
Hardware Architecture and Software Stack for PIM
Based on Commercial DRAM Technology

Industrial Product

Sukhan Lee§1, Shin-haeng Kang§1, Jaehoon Lee1, Hyeonsu Kim2, Eojin Lee1, Seungwoo Seo2,
Hosang Yoon2, Seungwon Lee2, Kyounghwan Lim1, Hyunsung Shin1, Jinhyun Kim1,

Seongil O1, Anand Iyer3, David Wang3, Kyomin Sohn1 and Nam Sung Kim§1

1Memory Business Division, Samsung Electronics
2Samsung Advanced Institute of Technology, Samsung Electronics

3Device Solutions America, Samsung Electronics

Abstract—Emerging applications such as deep neural network
demand high off-chip memory bandwidth. However, under strin-
gent physical constraints of chip packages and system boards, it
becomes very expensive to further increase the bandwidth of
off-chip memory. Besides, transferring data across the memory
hierarchy constitutes a large fraction of total energy consumption
of systems, and the fraction has steadily increased with the
stagnant technology scaling and poor data reuse characteristics
of such emerging applications. To cost-effectively increase the
bandwidth and energy efficiency, researchers began to reconsider
the past processing-in-memory (PIM) architectures and advance
them further, especially exploiting recent integration technologies
such as 2.5D/3D stacking. Albeit the recent advances, no major
memory manufacturer has developed even a proof-of-concept
silicon yet, not to mention a product. This is because the past
PIM architectures often require changes in host processors and/or
application code which memory manufacturers cannot easily
govern. In this paper, elegantly tackling the aforementioned chal-
lenges, we propose an innovative yet practical PIM architecture.
To demonstrate its practicality and effectiveness at the system
level, we implement it with a 20nm DRAM technology, integrate it
with an unmodified commercial processor, develop the necessary
software stack, and run existing applications without changing
their source code. Our evaluation at the system level shows that
our PIM improves the performance of memory-bound neural
network kernels and applications by 11.2× and 3.5×, respectively.
Atop the performance improvement, PIM also reduces the energy
per bit transfer by 3.5×, and the overall energy efficiency of the
system running the applications by 3.2×.

Index Terms—processing in memory, neural network, acceler-
ator, DRAM

I. INTRODUCTION

Deep neural networks (DNNs) are a class of machine
learning (ML) algorithms, and it has been widely used for
various disruptive applications with significant economic and
societal impacts. Convolutional neural networks (CNNs) [18],
[24], [38], [50] for computer vision (CV) and recurrent neural
networks (RNNs) [4], [53] for natural language processing

This paper is part of the Industry Track of ISCA 2021’s program.
§Sukhan Lee and Shin-haeng Kang equally contributed to this work and

Nam Sung Kim is the corresponding author.

(NLP) are the most representative examples. New applications
such as recommendation model (RM) [14], [40] are also
popular these days.

The property of a neural network (NN) is determined by that
of layers composing the network. Some key layers dominate
not only the property but also the execution time of a given
NN. Especially, the key layers of popular NN models, e.g.,
gate recurrent unit [4], [53] and embedding lookup [14], [40],
and batch normalization [18], [24], have a common computa-
tional characteristic; these layers exhibit low temporal and/or
spatial locality (i.e., low cache hit rates), thereby demanding
high off-chip memory bandwidth. Meanwhile, the demand for
improving the energy efficiency of systems has continuously
increased, and the energy consumed for transferring data
across the memory hierarchy constitutes an increasing fraction
of the total energy consumption of systems with stagnant
technology scaling. For example, transferring data from off-
chip DRAM devices through the on-chip cache hierarchy to
the register file of a processor consumes about two orders
of magnitude more energy than performing a floating-point
(FP) operation in a processor [31]. That is, the performance
and energy efficiency of executing these layers are primarily
governed by those of data transfers between the processor
execution units and the DRAM devices.

The high bandwidth memory (HBM) [25]) was introduced
to satisfy the increasing demand for high bandwidth and low
energy per bit transfer. It can provide much higher bandwidth
at lower energy per bit transfer than conventional DRAM,
because it is tightly integrated with a processor die on a
common substrate (e.g., silicon interposer [51]) in a package.
For instance, such a tight integration at the package level
allows 10∼13× more I/O interconnects between a processor
and DRAM at 2∼2.4× lower energy per bit transfer than
conventional DDR4 DRAM. Nonetheless, recent studies [9],
[29] show that the rapidly growing model size and compute
density create memory bottlenecks even with the use of HBM.
Note that it is very costly to further increase the overall band-
width by increasing bandwidth per I/O pin and/or the number

43

2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

978-1-6654-3333-4/21/$31.00 ©2021 IEEE
DOI 10.1109/ISCA52012.2021.00013

20
21

 A
C

M
/IE

EE
 4

8t
h

A
nn

ua
l I

nt
er

na
tio

na
l S

ym
po

si
um

 o
n

C
om

pu
te

r A
rc

hi
te

ct
ur

e
(I

SC
A

) |
 9

78
-1

-6
65

4-
33

33
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
C

A
52

01
2.

20
21

.0
00

13

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

of I/O interconnects under stringent physical constraints of a
package, such as signal integrity, power, temperature, and form
factor [7], [36], [51].

To expose higher bandwidth to processors at lower en-
ergy per bit transfer, researchers began to reconsider past
processing-in-memory (PIM) architectures (e.g., [10], [13],
[17], [30], [44]) and further advance them, many of which
exploit recent package- and chip-level integration technologies
such as 2.5D and 3D stacking (e.g., [2], [12], [19], [33], [35],
[45], [54]). Subsequently, many promising PIM architectures
have emerged, but no major memory manufacturer has devel-
oped even a proof-of-concept silicon yet, not to mention a
product. The primary reasons are two folds. First, the 3D or
2.5D integration itself cannot automatically offer significantly
higher bandwidth for processors than standard DRAM. This
is because the bandwidth of each DRAM bank is designed to
match that of device I/O. To provide notably higher bandwidth
for the processors, considerable customization of DRAM is
required, and it significantly increases the cost [5]. Second,
especially to orchestrate the communication between host and
in-memory processors, the past PIM architectures often de-
mand notable changes in the host processors and/or application
code (e.g., [2], [3], [11], [12], [35], [45]), which memory
manufacturers cannot easily govern.

In this paper, elegantly tackling the aforementioned chal-
lenges, we propose an innovative yet practical PIM architec-
ture. First, it does not disturb the key components (i.e., sub-
array and bank) of commodity DRAM. Instead, it exploits
bank-level parallelism to provide higher bandwidth and lower
energy per bit transfer for processors in DRAM. That is, it
can be easily and seamlessly integrated with any commodity
DRAM. Second, it does not demand any change in any com-
ponent of modern commercial processors including DRAM
controllers, as it is architected for host processors to control
PIM operations through standard DRAM interfaces. This can
facilitate a drop-in replacement of current JEDEC-compliant
DRAM with PIM-DRAM for any systems.

