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Executive Summary

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models
« Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the Google Edge TPU suffer from three shortcomings:
« The TPU operates significantly below its peak throughput
o The TPU operates significantly below its theoretical energy efficiency
« The TPU inefficiently accesses memory

Key Insight: Customizing all accelerator key components to layer heterogeneity is crucial for good performance
o The layer characteristics significantly vary across and within the state-of-the-art Google edge models
« The monolithic design of the Edge TPU is the root cause of its shortcomings and the resulting large inefficiency

Key Mechanism: Mensa - a new acceleration framework for edge NN inference
« Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models
o Mensa improves performance and energy by 3.0x and 3.1x
« Mensa reduces cost and improves area efficiency
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Context

Outline of Edge Computing
Why deploy ML on Edge Devices?

Consumer Demand Accelerator Deployment
e Privacy . e Google Edge TPU
e Connectivity Edge Qomputlng e NVIDIA Jetson
e Low Latency Computation, storage, and e Intel Movidius
e Bandwidth analysis of data close to its e Apple Neural Engine

creation and consumption
e Constrained power budget
Technology e Limited computational resources Algorithm Development

e Internet of Things e Neural Network (NN)

e 5G Models



NN Models

Convolutional
Neural Networks (CNN)

e Feed-forward
multi-layer model

e Captures and classifies
spatial features
o Image classification
o Object detection

C—

Long Short-Term
Memory Networks (LSTM)

e Multi-layer models with
recurrent connections

e Classfies and predicts
future data sequences
o Traffic forecasting

o Text reply prediction

Input Activation

e

Output Activation

Parameters

Transducers

e Typically implemented by
stacking LSTM layers

e Classfies sequences with
distortions in input data
o Automatic
speech recognition
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Context 5

Recurrent Convolutional
Neural Networks (RCNN)

e Hybrid multi-layer
recurrent NNs

e Captures spatio-temporal
information
o Image captioning
o Video scene labeling

Input Visual Sequence  Output
Features Learning
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Take Away

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models
« Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models



Edge TPU Shortcomings

1. High Resource Underutilization
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Problem

< 1% of peak throughput
for Transducers and LSTM
on average

40.7% of peak throughput
for CNN and RCNN
on average

The Edge TPU utilizes only 24% of its peak throughput, averaged across all models.



Edge TPU Shortcomings
2. Low Energy Efficiency
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Upper bound at
33.8% of peak efficiency
for Transducers and LSTM

Upper bound at
50.7% of peak efficiency
for CNN and RCNN

The Edge TPU provides only 37% of its peak energy efficiency, averaged across all models.



Problem

Edge TPU Shortcomings

3. Inefficient Memory Access Handling
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The Edge TPU's memory system is often a large bottleneck.
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Take Away

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models
« Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the Google Edge TPU suffer from three shortcomings:
« The TPU operates significantly below its peak throughput
o The TPU operates significantly below its theoretical energy efficiency
« The TPU inefficiently accesses memory
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NN Model Characterization

1. Layer Heterogeneity across Models

Memory Footprints 100000
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Layer Composition
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Reuse Patterns
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Computational Complexity 0.001 0(‘)1 0'1 ¢ %00

Intra-and Inter-cell
Dependencies Parameter Footprint (MB)

FLOP/Byte

FLOP/B ratio

®

Layers within Layers within LSTM
CNN and RCNN and Transducer

Significant variations exist with regards to layer characteristics across the different models.



Insights

NN Model Characterization
2. Layer Heterogeneity within Models
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Variation in FLOP/Byte:

Variation in MAC intensity:
up to 244x across layers

up to 200x across layers

Significant variations exist with regards to layer characteristics within each model.
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Insights
Sources of Edge TPU Shortcomings
PE Underutilization Poor Energy Efficiency Memory System Issues
e Memory bandwidth bottleneck slows e [arge on-chip buffer e Unnecessary buffer for layers
performance results in high energy costs with little or no data reuse
e Static dataflow fails to exploit diverse e Underutilized PEs e Over-sized buffer compared to
data reuse patterns result in high energy costs average parameter footprint of layers
e Fixed size PE unfit for efficient e Frequent off-chip traffic with large data reuse
execution of layers with diverse results in high energy costs

shapes and dependencies

e

1. Key Insight: Monolithic designed Accelerators
Accelerator’s key components fail to

account for layer heterogeneity H U 0 sioned PE
Ver-provisione array

Over-provisioned on-chip buffer
Rigid dataflow
Fixed off-chip bandwidth

2. Key Insight: - 1
Monolithic approach performs
inefficiently over range of models R

The Edge TPU's monolithic design is the root cause of its shortcomings.
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Insights

