execute Node Ei
Commit Node Ci 6

Idea: Model each dynamic
instruction with 3 nodes



Classification of Edges

DE: Execution follows 
dispatch

EC: Commit follows 
execution

DD: In-order dispatch
CC: In-order commit
EE: Data dependences
CD: Finite re-order 

buffer
ED: Control dependence

E6 E7 E8 E9 E10

D6 D7 D8 D9 D10

C6 C7 C8 C9 C10

ROB size = 4

7

0 1 3 1

0 1 0 1

1 1 1 1 1

1 1 1 1 1

0

0

1 7



Critical Instructions

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1 1 1 1 1 1 1 1 1 1 1

2 3 4 3 2 2 2 2 2 8 3

0 1 0 1 0 1 0 1 3 1

0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0

2 3

1
2

1

2

1 7

4

8

-> Critical Instructions: I0, I1, I2, I3, I7, I8, I9, I10



Validation of Critical Path 
Model: Methodology

1. Run simulation with benchmark workloads as 
baseline.

2. Build critical path graph from baseline run.
3. Run two comparison simulations:

1. All critical path latencies decreased by 1
2. All non-critical path latencies decreased by 1

-> Idea: If latencies on critical path are reduced, 
overall execution time must be reduced 
too

9



Validation of Critical Path 
Model: Results

10

(a) Validation of the critical Path

- Execution time reduction for
reduced CP latencies suggests
model is good at identifying
critical instructions

- Nice insight: Reduction ratio
can be used as measure of
critical path dominance



Validation of Critical Path 
Model: Results

11

(b) Breakdown of the dynamic instruction count

- Only 26-80% of instructions
are critical

- More specifically, only 2-13% 
of instructions are execute
critical



Overview

- The Model of the Critical Path

- Predicting the Critical Path in Hardware

- Applications of the Critical Path Detection

- Conclusion

- Paper Analysis

- Discussion

12



The Last-Arriving Rules

Observation: Critical Path can be computed solely by 
observing the arrival order of instruction operands

-> If a dependence between nodes i and j (i<j) is the 
last to be resolved for node j, the according edge 
from i to j is called last-arriving

-> Each edge on the critical path is last-arriving 
edge

-> If an edge is not last-arriving, it is not 
critical

13



- Start at commit node of last instruction

- Traverse graph backwards along last-arriving 
edges

- Done when arrived at dispatch node of first 
instruction -> Critical path complete!

Building the Critical Path 
(in Simulation)

14



Critical Path Model with 
Last-Arriving Edges

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Not last-arriving
Last-arriving
Last-arriving and critical

1 1 1 1 1 1 1 1 1 1 1

2 3 4 3 2 2 2 2 2 8 3

0 1 0 1 0 1 0 1 3 1

0 1 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0

2 3

1
2

1

2

1 7

4

15



This approach works for simulations, but is too 
expensive to implement in hardware
- We would have to save almost the entire 

graph
- Backwards traversal not trivial

Building the Critical Path

16



Approximate CP with following intuiton:

Critical path is chain of last arriving 
edges through entire graph -> long last-
arriving chain is likely to be part of 
critical path

Such a chain can be found with forward
propagation of tokens 

-> Requires no graph building at all!

Key Mechanism: The Token-Passing 
Critical Path Predictor 

17



1. Plant token at node n

2. Propagate token forward along last—arriving edges. 
-> If a node doesn’t have an outgoing last-arriving 

edge, the token dies.

3. After allowing token to propagate for some time,
check if token is still alive

4. If token is alive, train node as critical; otherwise,
train n as non-critical

Token-Passing Algorithm

18



Token-Passing Algorithm: 
Visualization

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

19
Prediction: C3 is critical



Critical path table is conventional array 
indexed by the PC of the instruction

Trainer is implemented as a small token array.
It stores information about the [ROB_size] most 
recent instructions committed

-> No critical path dependence can span more than 
[ROB_size] entries

Hardware Implementation: Specs

20



Critical path prediction table: 12 kilobytes (16K entries * 6 bit 
hysteresis)

Token propagation Distance: 1012 Dynamic instructions (500 + ROB 
size)

Maximum #tokens in flight: 8

Hysteresis: Saturate at 63, increment by 8 when 
training critical, decrement by 1 when 
training non-critical. Instruction is 
predicted critical if hysteresis is 
above 8.