To demonstrate its feasibility and efficacy at the system level
running the full software stack, we implement the proposed
PIM architecture based on a HBM2 design [51], dubbing it
PIM-HBM in this paper. After fabricating the implementation
with a 20nm DRAM technology, we integrate it with an un-
modified commercial processor. Concurrently, to run existing
NN application code without any change, we also develop a
software stack. To the best of our knowledge, this work is
the first HBM-based PIM architecture that is fabricated by
a major DRAM manufacturer and 2.5D-integrated with an
unmodified commercial processor with the full software stack
support. Our system-level evaluation shows that a processor
with PIM-HBM can execute memory-bound NN kernels and
applications 11.2× and 3.5× faster, respectively, than the
same processor with commodity HBM. In addition to the
performance improvement, PIM reduces the energy per bit
transfer by 3.5× and improves the energy efficiency of the
system running the applications by 3.2×.

The rest of this paper is organized as follows. Section II

gives background on DNN and HBM. Section III presents a
PIM architecture that can function as both standard DRAM
and PIM-DRAM. Section IV details a PIM microarchitecture,
focusing on the execution unit. Section V depicts a software
stack to support PIM for a system. Section VI describes a chip
implementation and integration with a commercial processor.
Section VII evaluates performance and energy efficiency. Sec-
tion IX discusses related work.

II. BACKGROUND

A. Characteristics of Modern DNN Applications

A DNN comprises many layers between the input and
output layers, and it can be used for various applications (e.g.,
CV, NLP, and RM) depending on the composition of layers.
To develop DNN applications more efficiently, we often use
popular ML programming frameworks such as TensorFlow [1]
and PyTorch [43], which make use of many APIs such as
MKL [23], oneAPI [21] (formerly known as MKL-DNN),
CuDNN [6] and MIOpen [32].

Those APIs are often built on basic linear algebra subpro-
grams (BLAS [41]), and it is well known that the level-1
BLAS (scalar-vector and vector-vector operations) and level-
2 BLAS (matrix-vector operations) do not benefit from on-
chip cache; data can be seldom reused especially when the
entire data set does not fit into on-chip cache. Consequently,
frequent off-chip memory accesses are needed to perform
few computations, resulting in few operations per byte, and
performance is ultimately bounded by the memory bandwidth
(memory-bound). On the other hand, the level-3 BLAS
(matrix-matrix operations) can reuse a considerable fraction
of the data in the on-chip cache (i.e., many operations per
byte). That is, the performance is determined by the compute
capability (compute-bound).

Early DNN applications exhibit compute-bound charac-
teristics, because they mainly perform compute operations
on matrices (e.g., convolutional layers) [38], [50]. However,
the number of memory-bound layers has gradually increased
in recent popular DNN applications. For instance, the key
functions of RNN are matrix-vector multiplications, where the
main memory bandwidth determines the performance [4], [53].
In addition, batch normalization (BN) and skip connection
layers in contemporary CNNs are memory-bound due to their
low data reuse characteristics [18], [24]. The embedding look-
up layer, a key component in RM, is also memory-bound
because of a large number of memory accesses to the large
embedding table for sparse-length-sum (SLS) operations [40].

B. High Bandwidth Memory

As the compute capability of processors has significantly
increased, so has the demand for the off-chip memory band-
width. To satisfy such demand, HBM was introduced. HBM
3D-stacks multiple DRAM dies with a buffer die that com-
prises I/O circuits, memory built-in-self-test (MBIST), and
features to support testing and debugging. To provide high
memory bandwidth, the DRAM dies communicate with the
buffer die using through silicon vias (TSVs), and the buffer

44

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

Column Decoder
Write Drivers

I/O Sense Amps
R

ow
 D

ec
od

er

Sub-array
Bit-line Sense Amps

Ba
nk

 L
oc

al
 I/

O

Wordline
TSVs

Middle Control Logic (Bottom)

Middle Control Logic (Top)

Pseudo Channel

Ba
nk

 G
ro

up
 I/

O

Bank
Group

0

Bank
Group

1

Bank
Group

2

Bank
Group

3

Bank 0
Bank 1
Bank 2
Bank 3

HOST
MC

Si-interposer

Board

ASIC1 ASIC2BK C/A
DA IO IO

System in Package (SiP)

Buffer die

DRAM die
DRAM die
DRAM die
DRAM die

HBM DRAM die

Fig. 2: A cross-section view of a system in package (SiP)
comprising an ASIC and HBM devices (top) and an HBM
DRAM die organization (bottom).

die is connected to a host processor by the silicon interposer
in a package. As such, the integration of a host processor with
one or more HBM devices in a package is often called SiP
(System-in-Package). Fig. 2 depicts a typical SiP comprising
an ASIC and HBM devices (top) and an HBM DRAM die
organization (bottom).

A HBM2 DRAM die comprises 4 pseudo channels (pCHs),
each consisting of 4 bank groups (BGs), middle control logic,
data bus, and TSV I/O circuitry. A bank group comprises
4 banks that share datapath resources (e.g., bank control
lines, and bank group I/O (BGIO)). The middle control logic
receives a DRAM command and address pair (CA), decodes
the CA to generate bank control signals and addresses, and
delivers the generated signals to the target bank through bank
control lines and BGIO. It also controls the data bus and
TSV I/O circuit based on the CA. A bank consists of DRAM
cell arrays, row and columns decoders, I/O sense amplifiers
(IOSA), and write drivers. A DRAM cell array is composed
of sub-arrays, which has sub-wordline drivers (SWD), bit-
line sense amplifiers (BLSAs), and local I/O (LIO) lines. The
sequence of data access operations is almost the same as
that of DDR DRAM (i.e., activation (ACT), read (RD), write
(WR), precharge (PRE)) except for the data access size; an
access to HBM transfers a 256-bit data block over 4 64-bit

bursts over one pCH. A group of 4 DRAM dies constitutes
a rank, providing a total of 16 pCHs. An HBM device with
more stacked DRAM dies can provide more ranks for larger
capacity, but it does not offer higher bandwidth as 16pCHs
are shared among ranks.

Even with HBM, modern DNNs still suffer from limited
memory bandwidth, which in turn leads to poor utilization of
processors and thus limited performance [9], [29]. One way to
provide higher bandwidth is to integrate a processor with more
HBM devices. However, it is hard to do so because not only
the power and thermal budgets of an SiP but also the number
of I/O connections with a silicon interposer are limited.

III. PIM-DRAM ARCHITECTURE

In this section, we present a PIM architecture that exploits
bank-level parallelism to expose high on-chip bandwidth of
standard DRAM to processors in a practical way. Although
it is illustrated based on HBM2 in this paper, it is applicable
to any standard DRAM such as DDR, LPDDR, and GDDR
DRAM with a few changes.

A. Overview

Fig. 1 overviews our PIM architecture: (a) a PIM-HBM
DRAM die; (a) a PIM-DRAM die; (b) a bank coupled with
a PIM execution unit comprising a single instruction multiple
data (SIMD) floating-point unit (FPU), command, general and
scalar register files (CRF, GRF, and SRF); and (c) datapath of
the PIM execution unit. Two of the key design philosophies are
(1) supporting both standard DRAM and PIM-DRAM modes
for versatility, and (2) minimizing the high engineering cost
of re-designing the DRAM sub-array and bank to support
only PIM. As such, we place a PIM execution unit at the
I/O boundary of a bank (Fig. 1(a) and (b)).

In PIM mode, PIM execution units across all the banks con-
currently respond to a standard DRAM column (RD or WR)
command from the host processor, executing one wide-SIMD
operation commanded by a PIM instruction with deterministic
latency in a lock-step manner.