Take Away

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models
« Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the Google Edge TPU suffer from three shortcomings:
« The TPU operates significantly below its peak throughput
« The TPU operates significantly below its theoretical energy efficiency
o The TPU inefficiently accesses memory

Key Insight: Customizing all accelerator key components to layer heterogeneity is crucial for good performance
o The layer characteristics significantly vary across and within the state-of-the-art Google edge models
« The monolithic design of the Edge TPU is the root cause of its shortcomings and the resulting large inefficiency
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Mensa Framework

Current Mechanism: Run entire NN model on
monolithic Edge TPU accelerator

Model A Model C

Monolithic
Accelerator

Heterogeneous accelerators with specific dataflow and
hardware optimized for subset of layer characteristics

Mechanism

New Mechanism: Distribute NN model layers
across multiple specialized smaller accelerators
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Mensa exploits the variations between and within layers for high efficiency and high performance.
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Mensa Runtime Scheduler
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Mensa's software runtime scheduler determines on which accelerator each layer should run.



Mechanism

Take Away

Context: £dge ML accelerators have to execute inference efficiently across a wide variety of NN models
« Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the Google Edge TPU suffer from three shortcomings:
« The TPU operates significantly below its peak throughput
« The TPU operates significantly below its theoretical energy efficiency
o The TPU inefficiently accesses memory

Key Insight: Customizing all accelerator key components to layer heterogeneity is crucial for good performance
« The layer characteristics significantly vary across and within the state-of-the-art Google edge models
« The monolithic design of the Edge TPU is the root cause of its shortcomings and the resulting large inefficiency

Key Mechanism: Mensa - a new acceleration framework for edge NN inference
« Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers
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Identifying Layer Families
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Compute-centric layers: Families 1 & 2

Parameter Footprint

o Small parameter footprint
e High data reuse
o High MAC intensity

= High PE utilization
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Data-centric layers: Families 3,4 & 5
« Large parameter footprint
o Low datareuse
o Low MAC intensity

2 Low PE utilization

The majority of layers group into a small number of layer families with specific characteristics.
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Results

Mensa-G
Mensa for Google Edge Models

32x32 PE Array
L i I Pascal: Families 1 & 2: compute-centric layers
« 32x32 PE Array (2 TFLOP/s)
DRAM — - - ot || « 256 KB Act. Buffer (8x Reduction)
pon Sus o 128 KB Param. Buffer (32x Reduction)
I 1 i o On-chip accelerator
848 Pavlov: Family 3: LSTM data-centric layers
PE Array o 8x8 PE Array (128 GFLOP/s)
DRAM | €—> ~  aftor « 128 KB Act. Buffer (16x Reduction)
256 GB/s ~ ,
Bt o No Param. Buffer (4MB in Baseline)
o Near-data accelerator
16x16 PE Array Jacquard: Families 4 & 5: non-LSTM data-centric layers
| | « 16x16 PE Array (256 GFLOP/s)
Act. Param. A i
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Bandwidth
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Results

Energy Analysis
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Mensa-G improves energy efficiency by 3.0x compared to the Baseline.
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Results 22

Throughput Analysis
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Mensa-G improves throughout by 3.1x compared to the Baseline.



Results

Take Away

Context: £dge ML accelerators have to execute inference efficiently across a wide variety of NN models
« Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the Google Edge TPU suffer from three shortcomings:
« The TPU operates significantly below its peak throughput
« The TPU operates significantly below its theoretical energy efficiency
o The TPU inefficiently accesses memory

Key Insight: Customizing all accelerator key components to layer heterogeneity is crucial for good performance
« The layer characteristics significantly vary across and within the state-of-the-art Google edge models
« The monolithic design of the Edge TPU is the root cause of its shortcomings and the resulting large inefficiency

Key Mechanism: Mensa - a new acceleration framework for edge NN inference
« Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models
o Mensa improves performance and energy by 3.0x and 3.1x
« Mensa reduces cost and improves area efficiency
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More in the Paper

Details about Mensa Runtime Scheduler

Hardware Design Principles and Decisions

Details about Pascal, Pavlov, and Jacquard's dataflows
Energy comparison with Eyeriss v2

Mensa-G's utilization results

Mensa-G's inference latency results

Conclusion
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Conclusion

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models
« Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the Google Edge TPU suffer from three shortcomings:
« The TPU operates significantly below its peak throughput
o The TPU operates significantly below its theoretical energy efficiency
« The TPU inefficiently accesses memory

