Google Neural Network Models for Edge Devices:

Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand^{1,2}, Saugata Ghose³, Berkin Akin⁴, Ravi Narayanaswami⁴, Geraldo F. Oliveira⁵, Xiaoyu Ma⁴, Eric Shiu⁴, Onur Mutlu^{5,1}

¹ Carnegie Mellon Univ., ² Stanford Univ., ³ Univ. of Illinois Urbana-Champaign, ⁴ Google, ⁵ ETH Zürich

PACT 2021

Executive Summary

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models

• Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the *Google Edge TPU* suffer from *three shortcomings*:

- The TPU operates significantly below its peak throughput
- The TPU operates significantly below its theoretical energy efficiency
- The TPU inefficiently accesses memory

Key Insight: Customizing all accelerator key components to layer heterogeneity is crucial for good performance

- The layer characteristics significantly vary across and within the state-of-the-art Google edge models
- The monolithic design of the Edge TPU is the root cause of its shortcomings and the resulting large inefficiency

Key Mechanism: Mensa - a new acceleration framework for edge NN inference

• Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers

Key Results: We design a version of *Mensa* for *Google edge ML models*

- Mensa improves performance and energy by 3.0x and 3.1x
- Mensa reduces cost and improves area efficiency

Outline

Context

- Edge Computing
- Neural Network Models
- Machine Learning Accelerators

Problem

• Edge TPU Shortcomings

Key Insight

- NN Model Characterization
- Sources of Edge TPU Shortcomings

Key Mechanism

- Mensa Framework
- Mensa Runtime Scheduler

Key Results

- Identifying Layer Families
- Mensa-G: Mensa for Google Edge Models
- Evaluation

Outline of Edge Computing

Why deploy ML on Edge Devices?

Consumer Demand

- Privacy
- Connectivity
- Low Latency
- Bandwidth

Technology

- Internet of Things
- 5G

Edge Computing

"Computation, storage, and analysis of data close to its creation and consumption"

- Constrained power budget
- Limited computational resources

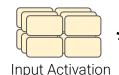
Accelerator Deployment

- Google Edge TPU
- NVIDIA Jetson
- Intel Movidius
- Apple Neural Engine

Algorithm Development

 Neural Network (NN) Models

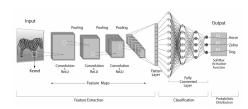
NN Models



Parameters Output Activation

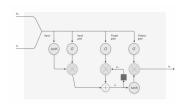
Convolutional Neural Networks (CNN)

- Feed-forward multi-layer model
- Captures and classifies spatial features
 - Image classification
 - Object detection



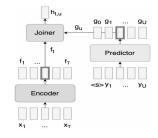
Long Short-Term Memory Networks (LSTM)

- Multi-layer models with recurrent connections
- Classfies and predicts future data sequences
 - Traffic forecasting
 - Text reply prediction



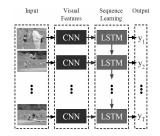
Transducers

- Typically implemented by stacking LSTM layers
- Classfies sequences with distortions in input data
 - Automatic speech recognition



Recurrent Convolutional Neural Networks (RCNN)

- Hybrid multi-layer recurrent NNs
- Captures spatio-temporal information
 - Image captioning
 - Video scene labeling