PIM instructions are stored in the CRF serving as an
instruction buffer, and a DRAM column command triggers the
execution of a PIM instruction; see Section IV for the details.
A PIM execution unit with 256-bit datapath may get necessary
16 16-bit operands from IOSAs, one of the registers, and/or the
result bus (Fig. 1(c)). The column address of a given DRAM

TSVs & Periphery

16b FPU*

From
Registers

16b FPU

PIM Unit

Column Decoder
Write Drivers

I/O Sense Amps

R
O

W
D

EC

Cell Array

Registers

SIMD FPUs
To
Registers

256b

UNIT UNIT

BANK

BANK

BANK

BANK

Bank
From
IOSA
(Cell)

To
Write
Driver
(Cell)

(a) (b) (c)

UNIT UNIT

BANK

BANK

BANK

BANK

UNIT UNIT

BANK

BANK

BANK

BANK

UNIT UNIT

BANK

BANK

BANK

BANK

BANK BANK BANK BANK BANK BANK BANK BANK

R
es

ul
t B

usPIM PIM PIM PIM PIM PIM PIM PIM

HBM DRAM Die

Fig. 1: (a) HBM DRAM die organization, (b) bank coupled with a PIM unit, (c) PIM datapath.

45

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

RD command determines the address of the operands from the
IOSAs of a bank, pulling a total of 4096 bits (i.e., 256 bits per
bank × 16 banks) across all the banks in parallel. A DRAM
WR command operates in the same manner as a DRAM RD
command except that the host processor pushes 256 bits to
the write drivers or PIM registers of all the banks. That is,
PIM can expose up to 16× (= the number of banks per pCH)
higher bandwidth to PIM execution units than a processor
connected with an off-chip standard DRAM interface. Note
that the number of PIM execution units can be fewer than
that of banks, i.e., trade-off between the cost and the on-
chip compute bandwidth. Executions of PIM instructions with
standard DRAM commands and deterministic latencies are
essential to facilitate PIM-DRAM with unmodified JEDEC-
compliant DRAM controllers.

Finally, the host processor can control execution of every
PIM instruction one by one with its load (LD) and store
(ST) instructions which are translated into standard DRAM
commands to DRAM. That is, the host processor precisely
knows the address, value and timing/order of each PIM
operation since each PIM operation coupled with a DRAM
command is executed with deterministic timing. As such, the
host processor can independently control PIM operations of
each memory channel. In addition, each PIM execution unit
accesses the memory at the same data access granularity as
the host processor. These make our PIM more agnostic to a
physical address mapping scheme of the host processor and
more elegantly and efficiently handle coherence/consistency
challenges without any change in existing processors than prior
PIM architectures.

B. Bank-Level Parallelism for PIM

Single Bank Mode: In standard DRAM devices, an ACT
command targets a specific bank pointed by the bank and
bank group addresses (BA/BG), and only the single bank is
activated in response to the command. In this paper, we refer
to this standard DRAM operation mode (Fig. 3(a)) as single
bank mode (SB mode).
All Bank Mode: In contrast to the standard SB mode, we
expose the on-chip bandwidth of DRAM to PIM execution
units by allowing concurrent accesses to multiple banks with
a single DRAM command (Fig. 3(b)). As such, we implement
all-bank control logic to support all-bank operation mode (AB
mode), where the BA and BG of a given column address
are ignored and the same row and column of all the banks
are concurrently accessed in a lock-step manner by a single
DRAM command. In AB mode, PIM-HBM with 16 banks
per pCH can provide 8× higher on-chip compute bandwidth
than standard HBM. Note that each bank can operate at
every tCCD L (the delay between two back-to-back column
commands to the same bank group) in AB mode, not tCCD S
(the delay between two back-to-back column commands to
banks in different bank groups). Since tCCD S (2 tCK) is
typically a half of tCCD L (4 tCK), the compute bandwidth
improves by a half of the number of banks. For example, PIM-
HBM operating at 1.0GHz can provide 128GB/s per pCH for

lll

Access a single row

All Bank
MODE (AB)

Access multiple rows
of all banks

Memory CMD triggers a CRF
to perform a target instruction

AB enter sequence

AB exit sequence

ACT/PRE row 0x27ff
of bank 0,1,8,9

ACT/PRE row 0x2fff
of bank 0,1

(a) (b) (c)

Single Bank
MODE (SB)

Reserved
Memory

Space for
PIM

Normal
Memory
Space

PIM CONF

Reserved
Memory

Space for
PIM

Normal
Memory
Space

SBMR
ABMR

PIM CRF area
PIM GRF area
PIM SRF area

Reserved
Memory

Space for
PIM

Normal
Memory
Space

AB-PIM Mode

PIM_OP_MODE=0

AB-PIM exit

PIM_OP_MODE=1

AB-PIM enter

PIM control

Fig. 3: PIM-HBM operation modes: (a) single bank (SB)
mode, (b) all-bank (AB) mode, and (c) all-bank-PIM (AB-
PIM) mode.

PIM execution units (i.e., a total of 2TB/s for all 16 pCH)
while HBM2 can give 16GB/s per pCH to the host processor.

All Bank PIM Mode: In addition to AB mode, we support
AB-PIM mode which is proceeded by the AB mode (Fig 3(c)).
Similar to AB-mode, a given DRAM command is applied to
all the banks in this mode, as well. However, in AB-PIM
mode, a DRAM column command triggers execution of a
PIM instruction in the CRF and then updates a PIM program
counter (PPC) to get the next PIM instruction. Note that the
AB-PIM mode does not consume power for transferring data
from the bank I/O all the way to the I/O circuits that interface
with the host processor. Such power consumption is substantial
enough to offset the power increase by the PIM execution units
operating concurrently (Section VII-C).

Transitions between Modes: To support transitions between
SB and AB modes for an unmodified host processor using
a standard DRAM interface, we may consider using a mode
register set (MRS) command [19]. However, user processes
cannot easily access mode registers because privileged su-
pervisor processes typically control them. That is, to make
a mode change, we need to invoke a privileged kernel. Thus,
we choose not to use the MRS approach as the overhead of
context switching incurs significant performance degradation.

To implement mode transitions between SB and AB modes
with small performance overhead, we propose to use a se-
quence of standard DRAM commands. We implement two
configuration registers, AB mode register (ABMR) and SB
mode register (SBMR) that are mapped to a reserved memory
space, PIM CONF. To enter the AB mode, the host processor
sends a sequence of ACT and PRE commands to specific
addresses in PIM CONF (Fig. 3). To exit the AB mode,
the host processor precharges (closes) all the open rows of
the banks so that there is no row-buffer conflict after the
transition to the SB mode. This approach is compatible with
any processors adopting JEDEC-compliant DRAM controllers
because it relies on standard DRAM commands. To enter and
exit the AB-PIM mode, the PIM OP MODE register mapped
to an address in PIM CONF is set to 1 and 0, respectively.

46

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The relative area and energy/op of MAC units in
a DRAM 20nm technology. The numbers are normalized to
that of an INT16 MAC with a 48-bit accumulative register.

Number format Area Energy/Op.
INT16 (w/ 48-bit Acc.) 1 1
INT8 (w/ 48-bit Acc.) 0.45 0.81
INT8 (w/ 32-bit Acc.) 0.35 0.77

FP16 1.32 1.21
BFLOAT16 1.15 1.04

FP32 3.96 1.34

Note that PIM mode, configuration, general, command scalar
registers are mapped to specific reserved memory addresses
that can be accessed by standard DRAM commands.