Key Insight: Customizing all accelerator key components to layer heterogeneity is crucial for good performance
o The layer characteristics significantly vary across and within the state-of-the-art Google edge models
« The monolithic design of the Edge TPU is the root cause of its shortcomings and the resulting large inefficiency

Key Mechanism: Mensa - a new acceleration framework for edge NN inference
« Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers

Key Results: We design a version of Mensa for Google edge ML models
o Mensa improves performance and energy by 3.0x and 3.1x
« Mensa reduces cost and improves area efficiency
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Overview

Strengths




Strengths

1. LayerLevel Study of NN Models

e Novelty:
o First quantification of intra-model variation within edge models compared to traditional ones

e Mechanism:
o Investigation at the level of layer granularity generated relevant insights

e Evaluation:
o Extraction of layer clusters with high degree of validity
o Demonstration of monolithic design as a root cause for TPU inefficiencies

Strength
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Strengths
1. LayerLevel Study of NN Models

.. Mensa Multi-Accelerator Framework

e Novelty:
o First ML accelerator to exploit computational and memory heterogeneity of edge NN models

e Mechanism:
o Well-designed mechanism to overcome the shortcomings of monolithic design
o Processing in memory is an active area of research

e Evaluation:
o Practical through its integration into the existing architecture stack
o Application potential of multi-accelerator framework beyond the edge devices
m Within Data Centers?

m Processing in memory? Processing in storage?

Strength
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Strength

Strengths
1. LayerLevel Study of NN Models

.. Mensa Multi-Accelerator Framework

3. Mensa G

e Novelty:
o First implementation of Mensa accelerator framework for 24 Google Edge NN models

e Mechanism:

o Mapping of layer features into family clusters effectively limits number of heterogeneous accelerators
o Well-explained design choices

e Evaluation:
o Significantly higher energy efficiency and performance than Edge TPU and Eyeriss v2
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Strengths

1.

2.
3.
4.

Layer-Level Study of NN Models
Mensa Multi-Accelerator Framework
Mensa G

Performance analysis of Google Edge TPU
e Novelty:
o First in-depth, well-crafted performance analysis of Google Edge TPU

e Mechanism:
o Straightforward application of standard analysis procedures

e Evaluation:
o Clear identification of key shortcoming

Strength
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Weaknesses

1 . Performance analysis of Google Edge TPU

e Mechanism:
o Reproducibility and transferability of results due to proprietary models and architecture
m Anticipation of results for popular public models

e Evaluation:
o Weighting of various NN models according to their importance and frequency distribution
o Deployment of Google Edge TPUs and the significance of their inefficiencies
o Trade-off design decisions during Google Edge TPU development



Weakness 8

Weaknesses
1. Performance analysis of Google Edge TPU

.. Mensa Multi-Accelerator Framework

e Mechanism:
o Future proofness in light of new families / accelerators through NN model development

e Evaluation:
o Runtime scheduler overhead
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Weaknesses

1 . Performance analysis of Google Edge TPU
.. Mensa Multi-Accelerator Framework

3. Layer-Level Study of NN Models

e Evaluation:
o Applicability of layer clusters to other edge NN models



Weaknesses

1.
2.
3.
4

Performance analysis of Google Edge TPU
Mensa Multi-Accelerator Framework
Layer-Level Study of NN Models

Mensa G

e Mechanism:
o Development neglects frequency considerations of different layer families

e Evaluation:
o Suitability of Google Edge TPU as evaluation baseline
m Google Edge TPU with better scheduling as evaluation baseline
m CPU performance as evaluation baseline
o Assessment based on simulated results that disregard frequency considerations

Weakness
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Outlook

Will Edge ML Accelerators remain important?

Consumer Demand

Privacy
Connectivity
Low Latency
Bandwidth

Technology

e Internet of Things
o 5G

Edge Computing
‘Computation, storage, and
analysis of data close to its
creation and consumption”

e Constrained power budget
e Limited computational resources

Outlook

Accelerator Deployment

Google Edge TPU
NVIDIA Jetson

Intel Movidius
Apple Neural Engine

Algorithm Development

e Neural Network (NN)
Models
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Ooussion

Alternative Ideas / Discussion

e |s a Multi-Accelerator Framework the best solution?

o Address issues through better scheduling?

o Address issues through better memory footprint (i.e. smaller buffer and/or better bandwidth)?

o Address issues through heterogeneous PE's?

o Address issues through model / layer aware prefetching?

o Address issues through a combination of the above?

e Design Multi-Accelerator Framework with NN model developments in mind?
o Recommender systems

e Optimize Edge NN model compilation with hardware in mind?
o Which optimization criteria govern the current tradeoff?