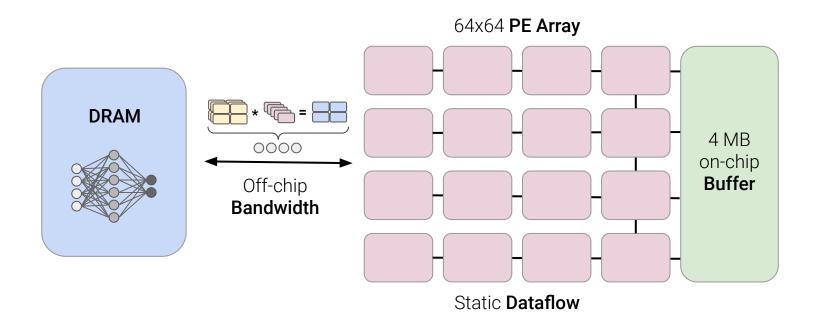
13 CNNs 2 LSTMs

6 RNN Transducers

3 RCNNs

= 24 Google Edge Models

Edge TPU: Baseline Accelerator



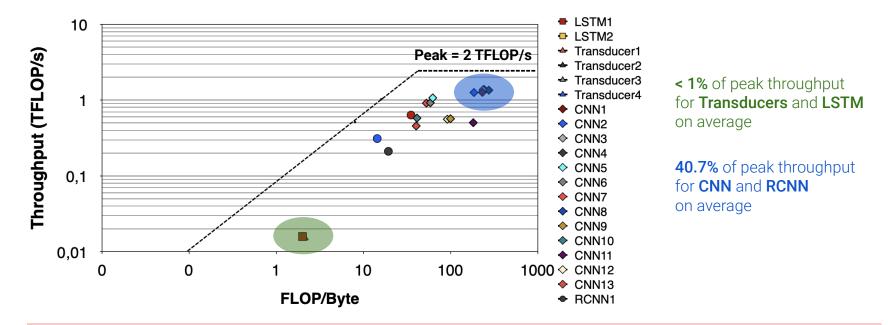
Take Away

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models

• Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Edge TPU Shortcomings

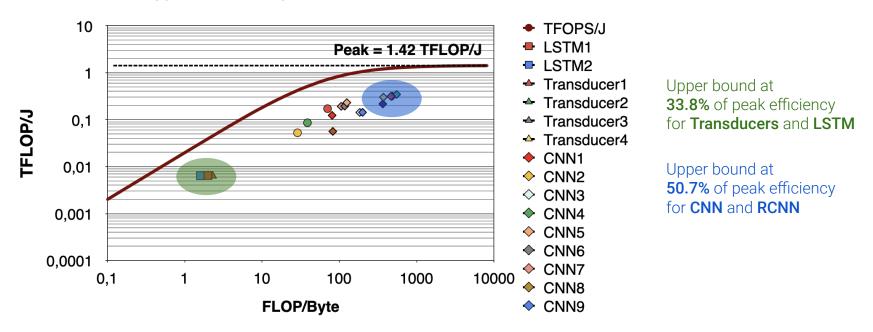
1. High Resource Underutilization



The Edge TPU utilizes only 24% of its peak throughput, averaged across all models.

Edge TPU Shortcomings

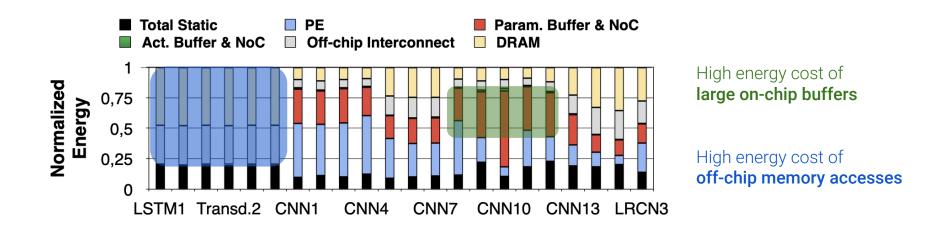
2. Low Energy Efficiency



The Edge TPU provides only 37% of its peak energy efficiency, averaged across all models.

Edge TPU Shortcomings

3. Inefficient Memory Access Handling



The Edge TPU's **memory system** is often a **large bottleneck**.

Take Away

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models

• Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the *Google Edge TPU* suffer from *three shortcomings*:

- The TPU operates significantly below its peak throughput
- The TPU operates significantly below its theoretical energy efficiency
- The TPU inefficiently accesses memory