C. Instruction Set Architecture

Data and Operation Types: Our primary target is to acceler-
ate memory-bound ML kernels. As mentioned in Section II-A,
it is well known that level-1 BLAS (e.g., AXPY for CV)
and level-2 BLAS (e.g., GEMV for NLP) kernels are often
memory-bound. Although INT8 operations have been widely
used especially for inference, FP16 operations have become
more prevalent for both inference and training. Besides, the
16-bit brain floating-point format (BFLOAT16 [52]) optimized
for ML applications has emerged. The BFLOAT16 preserves
the number of exponent bits in FP32, then reduces the number
of significant bits from 23 to 7 bits to represent a number
with 16 bits. It allows a simple conversion from FP32 and
provides a wider dynamic range than FP16. The rationale
behind BFLOAT16 is to minimize the power and area costs
of supporting FP32 while providing enough compute accuracy
for ML applications. However, it is not an IEEE standard and
is specialized for deep learning only.

Table I compares the area and energy/op of INT16, INT8,
FP16, BFLOAT16 and FP32 multiply-accumulate (MAC) units
in a DRAM 20nm technology. This shows that the area and
energy/op of FP32 MAC units are too large to be implemented
in DRAM, limiting the number of MAC units (or compute
capability). FP16 and BFLOAT16 MAC units give a much
wider dynamic range than INT16 MAC units while offering
the area and energy/op comparable to INT16 MAC units.
Between FP16 and BFLOAT16 MAC units, we see that the
BFLOAT16 MAC unit is slightly smaller and more energy-
efficient than the FP16 MAC unit. Nonetheless, FP16 has been
natively supported by most processors and widely used for ML
applications. Thus, we choose implementing FP16 MAC units
rather than BFLOAT16 MAC units to efficiently support not
only ML applications but also applications in other domains
such as OpenCL, OpenCV and HPC applications [16], which
are built on legacy FP16 libraries.

In addition, we support the ReLU operation since NN layers
typically require an activation function at the end. ReLU

TABLE II: The supporting operations, operand sources, and
result destination.

Op. Type Operand
(SRC0)

Operand
(SRC1)

Result
(DST)

of
Combinations

MUL GRF, BANK GRF, BANK,
SRF M GRF 32

ADD GRF, BANK,
SRF A

GRF, BANK,
SRF A GRF 40

MAC GRF, BANK GRF, BANK,
SRF M GRF B 14

MAD GRF, BANK GRF, BANK, SRF M
SRF A (for SRC2) GRF 28

MOV
(ReLU) GRF, BANK GRF 24

returns zero if a given input value is a negative number.
Otherwise, it returns the input value itself. Among various
activation functions, ReLU is the most widely used one and
has three advantages over sigmoid variants: (1) it is simple
to implement and fast (i.e., a 2-to-1 multiplexer controlled by
the sign bit of a given input value); (2) it is friendly to zero-
skipping ML accelerators; and (3) it is known to give higher
inference accuracies than sigmoid variants [38], [39]. Lastly,
we support data movement among GRF, SRF, and BANK; see
Section IV-A for more details on the GRF, SRF, and BANK.

Table II lists the types of all the PIM operations and their
possible operand sources and result destination. In general, a
source operand can come from GRF, SRF or BANK coupled
with a PIM execution unit. As each operation type can have
various combinations of operand sources, PIM supports a total
of 114 operand combinations for computations, and 24 differ-
ent ways of data movement. Note that we implement ReLU
as part of data movement operation; a flag bit determines
whether or not ReLU is performed during data movement;
see in Section IV for more details.

Instruction Format: The PIM execution unit supports typical
RISC-style 32-bit instructions. There are total of 9 instructions,
which are divided into three types, as summarized in Table III:
(1) NOP, JUMP, and EXIT are flow-control instructions; (2)
ADD, MUL, MAD, and MAC are arithmetic instructions
especially chosen for accelerating ML applications; (3) MOV
and FILL are data movement instructions for loading/storing
data from/to the registers in a PIM execution unit.

JUMP is an essential instruction to control a flow of a PIM
microkernel1 program stored in CRF. In particular, to reduce
the overhead of control flow change, we support a zero-cycle
JUMP instruction that does not require any computation to
determine a jump target address by supporting only a pre-
programmed number of iterations and pre-decoding a given
JUMP instruction at the fetch and decode stages. In addition

1A kernel is executed by the host processor while a microkernel is executed
by PIM execution units in this paper.

TABLE III: The PIM-HBM instruction format.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Control OPCODE U IMM0 IMM1
Data OPCODE DST SRC0 U R U DST # U SRC0 # U SRC1 #
ALU OPCODE DST SRC0 SRC1 SRC2 A U U DST # U SRC0 # U SRC1 #

47

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

to JUMP, we support special techniques, such as address
aligned mode (AAM) (Section IV-C) and multi-cycle NOP to
efficiently implement instruction-flow controls with a limited
number of entries in CRF.

In arithmetic instructions, SRC0, SRC1, and SRC2 indicate
where the instructions get operands (i.e., GRF A, GRF B,
BANK, SRF M, and SRF A). DST #, SRC0 #, and SRC1
represent register numbers (or indices) and they are used
when the operands come from register files. MAC performs
an operation like GRF B += GRF A × BANK where SRC2
(GRF B) points to the same GRF register as DST. MAD does
an operation like GRF A = BANK × SRF M + SRF A where
SRC1 # and SRC2 # point to the same register index but in
different register files (e.g., SRF M and SRF A, respectively).
‘R’ denotes ReLU that determines whether or not MOV per-
forms a ReLU operation during data movement; MOV(ReLU)
indicates a MOV instruction with R set to 1. ‘U’ represents
unused bit(s). Finally, ‘A’ stands for address aligned mode for
arithmetic instructions.

IV. PIM MICROARCHITECTURE

In this section, we describe microarchitecture of the PIM
execution unit, including components, pipeline and instruction
ordering mechanisms.

A. Components

A PIM execution unit consists of three components: (1) a
16-wide SIMD FPU, (2) register files, and (3) a controller, as
depicted in Fig. 4. To limit the power and area costs, we decide
to place one PIM execution unit between two banks instead
of one PIM execution unit per bank. As a PIM execution unit
is shared by two banks, it can access either of the two banks
(denoted by EVEN BANK and ODD BANK) at a time. The
16-wide SIMD FPU consists of a pair of 16 FP16 multipliers
and adders, each with 5 stages. The register files include CRF,
GRF, and SRF. The CRF serving as an instruction buffer
comprises 32 32-bit registers. GRF has 16 256-bit registers that
are evenly split into GRF A and GRF B for EVEN BANK
and ODD BANK, respectively. SRF replicates a given 16-
bit value by 16 times and supply them to the 16-wide SIMD
FPU as one of source operands, and it consists of SRF M
and SRF A, each with 8 registers, for scalar multiplications

Even Bank Interface

Odd Bank Interface

Control FP16 MULT FP16 ADD

GRF_A

GRF_B

CRF
SRF

Local Bus to Even Bank

Local Bus to Odd Bank

In
te

rn
al

C
om

m
an

ds
Ad

dr
es

s

Fig. 4: The microarchitecture of PIM execution unit (1) an
instruction sequence manager (blue color), (2) register files
(green color), and (3) a 16-wide SIMD FPU (gray color).

and additions, respectively. The controller first fetches a PIM
instruction from the CRF and decodes the instruction, and then
controls the flows of PIM instructions, source operands to the
SIMD FPU, and the result to the GRF.