Planting Tokens: A token is planted randomly in the next 
10 instructions after it becomes 
available

Hardware Implementation: 
Training Parameters

21



We want to evaluate the accuracy of the proposed 
predictor
- Compare predictions to ”ideal” critical path 

model
- Comparison of latency reduction against two 

heuristics:
- oldest-unissued instruction is critical
- oldest-uncommitted instruction is

critical

Evaluating the CP Predictor: 
Methodology

22



Evaluating the CP Predictor: 
Results

(a) Comparison against ideal CP trace

23

- Up to 88% accuracy (avg. 80%)

- Especially good at correctly
predicting critical instructions



Evaluating the CP Predictor: 
Results

(b) Comparison via latency reduction

24

- Comparison against heuristics
for evaluation independent of
critical path model

- Heuristics work nicely for
some workloads

- But CP Predictor is most
robust across different
workloads



Overview

- The Model of the Critical Path

- Predicting the Critical Path in Hardware

- Applications of the Critical Path Detection

- Conclusion

- Paper Analysis

- Discussion

25



The following applications are examined in the 
paper:

- Focused cluster instruction scheduling and 
steering

- Focused value prediction

Applications of the Critical 
Path

26



Complexity of increasingly large instruction windows has 
prompted proposals of clustering (partitioning) 
instruction windows and functional units. This 
introduced new challenges:

-> Latency to bypass results increased
-> Instruction steering

-> Functional unit contention increased due to smaller 
issue width -> Instruction scheduling

-> Steering policies have conflicting goals: 
Good load balancing might increase inter-cluster 
bypass latency

Focused Cluster Instruction 
Scheduling and Steering

27



Baseline policy: Register-dependence steering
Assign instruction to cluster that procuces one of 
its operands.
If there is more than one producing cluster 
(tie), choose cluster with fewest instructions.

Decreasing Inter-Cluster 
Bypass Latency

28



Modified policy: Focused instruction steering
Assign instruction to cluster that produces one of 
its operands.
If there is more than one producing cluster 
(tie) and instruction is critical, it is placed 
into the cluster of its critical predecessor.

Decreasing Inter-Cluster 
Bypass Latency

29



Baseline policy: Prioritize long latency instructions

Modified policy: Schedule critical instructions 
before non-critical ones

-> Goal: Add contention only to non-critical 
instructions

Decreasing Functional Unit 
Contention

30



- Same workloads as before

- Observing performance degradation of
- 2-clustered 4-way issue architecture
- 4-clustered 2-way issue architecture
compared to unclustered architecture

- Further comparison against heuristics seen 
before

Evaluating Proposed Policies -
Methodology

31



Evaluating Proposed Policies –
Results

(a) Scheduling in clustered architectures

32

- Unclustered: Speedup of up 
to 7% (Average 3.5%)

- 2-cluster: Average slowdown 
from 7% improved to slight 
speedup of 1%

- 4-cluster: Degradation 
improved from 19% to 6%



Evaluating Proposed Policies –
Results

(b) Comparison to heuristics based predictors

33

- Token-passign algorithm
clearly more effective



Overview

- The Model of the Critical Path

- Predicting the Critical Path in Hardware

- Applications of the Critical Path Detection

- Conclusion

- Paper Analysis

- Discussion

34



Conclusion
Motivation: 

- Egalitarian scheduling policies in processors waste resources
- Increasing parallelism and sophistication in processors justify 

critical path analysis

Key Idea:
- Predict whether an instruction is on the critical path

in hardware while keeping cost for graph model as low as possible

Challenges:
- Compile-time optimizations only consider data dependences
- Processor only ever sees fraction of program 

-> How to optimize for global critical path?