NN Model Characterization

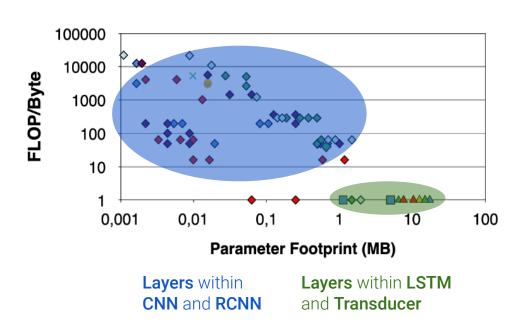
1. Layer Heterogeneity across Models

Memory Footprints

Layer Composition

FLOP/B ratio

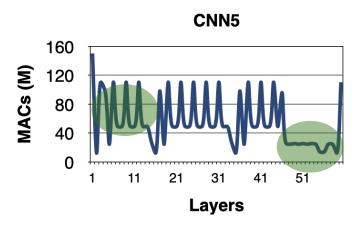
- Reuse Patterns
- Computational Complexity
- Intra-and Inter-cell Dependencies



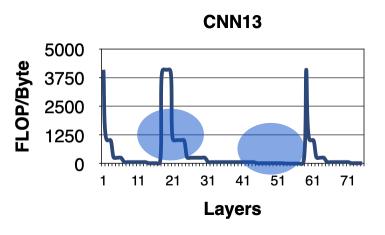
Significant variations exist with regards to **layer characteristics across** the different models.

NN Model Characterization

2. Layer Heterogeneity within Models



Variation in MAC intensity: up to 200x across layers



Variation in FLOP/Byte: up to 244x across layers

Significant variations exist with regards to layer characteristics within each model.

Sources of Edge TPU Shortcomings

PE Underutilization

- Memory bandwidth bottleneck slows performance
- Static dataflow fails to exploit diverse data reuse patterns
- Fixed size PF unfit for efficient execution of layers with diverse shapes and dependencies

Poor Energy Efficiency

- Large on-chip buffer results in high energy costs
- Underutilized PFs result in high energy costs
- Frequent off-chip traffic results in high energy costs

Memory System Issues

- Unnecessary buffer for layers with little or no data reuse.
- Over-sized buffer compared to average parameter footprint of layers with large data reuse

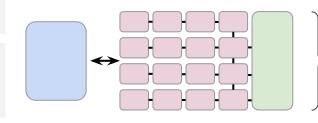
1. Key Insight:

Accelerator's key components fail to account for layer heterogeneity

2. Key Insight:

Monolithic approach performs inefficiently over range of models

Monolithic designed Accelerators



- Over-provisioned PE array
- Over-provisioned on-chip buffer
- Rigid dataflow
- Fixed off-chip bandwidth

The Edge TPU's monolithic design is the root cause of its shortcomings.

Take Away

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models

• Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the *Google Edge TPU* suffer from *three shortcomings*:

- The TPU operates significantly below its peak throughput
- The TPU operates significantly below its theoretical energy efficiency
- The TPU inefficiently accesses memory

Key Insight: Customizing all accelerator key components to layer heterogeneity is crucial for good performance

- The layer characteristics significantly vary across and within the state-of-the-art Google edge models
- The monolithic design of the Edge TPU is the root cause of its shortcomings and the resulting large inefficiency

Mensa Framework

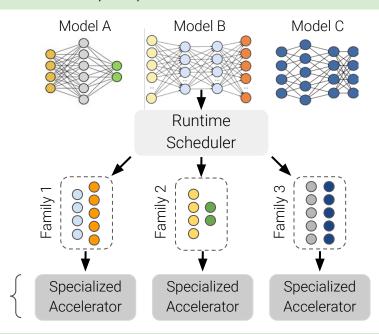
Current Mechanism: Run entire NN model on monolithic Edge TPU accelerator

Model A Model B Model C

Monolithic Accelerator

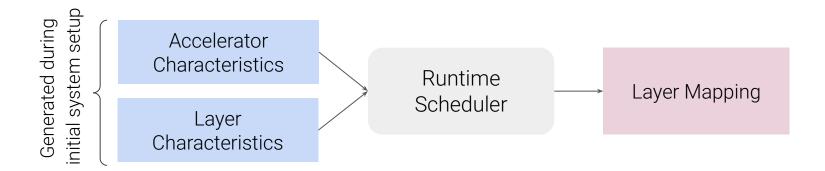
Heterogeneous accelerators with specific dataflow and hardware optimized for subset of layer characteristics

New Mechanism: Distribute NN model layers across multiple specialized smaller accelerators



Mensa exploits the variations between and within layers for high efficiency and high performance.