B. Pipeline

We divide the PIM execution unit into up to five pipeline
stages to satisfy the DRAM internal timing for reading/writing
data. The first stage fetches and decodes a PIM instruction.
The second stage loads 256-bit data from EVEN BANK or
ODD BANK to either a GRF register or an input of the
SIMD FPU. The address of the 256-bit data in the row buffer
is determined by the column RD command sent by the host
memory controller. Note that in AB-PIM mode, the column
RD command does not transfer the data to the chip external I/O
interface. Instead, it triggers an execution of a PIM instruction.

The PIM execution unit can skip the second stage when a
given PIM instruction does not require any data from a bank
(e.g., MAD GRF B[0], GRF A[0], GRF B[1]). The source
of operands are specified in a given instruction, but operands
from a bank (row buffer) is not specified in the instruction. For
instance, in GRF B[m] = GRF A[n] × BANK[row, column],
the PIM instruction does not explicitly specify BANK[row,
column]. Instead, the memory address of a PIM instruction is
implicit (i.e., the row address of the currently open row and
the column address of the column command that triggers the
execution of the instruction pointed by PPC). The third and
fourth stages are MULT and ADD, respectively. That is, MAC
goes through both the third and fourth stages, while MULT
and ADD skip the fourth and third stages, respectively. The
last fifth stage writes back the result to a GRF register.

C. Instruction Ordering

Consider a PIM microkernel with 8 MAC operations stored
in CRF as part of performing GEMV, as shown in Fig. 5(a).
The MAC instructions get the column addresses of a bank
from 8 column RD commands that also trigger the execution
of these instructions; the column RD commands are sent by the
host processor running a GEMV kernel. That is, each column is
implicitly coupled with a specific MAC instruction, and thus
the order of column commands from the PIM programmer’s
view needs to be the same as ones sent to PIM-DRAM.
However, modern DRAM controllers often re-order DRAM
commands to maximize performance [47] (Fig. 5(b)). This
may result in associating the wrong column addresses with the
MAC instructions which get the wrong values for the operands
from the bank (Fig. 5(c)).

To guarantee the functional correctness of a given PIM
microkernel, we need to warrant that DRAM commands are
sent to PIM-DRAM in the order that the programmer intends
(i.e., in-order DRAM accesses). However, forcing in-order
memory accesses with fences [42] may incur a considerable
performance penalty [37]. Thus, to minimize the performance
penalty, we propose a simple mechanism that can tolerate out-
of-order memory accesses in some degree, dubbed address
aligned mode (AAM).

48

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

MAC GRF_B[0], BANK [RA 0x2,CA 0x4], GRF_A[4]
MAC GRF_B[0], BANK [RA 0x2,CA 0x5], GRF_A[5]
MAC GRF_B[0], BANK [RA 0x2,CA 0x6], GRF_A[6]
MAC GRF_B[0], BANK [RA 0x2,CA 0x7], GRF_A[7]
MAC GRF_B[1], BANK [RA 0x2,CA 0x8], GRF_A[0]
MAC GRF_B[1], BANK [RA 0x2,CA 0x9], GRF_A[1]
MAC GRF_B[1], BANK [RA 0x2,CA 0xA], GRF_A[2]
MAC GRF_B[1], BANK [RA 0x2,CA 0xB], GRF_A[3]
…

MAC(AAM) GRF_B, BANK, GRF_A
JUMP -1, 7

(a) CRF instructions (d) CRF instructions w/ AAM

Address-Aligned Mode (AAM)
RA CA

0 1 0 0 0 1 0 1
GRF_B index GRF_A index

(b) Memory commands

GRF_A index = 5
GRF_B index = 0

0. ACT BA 0x0, RA 0x2
1. RD BA 0x0, CA 0x5
2. RD BA 0x0, CA 0x6
3. RD BA 0x0, CA 0xB
4. RD BA 0x0, CA 0x8
5. RD BA 0x0, CA 0x7
6. RD BA 0x0, CA 0x4
7. RD BA 0x0, CA 0x9
8. RD BA 0x0, CA 0xA
…

Programmer’s intention

1. GRF_B[0] += BANK [RA 0x2,CA 0x5] GRF_A[4]
2. GRF_B[0] += BANK [RA 0x2,CA 0x6] GRF_A[5]
3. GRF_B[0] += BANK [RA 0x2,CA 0xB] GRF_A[6]
4. GRF_B[0] += BANK [RA 0x2,CA 0x8] GRF_A[7]
5. GRF_B[1] += BANK [RA 0x2,CA 0x7] GRF_A[0]
6. GRF_B[1] += BANK [RA 0x2,CA 0x4] GRF_A[1]
7. GRF_B[1] += BANK [RA 0x2,CA 0x9] GRF_A[2]
8. GRF_B[1] += BANK [RA 0x2,CA 0xA] GRF_A[3]…

(c) Actual PIM execution

1. GRF_B[0] += BANK [RA 0x2,CA 0x5] GRF_A[5]
2. GRF_B[0] += BANK [RA 0x2,CA 0x6] GRF_A[6]
3. GRF_B[1] += BANK [RA 0x2,CA 0xB] GRF_A[3]
4. GRF_B[1] += BANK [RA 0x2,CA 0x8] GRF_A[0]
5. GRF_B[0] += BANK [RA 0x2,CA 0x7] GRF_A[7]
6. GRF_B[0] += BANK [RA 0x2,CA 0x4] GRF_A[4]
7. GRF_B[1] += BANK [RA 0x2,CA 0x9] GRF_A[1]
8. GRF_B[1] += BANK [RA 0x2,CA 0xA] GRF_A[2]
…

(e) Actual PIM execution w/ AAM

Fig. 5: Ordering MAC instructions in a GEMV microkernel. BA, RA and CA denote bank, row and column addresses.

To this end, we assign a 1-bit AAM flag to PIM arithmetic
instructions (‘A’ in Table III). This allows us to program
8 MAC operations with two PIM instructions (Fig. 5(d)).
When ‘A’ is set, the source and destination operand fields
(SRC0 #, SRC1 #, and DST #) are ignored and replaced
with sub-fields of the row and column addresses of a DRAM
command (Fig. 5(e)). A constraint is that we need to assign
the same register index to SRC0 #, SRC1 #, and DST # when
programming a PIM microkernel. Nonetheless, such a con-
straint is not a problem or limitation because of the following
two reasons. (1) Although the register number is the same,
SRC0, SRC1, and DST can point to different operand sources
(GRF A, GRF B, SRF A, SRF M, EVEN BANK, and/or
ODD BANK). Thus, all three can point to unique operands
and a destination. (2) PIM aims to accelerate vector-vector
and vector-matrix operations. Such kernels often execute the
same arithmetic instruction repeatedly while incrementing the
source and destination register indices linearly. Moreover, they
have vector (or data-level) parallelism. As such, as long as
the correct operands are fed to the operations by the proposed
mechanism, the PIM instructions can be executed out of order.

V. PIM SOFTWARE STACK AND PROGRAMMING MODEL

In this section, we describe the software support for PIM-
DRAM. Specifically, we first describe the PIM software stack
that allows users to run unmodified source code based on a
popular ML framework such as TensorFlow. Subsequently, we
present a programming model with a code example.