Key Mechanism:
- Token-passing algorithm to estimate criticality of nodes

Results:
- Better scheduling improves CPU performance up to 21%
- Optimized prediction improves CPU performance up to 5%

35



Questions about the paper? 

36



Overview

- The Model of the Critical Path

- Predicting the Critical Path in Hardware

- Applications of the Critical Path Detection

- Conclusion

- Paper Analysis

- Discussion

37



- Fundamentally novel approach with global 
critical path prediction at little hardware 
cost

- Many possible applications for critical path

- Nice insight from validation approach
i.e. dominance of critical path

Paper Strengths

38



- Validation method not really sound.
Increasing all edge weights by one can have 
unwanted consequences. 

-> Solid proof not possible?

- Hardware implementation ambiguous

- No sensitivity analysis for training 
parameters

Paper Weaknesses

39



Overview

- The Model of the Critical Path

- Predicting the Critical Path in Hardware

- Applications of the Critical Path Detection

- Conclusion

- Paper Analysis

- Discussion

40



-> How could the critical path model be 
expanded to capture more dependences and 
increase precision?
-> Cache-line-sharing and other memory 

dependences are not captured by model
-> What are other dependences you can 

think of that are not captured?

Expanding the Critical Path 
Model

41



-> How could we tweak the training parameters
to increase performance / adapt to usecase?

-> Interesting parameters:
- Token propagation distance
- Maximum number of tokens in flight
- Hysteresis
- Token-planting heuristic

Training parameters

42



-> What other applications can you imagine for 
critical path analysis?

-> Some ideas:

- Scheduling memory accesses in GPUs by 
criticality (Adwait Jog, et al. SIGMETRICS 2016)

- Optimizing cache prefetching 
(Anant Vithal Nori, et al. ISCA 2018)

- Focused Value Prediction (Summet Bandishte, et al. ISCA 2020)

Applications

43

https://people.inf.ethz.ch/omutlu/pub/CLAMS-core-criticality-in-GPUs_sigmetrics16.pdf
(https://ieeexplore.ieee.org/abstract/document/8416821?casa_token=774NgCYtkkkAAAAA:m9KEry-R72I7AWCsFRD0V_lsn77zmicPhSQ5pQu4Nhfx6UhtZJLznjHNGDWFHCTrrpoe0AJspXlA)
https://ieeexplore.ieee.org/document/9138991


Thank you for your attention!

44



Back-Up Slides

45



Hardware Implementation

OOO 
Core

CP
Predictor

Instruction’s PC

CP Prediction

Last-Arriving Edges

Source node -> Target node

Prediction Path

Training Path

46



Hardware Implementation: The 
Critical Path Predictor

Processor
Core

Token Array
512 ROB entries x 3 nodes x 8 tokens

(1.5 KB)

D
E
C

Read

Last-arrive target inst
(9-bit inst id)

Committed Instruction 9

8
8
8

Source nodes’ token bits (1 token bit x 8 tokens)

Write

Last-arrive source nodes (9-bit inst id, 2-bit node type)

D node’s last arriving source node

E node’s last arriving source node

C node’s last arriving source node

11

11

11

A
d
d
r
e
s
s

OOO 
Core

CP
Predictor

Instruction’s PC

CP Prediction

Last-Arriving Edges

Source node -> Target node

Prediction Path

Training Path 47



Idea: Try to predict result of calculation to 
break data-flow dependences

Problem: If non-critical instructions are 
mispredicted, it might severely degrade 
performance. If correct, nothing 
gained.

-> Only make predictions for critical 
instructions

Focused Value Prediction

48



Focused Value Prediction: 
Evaluation

(a) Value misspeculations (b) Speedup of focused value prediction

49