Mensa Runtime Scheduler



Mensa's software runtime scheduler determines on which accelerator each layer should run.

Take Away

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models

• Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the *Google Edge TPU* suffer from *three shortcomings*:

- The TPU operates significantly below its peak throughput
- The TPU operates significantly below its theoretical energy efficiency
- The TPU inefficiently accesses memory

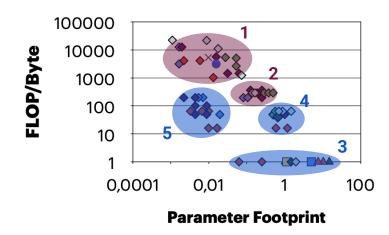
Key Insight: Customizing all accelerator key components to layer heterogeneity is crucial for good performance

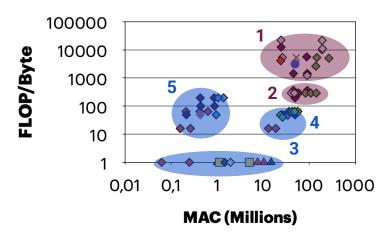
- The layer characteristics significantly vary across and within the state-of-the-art Google edge models
- The monolithic design of the Edge TPU is the root cause of its shortcomings and the resulting large inefficiency

Key Mechanism: Mensa - a new acceleration framework for edge NN inference

Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers

Identifying Layer Families





Compute-centric layers: Families 1 & 2

- Small parameter footprint
- High data reuse
- High MAC intensity

⇒ High PE utilization

Data-centric layers: Families 3, 4 & 5

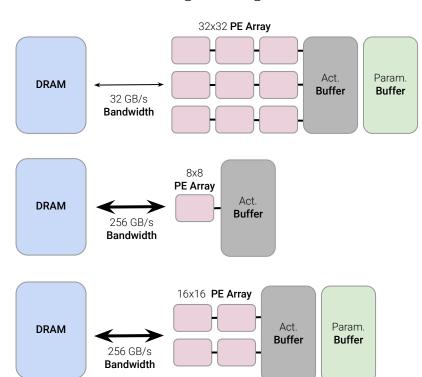
- Large parameter footprint
- Low data reuse
- Low MAC intensity

⇒ Low PE utilization

The majority of **layers group** into a **small number** of **layer families** with specific characteristics.

Mensa-G

Mensa for Google Edge Models



Pascal: Families 1 & 2: compute-centric layers

- 32x32 PE Array (2 TFLOP/s)
- 256 KB Act. Buffer (8x Reduction)
- 128 KB Param. Buffer (32x Reduction)
- On-chip accelerator

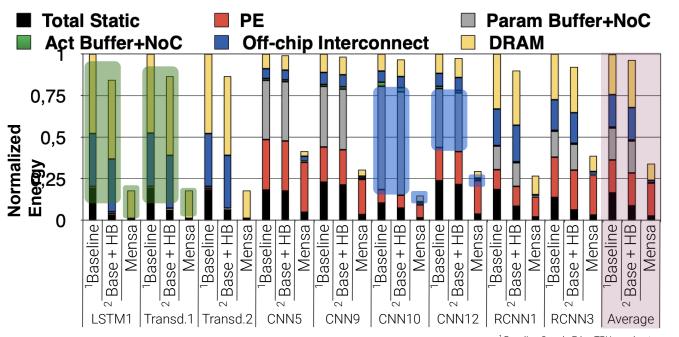
Pavlov: Family 3: LSTM data-centric layers

- 8x8 PE Array (128 GFLOP/s)
- 128 KB Act. Buffer (16x Reduction)
- No Param. Buffer (4MB in Baseline)
- Near-data accelerator

Jacquard: Families 4 & 5: non-LSTM data-centric layers

- 16x16 PE Array (256 GFLOP/s)
- 128 KB Act. Buffer (16x Reduction)
- 128 KB Param. Buffer (32x Reduction)
- Near-data accelerator