A. Software Stack

To run existing ML applications on a system adopting PIM-
DRAM without any change in their original source code, we
adapt the existing ML software stack illustrated in Fig. 6; the
blue ones are part of the original software stack while the
orange ones are additionally implemented for PIM-DRAM.
First, the PIM device driver reserves memory space for PIM
operations (the gray region in Fig. 3) during the booting pro-
cess. It also sets the reserved memory space to an uncacheable
region so that the host processor sends a DRAM command for
every memory access to the PIM memory space. Receiving a
request from an upper software layer, the PIM device driver
allocates physically contiguous memory blocks. This allows
us not to worry about virtual-physical address translations
for PIM kernels. Second, the PIM BLAS supports a set of

Acceleration Library

ML Application / Dev Tools

ML Framework

Device Driver
DD

Tensorflow Core Interface

Backend

DeepSpeech2 ResNet GNMT

Native Execution Path

Runtime

BLAS

PIM custom op

PIM BLAS

PIM Runtime

PIM Preprocessor

PIM Mem Manager

PIM Kernel Executor

PIM-direct Execution Path

PIM DD

Fig. 6: PIM software stack. The native execution path does not
require any modification of application source code (orange
arrow). The PIM-direct execution path needs to explicitly use
PIM TF custom ops (yellow arrow). ‘DD’ denotes device
driver.

common linear algebra operations that can exploit PIM such as
vector-scalar or vector-matrix multiplication. The PIM BLAS
is implemented on the PIM runtime and it makes users access
and utilize the PIM execution unit without knowing how to
handle PIM. Third, the PIM runtime is a set of user-level
modules used by PIM BLAS functions. Specifically, it consists
of three modules: (1) preprocessor, (2) memory manager and
(3) executor.

The PIM preprocessor analyzes the source code of ap-
plications and finds TensorFlow (TF) ops suitable for PIM
acceleration at runtime. After identifying such TF ops, it maps
associated operand data to memory space in a PIM-friendly
way and generates PIM microkernel code. The PIM memory
manager governs the memory allocated by the PIM device
driver, and stores not only generated PIM microkernel code
(or CRF commands) but also the operand data in cache area
for later use. The PIM executor configures and invokes a PIM
kernel.

Lastly, PIM BLAS functions can also be called directly by
TF “PIM custom ops,” which we implement as part of the
TensorFlow framework for explicit and manual use of PIM
operations. We currently support six custom TF operations
(ADD, MUL, ReLU, LSTM, GEMV, and BN). Fig. 7 illustrates
the execution stack starting with GEMV PIM custom op. The
TF PIM custom op directly calls the corresponding function in
the PIM BLAS library. Subsequently, the PIM BLAS function

49

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

PIM TF custom op

PIM BLAS Lib.
pimblasSgemv (int m, int n, const fp16 *A, const fp16 *B, …)

PIM Kernel
pim_gemv_kernel<numBlocks, threadsPerBlock>(…);

PIM micro-kernel
MAC(AAM) GRF_A, EVENBANK, GRF_A
JUMP -1, 7
EXIT

tf_pim_ops.python.ops.pim_gemv_ops (a, b)

Fig. 7: PIM-direct execution path.

calls the PIM kernel, which sets up a microkernel in the
CRF and starts to send DRAM commands to execute the PIM
microkernel. For example, the GEMV PIM microkernel consists
of only two PIM instructions: (1) MAC GRF A, EVENBANK,
GRF A and (2) JUMP. MAC will be executed 8 times as
JUMP is set up to repeat the loop 8 times.

B. Programming Model

A normal compute kernel performs all the operations in
a device, as illustrated in Fig. 8(a). On the other hand,
a PIM kernel needs to send memory requests to DRAM
such that the PIM microkernel code in PIM-DRAM can be
properly executed, as depicted in Fig. 8(b). Therefore, an
important aspect of PIM kernel programming is to generate
memory requests to the correct addresses, ensure the order of
those memory requests, and fully utilize the on-chip compute
bandwidth of PIM-DRAM.

To fully utilize the compute throughput of PIM-DRAM, it
is necessary for a PIM kernel to send a sufficient number
of memory requests to DRAM. Thus, it is natural to create
multiple threads, each of which sends 8 memory requests to
a contiguous memory region of 256 bytes (8 accesses × 32
bytes per access) to fully utilize the GRF storing operands for
arithmetic operations. For example, if the maximum memory
access size of the memory access APIs determined by a
given processor ISA is 16 bytes, we need 16 threads to
generate memory requests for accessing 256 bytes at a time,
as illustrated in Fig. 8(c). All 16 threads are allocated to one
thread group, which is executed in a lockstep manner, runs the
same set of instructions, and follows the same control-flow
path, as depicted in Fig. 8(d). Therefore, all threads in the
same thread group concurrently send memory requests to the
memory controller. To synchronize the threads and guarantee
the order of memory requests, we use barrier APIs. Since
barrier enforces an ordering constraint on memory requests
issued by threads belonging to the same thread group, we let

(a) Normal execution model

Input Compute KernelProcessor Output

(b)
PIM Binary

64B~
256B

Thread Group 0

16 Threads

64 Thread Groups 64 Pseudo Channels

(c) Memory transaction generation

Thread Group 0
Thread0 Thread1 … Thread15

Vector Register

Memory Controller

16B 16B 16B

256B

8 RD commands

Pseudo Channel 0

Bank 0
PIM Unit 0 …

PIM Execution Model

Memory Transaction
PIM (Read, Write, Barrier)

Bank 1
(d) Execution mapping between processor and PIM

PIM Unit 7

Bank 1 Bank 13

Bank 12

PIM-HBM

Processor Input PIM Kernel Output

Fig. 8: A programming model for a processor exploiting PIM.

each thread group exclusively access single DRAM channel,
minimizing unnecessary fence overhead between memory re-
quests to different channels. For instance, we implement a
PIM kernel that allocates 64 thread groups for PIM-HBM
because there are 64 pCHs in 4 HBM2 cubes (16 pCHs each).
As described earlier, each thread group comprises 16 threads,
resulting in a total of 1,024 threads.

VI. CHIP IMPLEMENTATION AND INTEGRATION WITH A
SYSTEM

We design the proposed PIM architecture based on
HBM2 [51], fabricate it with a 20nm DRAM process, and
rigorously go through every post-manufacturing step to meet a
product quality standard as a commercial engineering sample.
Tables IV and V depict the specification of the PIM execution
unit and PIM-HBM device, respectively. First, we first start
with designing a PIM execution unit. The PIM execution unit
consists of 16 16-bit SIMD lanes, each with a FP multiplier,
a FP adder, a 32-entry CRF, a 16-entry GRF and a 16-entry
SRF. It is implemented with approximately 200,000 logic gates
consuming 0.712mm2 space. It is designed to operate at the
same frequency as the HBM2 DRAM (250MHz∼300MHz),
delivering up to 9.6GFLOPS of throughput. Note that the
operating frequency of HBM2 DRAM is 4× slower than the
memory bus frequency (1.0GHz∼1.2GHz).

As a drop-in-replacement of HBM, PIM-HBM needs to
keep the same physical dimension as HBM (10.75mm ×
9.75mm for HBM2) and preserve the mechanical compatibility
with the existing 2.5D SiP. To make space for PIM execution
units, we reduce the number of DRAM sub-arrays by half.
Besides, we have a PIM execution unit shared by two banks.
These allow us to place a total of 32 PIM execution units as a
PIM-HBM DRAM die has 4 pCHs and a pCH is connected to
16 banks like the standard HBM DRAM die (8 PIM execution
units per pCH × 4 pCHs per PIM-HBM DRAM die). A photo
of a fabricated PIM-HBM DRAM die is shown in Fig. 9(a).

Subsequently, the fabricated PIM-HBM DRAM dies are 3D-
stacked with a buffer die, as illustrated in Fig. 9(b) where 4

TABLE IV: Specification of PIM execution unit.

of MUL/ADD FPUs 16/16
Datapath Width 256 bits (16 bits × 16 lanes)
Operating Frequency 250MHz ∼ 300MHz
Throughput 9.6 GFLOPs at 300MHz
Equivalent Gate Count 200,000 (only logic)
Instruction Registers 32b × 32 (CRF)
Vector and Scalar Registers 256b × 16 (GRF), 16b × 16 (SRF)
Area 0.712mm2

TABLE V: Specification of PIM-HBM Device.

Ext. Clocking Frequency 1∼1.2GHz
Timing Parameters Same as HBM2
of pCHs 16
of banks per pCH 16
of PIM exe. units per pCH 8
On-Chip (Compute) Bandwidth 1TB/s∼1.229TB/s
Off-Chip (I/O) Bandwidth 256GB∼307.2GB/s
Capacity 6GB
Area of DRAM Die 84.4mm2

50

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

Even

Odd

Even

Odd

TSVs & Periphery

Odd

Even

Odd

Even

Even

Odd

Even

Odd

Odd

Even

Odd

Even Buffer die

(a) (b)

HBM
Stack

HBM
Stack

HBM
Stack

HBM
Stack

(d) (c)

Ban
k4
Arra

Bank Array

PIM
y

Execution Unit

Bank Array

Bottom view

Processor Top view

PIM PIM

PIM PIM

PIM PIM

PIM PIM

PIM DRAM die

PIM DRAM die

PIM DRAM die

PIM DRAM die

 DRAM die

 DRAM die

 DRAM die

 DRAM die

Fig. 9: PIM-HBM implementation and SiP 2.5D-integrating
PIM-HBM devices with a processor: (a) a photo of a fabricated
PIM-HBM die, (b) a cross-section view of 3D-stacked PIM-
HBM, (c) a photo of a manufactured PIM-HBM package, (d)
a photo of a processor SiP.

PIM-HBM DRAM dies are 3D-stacked on a buffer die, and
then four HBM DRAM dies were 3D-stacked atop the PIM-
HBM dies. This gives a total of 6GB capacity (4 × 4Gb PIM-
HBM dies + 4 × 8Gb HBM dies), 1.229TB/s on-chip compute
bandwidth (1.2Gbps × 64 bits per bank × 8 operating banks
per pCH × 16 pCHs per device), and 307GB/s I/O bandwidth
(2.4 Gbps × 64 bits per bank × 1 operating banks per pCH
× 16 pCHs per device).

Fig. 9(c) shows a photo of a fully assembled and packaged
PIM-HBM device (or stack) in a micro pillar grid array
(MPGA) package. The PIM-HBM’s technical specifications
seen by the host processor such as ball map, signaling, and
DRAM timing parameters are precisely the same as conven-
tional HBM2 [51]. Before 2.5D-integrating PIM-HBM devices
with the processor, we also design and build an FPGA-based
system to verify whether or not PIM-HBM is compatible
with a JEDEC-compliant memory controller and functionally
correct. The FPGA-based system comprises a Xilinx Zynq
Ultrascale+ FPGA and a socket to mount a package that
encapsulates an HBM MPGA package. Note that a stand-
alone HBM device in an MPGA package cannot be directly
mounted on a PCB due to its small ball size. As such, it needs
to be integrated on a silicon interposer and packaged in a
conventional package before it is mount on a PCB. As we can
precisely control the operation of PIM-HBM with this system,
we also use it to measure power and energy consumption of
PIM-HBM.

Lastly, PIM-HBM devices are 2.5D-integrated with a pro-

cessor die, as shown in Fig. 9(d). For evaluations, we integrate
four PIM-HBM devices with an unmodified high-end proces-
sor with 60 compute units, each operating at 1.725GHz. That
is, the total off-chip memory bandwidth for the processor is
1.229TB/s while the total on-chip compute bandwidth for PIM
execution units is 4.915TB/s.

VII. EVALUATION

A. Benchmark

To evaluate performance and energy efficiency of PIM-
HBM-based systems, we first run two types of microbench-
marks: vector-matrix multiplication (GEMV) and element-wise
addition (ADD) frequently used for computing residual con-
nections. For evaluations of the microbenchmarks, we apply
various input sizes obtained from the real-world applica-
tions to the systems (Table VI). Furthermore, for end-to-
end evaluations of performance and energy consumption, we
choose five representative ML applications: three NLP applica-
tions (Baidu’s DeepSpeech2 (DS2 [4]), Google’s RNN Trans-
ducer (RNN-T [20]) and Google’s Neural Machine Transla-
tion System (GNMT [53])) and two popular CV applications
(AlexNet [38] and ResNet [18]). Note that the embed-
ding look-up layer of recommendation models is memory-
bound but it also requires a large memory capacity (e.g.,
256GB [15]). Thus, processors integrated with HBM are not
suitable for running such applications as they provide limited
memory capacity (e.g., 32GB with 4 HBM devices). For
evaluation, we use a batch size of 1, 2, and 4. Note that a
larger batch size gives more data reusability (i.e., higher LLC
hit rates), which makes a given application more compute-
bound and increases throughput. Nonetheless, it also increases
response time. Hence, we focus on discussing the evaluation
of applications with a batch size of 1 as we consider the
target use of PIM-HBM systems for memory-bound, latency-
sensitive applications such as commercial online services.
DS2 consists of 2 convolution layers, 6 bidirectional LSTM

layers, and a fully connected layer. RNN-T, another speech
recognition model, is a combination of three types of networks:
5 LSTM encoder layers with dropout, 2 LSTM prediction
layers with dropout, and 2 fully connected joint-network layers
with ReLU/dropout; we use a variant of the model included
in the MLPerf benchmark suite [46]. For input data of
two speech recognition models, we use a linear spectrogram
extracted from a voice clip of 2 seconds. GNMT consists of
8 LSTM encoders, 8 LSTM decoders, and an attention layer.
In our evaluation, we use sentences, each with approximately
50 words, as input. AlexNet comprises 5 convolution layers
and 3 fully connected layers. ResNet-50 has 50 layers,
most of which perform 3×3 and 1×1 convolution operations,

TABLE VI: Microbenchmark.

Name GEMV Dim. Name ADD Dim.
GEMV1 1k × 4k ADD1 2M
GEMV2 2k × 4k ADD2 4M
GEMV3 4k × 8k ADD3 8M
GEMV4 8k × 8k ADD4 16M

51

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

0%

20%

40%

60%

80%

100%

120%

0
0.5

1
1.5

2
2.5

3
3.5

4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

B
1

B
2

B
4

1 2 3 4 1 2 3 4 Total Enc. Dec.