Energy Analysis



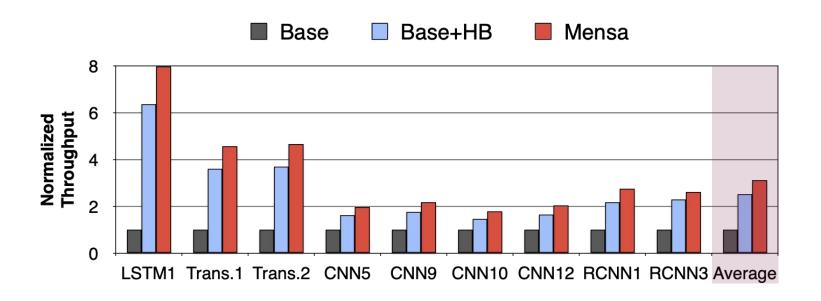
15.3x lower on-chip/off-chip parameter traffic energy by scheduling on accelerator with appropriate dataflow and memory bandwidth

49.8x lower **on-chip buffer dynamic energy** by avoiding **overprovisioning** and catering to **specialized dataflows**

 $^{\rm 1}$ Baseline Google Edge TPU accelerator $^{\rm 2}$ Baseline Google Edge TPU accelerator with high-bandwidth off-chip memory

Mensa-G improves energy efficiency by 3.0x compared to the Baseline.

Throughput Analysis



Take Away

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models

• Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the *Google Edge TPU* suffer from *three shortcomings*:

- The TPU operates significantly below its peak throughput
- The TPU operates significantly below its theoretical energy efficiency
- The TPU inefficiently accesses memory

Key Insight: Customizing all accelerator key components to layer heterogeneity is crucial for good performance

- The layer characteristics significantly vary across and within the state-of-the-art Google edge models
- The monolithic design of the Edge TPU is the root cause of its shortcomings and the resulting large inefficiency

Key Mechanism: Mensa - a new acceleration framework for edge NN inference

Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers

Key Results: We design a version of *Mensa* for *Google edge ML models*

- Mensa improves performance and energy by 3.0x and 3.1x
- Mensa reduces cost and improves area efficiency

More in the Paper

- Details about Mensa Runtime Scheduler
- Hardware Design Principles and Decisions
- Details about Pascal, Pavlov, and Jacquard's dataflows
- Energy comparison with Eyeriss v2
- Mensa-G's utilization results
- Mensa-G's inference latency results

Conclusion

Context: Edge ML accelerators have to execute inference efficiently across a wide variety of NN models

• Extensive analysis of state-of-the-art edge ML accelerator (Google Edge TPU) using 24 diverse Google edge models

Problem: ML inference computations on the *Google Edge TPU* suffer from *three shortcomings*:

- The TPU operates significantly below its peak throughput
- The TPU operates significantly below its theoretical energy efficiency
- The TPU inefficiently accesses memory

Key Insight: Customizing all accelerator key components to layer heterogeneity is crucial for good performance

- The layer characteristics significantly vary across and within the state-of-the-art Google edge models
- The monolithic design of the Edge TPU is the root cause of its shortcomings and the resulting large inefficiency

Key Mechanism: Mensa - a new acceleration framework for edge NN inference

• Mensa consists of heterogeneous accelerators whose dataflow and hardware are specialized for specific families of layers

Key Results: We design a version of *Mensa* for *Google edge ML models*

- Mensa improves performance and energy by 3.0x and 3.1x
- Mensa reduces cost and improves area efficiency

Paper Discussion:

Google Neural Network Models for Edge Devices:

Analyzing and Mitigating Machine Learning Inference Bottlenecks

Amirali Boroumand^{1,2}, Saugata Ghose³, Berkin Akin⁴, Ravi Narayanaswami⁴, Geraldo F. Oliveira⁵, Xiaoyu Ma⁴, Eric Shiu⁴, Onur Mutlu^{5,1}

 $^{\rm 1}$ Carnegie Mellon Univ., $^{\rm 2}$ Stanford Univ. , $^{\rm 3}$ Univ. of Illinois Urbana-Champaign, $^{\rm 4}$ Google, $^{\rm 5}$ ETH Zürich

PACT 2021

Overview

Strengths	
Weaknesses	
Outlook	
Discussion	

1. Layer-Level Study of NN Models

Novelty:

o First quantification of intra-model variation within edge models compared to traditional ones

• Mechanism:

o Investigation at the level of layer granularity generated relevant insights

• Evaluation:

- o Extraction of layer clusters with high degree of validity
- o Demonstration of monolithic design as a root cause for TPU inefficiencies

- 1. Layer-Level Study of NN Models
- 2. Mensa Multi-Accelerator Framework
 - Novelty:
 - o First ML accelerator to **exploit computational and memory heterogeneity** of edge NN models
 - Mechanism:
 - Well-designed mechanism to overcome the shortcomings of monolithic design
 - o Processing in memory is an active area of research
 - Evaluation:
 - Practical through its integration into the existing architecture stack
 - o Application potential of multi-accelerator framework beyond the edge devices
 - Within Data Centers?
 - Processing in memory? Processing in storage?

- 1. Layer-Level Study of NN Models
- 2. Mensa Multi-Accelerator Framework
- **3.** Mensa G
 - Novelty:
 - o First **implementation** of **Mensa accelerator** framework for 24 Google Edge NN models
 - Mechanism:
 - Mapping of layer features into family clusters effectively limits number of heterogeneous accelerators
 - Well-explained design choices
 - Evaluation:
 - Significantly higher energy efficiency and performance than Edge TPU and Eyeriss v2

- 1. Layer-Level Study of NN Models
- 2. Mensa Multi-Accelerator Framework
- 3. Mensa G
- 4. Performance analysis of Google Edge TPU
 - Novelty:
 - o First in-depth, well-crafted performance analysis of Google Edge TPU
 - Mechanism:
 - o Straightforward application of standard analysis procedures
 - Evaluation:
 - o Clear identification of key shortcoming

1. Performance analysis of Google Edge TPU

Mechanism:

- Reproducibility and transferability of results due to proprietary models and architecture
 - Anticipation of results for popular public models

Evaluation:

- Weighting of various NN models according to their importance and frequency distribution
- o Deployment of Google Edge TPUs and the significance of their inefficiencies
- Trade-off design decisions during Google Edge TPU development

- 1. Performance analysis of Google Edge TPU
- **2.** Mensa Multi-Accelerator Framework
 - Mechanism:
 - Future proofness in light of new families / accelerators through NN model development
 - Evaluation:
 - o Runtime scheduler overhead

- 1. Performance analysis of Google Edge TPU
- 2. Mensa Multi-Accelerator Framework
- **3.** Layer-Level Study of NN Models
 - Evaluation:
 - Applicability of layer clusters to other edge NN models

- 1. Performance analysis of Google Edge TPU
- 2. Mensa Multi-Accelerator Framework
- 3. Layer-Level Study of NN Models
- 4. Mensa G
 - Mechanism:
 - Development neglects frequency considerations of different layer families
 - Evaluation:
 - o Suitability of Google Edge TPU as evaluation baseline
 - Google Edge TPU with better scheduling as evaluation baseline
 - CPU performance as evaluation baseline
 - Assessment based on **simulated results** that disregard frequency considerations

Outlook

Will Edge ML Accelerators remain important?

Consumer Demand

- Privacy
- Connectivity
- Low Latency
- Bandwidth

Technology

- Internet of Things
- 5G

Edge Computing

"Computation, storage, and analysis of data close to its creation and consumption"

- Constrained power budget
- Limited computational resources

Accelerator Deployment

- Google Edge TPU
- NVIDIA Jetson
- Intel Movidius
- Apple Neural Engine

Algorithm Development

 Neural Network (NN) Models

Alternative Ideas / Discussion

- Is a Multi-Accelerator Framework the best solution?
 - Address issues through better scheduling?
 - Address issues through better memory footprint (i.e. smaller buffer and/or better bandwidth)?
 - Address issues through heterogeneous PE's?
 - Address issues through model / layer aware prefetching?
 - Address issues through a combination of the above?
- Design Multi-Accelerator Framework with NN model developments in mind?
 - Recommender systems
- Optimize Edge NN model compilation with hardware in mind?
 - Which optimization criteria govern the current tradeoff?