GEMV ADD DS2 RNN-T GNMT AlexNet ResNet

A
ve

ra
g

e
 L

LC
 M

is
s

R
at

e

R
e

la
tiv

e
P

e
rf

o
rm

a
nc

e
(B

a
se

lin
e:

N
o

rm
al

 H
B

M
)

Performance Gain Avg. LLC Miss Rate (%)

7.4 8.9 8.1 8.7 5.45.3

Fig. 10: Relative performance and average LLC miss rates with batch size of 1, 2, and 4 (denoted by B1, B2, and B4); the
LLC miss rates for DS2, RNN-T, GMNT, AlexNet, and ResNet consisting of multiple kernels cannot be reported because
the performance monitoring tool can report a LLC miss rate of only a single kernel at a time.

with a identify shortcut connection which skips one or more
layers. Although most layers of both AlexNet and ResNet
are compute-bound, which are not a target for PIM, we still
evaluate them for the completeness of evaluation. For input
to CV models, we use images, each with 224×224×3 size.
Finally, we accelerate the LSTM layers of DS2, RNN-T, and
GNMT, and the fully connected layers of AlexNet.

B. Performance

Fig. 10 compares the performance of the HBM- and PIM-
HBM-based systems running the microbenchmarks and the
ML applications with various batch sizes. First, we analyze
the performance of the microbenchmarks with a single batch
size. The PIM-HBM-based system gives 1.4∼11.2× higher
performance than HBM-based one for the microbenchmarks.
Especially, PIM-HBM improves the performance of GEMV
by up to 11.2× compared to HBM. The performance im-
provement is significantly greater than the on-chip compute
bandwidth increase with PIM-HBM because GEMV provided
by the software stack of the processor is not optimized to fully
utilize the off-chip memory bandwidth of HBM. On the other
hand, PIM-HBM improves the performance of ADD by only
1.6× over HBM. This is because the ADD kernel uses both
operands only once and the computed result should be stored
to the bank after 8 ADD instructions, which is limited by the
number of GRF registers. That is, the host processor needs to
execute a fence instruction after PIM-HBM executes 8 PIM
instructions; as discussed in Section IV-C, and the number
of PIM instructions, which can be executed out of order, is
limited to the number of registers in GRF. We discuss how
we can reduce the overhead of frequently executing fence
instructions later in this section.

For DS2, GNMT, and AlexNet, PIM-HBM gives 3.5×,
1.5×, and 1.4× higher performance than HBM, respectively.
PIM-HBM considerably improves the performance of DS2
compared to HBM, as DS2 spends most of the time to execute
the LSTM layers which are very suitable for PIM acceleration.
For GNMT, the LSTM decoder is required to invoke the PIM
kernel at every step and every layer because the output of the
last layer of the previous step becomes the input of the first
layer of the next step. Hence, the overhead caused by many
kernel calls limits the performance improvement of GNMT. On

the other hand, the inputs of all steps of the LSTM encoder
are available at the beginning, which can reduce the number of
kernel calls for the encoder. As a result, we observe that PIM-
HBM improves the LSTM encoder performance by 6.2× com-
pared to HBM. Although the convolutional layers dominate
the execution time of AlexNet, PIM-HBM still improves
the performance by accelerating the fully connected layer. For
ResNet-50, PIM-HBM gives the same performance as HBM
because the execution time of ResNet-50 is dominated by
that of convolution layers, which are compute-bound. This is
to demonstrate the PIM-HBM does not hurt the performance
of compute-bound applications.

As the batch size increases, we observe that the performance
improvement with PIM-HBM decreases. For example, PIM-
HBM improves the performance of GEMV by 11.2× and
3.2× for batch size of 1 and 2, respectively, compared to
HBM. However, for batch size of 4, the processor with HBM
begins to outperform one with PIM-HBM as it becomes
less memory-bound with more reused data in LLC. We can
confirm this with the LLC miss rates that decrease from almost
∼100% to 70–80% (Fig. 10). In general, batching transforms
the (memory-bound) level-2 BLAS (GEMV) to the (compute-
bound) level-3 BLAS (GEMM). That is, PIM-HBM does not
improve performance if the batch size is 4 or larger in our
evaluation. Meanwhile, ADD, which is the level-1 BLAS, is
still memory-bound regardless of the batch size as it becomes
the level-2 BLAS with batching. In summary, for batch size
of 2, PIM-HBM still gives 1.6× and 1.9× higher performance
than HBM for DS2 and RNN-T, respectively, but it provides
lower performance for other ML applications.

In our evaluation above with an unmodified processor, we
need to use a barrier for every 8 DRAM commends to guar-
antee the correct execution order of PIM instruction because
our AAM can handle out-of-order execution of only up to
8 PIM instructions at a time (Section IV-C). The overhead
of using fence instructions prevents us from exploiting the
full potential of PIM-HBM. If a processor can guarantee the
order of DRAM commands in PIM mode, our evaluation after
removing fence instructions shows that PIM-HBM can offer
2.2×, 1.9×, and 2.0× higher performance than HBM for
microbenchmarks with batch size of 1, 2, and 4, respectively.
Note that a processor manufacturer confirms that the order

52

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

0% 20% 40% 60% 80% 100% 120%

HBM

Cell Decoder/LocalBus DRAM die GlobalBus Buffer die + External

PIM-HBM

Fig. 11: Power breakdown of HBM and PIM-HBM over back-
to-back DRAM RD commands. Both HBM and PIM-HBM are
operating at 2.4Gbps and 85◦C with random FP16 numbers.

of DRAM commands can be preserved only in PIM mode at
negligible hardware and performance costs.

Lastly, FPGA-based RNN accelerators such as Brain-
wave [8] provide high performance, but they evaluate mi-
crobenchmarks with data sets that fit into on-chip SRAM in
FPGA (e.g., ARRIA-10 with total 67Mb SRAM). Graphcore
also relies on large capacity and high bandwidth of SRAM that
stores all the data necessary for processing. Meanwhile, PIM-
HBM based on larger capacity DRAM targets applications and
kernels with data sets that do not fit into SRAM.

C. Power and Energy

At first, we suppose that the PIM execution units and
their parallel accesses of banks may significantly increase the
power consumption of PIM-HBM compared to HBM. Mea-
suring power consumption of the fabricated PIM-HBM chips,
however, we observe that the PIM-HBM consume only 5.4%
higher power even with 4× higher (on-chip) bandwidth than
HBM, as shown in Fig. 11. In PIM-HBM, since multiple PIM
execution units, each coupled with a bank, operate at the same
time, the power consumption of DRAM internal components
such as cell and IOSA/decoders, which are depicted by the
blue and orange colors in Fig. 11, increases proportionally.
Nonetheless, the power consumption of internal global I/O
buses, most of which is represented by the gray color, and
I/O PHYs, some of which is represented by the yellow color,
considerably decreases. In summary, the power consumption
of PIM-HBM is slightly higher than that of HBM, staying
within the thermal design power (TDP) limit set by the original
HBM-based system. Note that we could have made the power
consumption of PIM-HBM ∼10% lower than that of the HBM
if we implemented a feature eliminating unnecessary power
consumption by the buffer die’s 1024-bit data I/O circuit
that does not need to toggle in PIM mode (the orange color
in Fig. 11). Therefore, PIM-HBM can also offer a thermal
advantage over HBM.

Fig. 12 shows power and energy consumption of PIM-HBM,
PROC-HBM, and PROC-HBM×4. PIM-HBM and PROC-
HBM represent a processor integrated with 4 PIM-HBM
and 4 HBM devices, respectively. PROC-HBM×4 denotes a
hypothetical processor with 4 times more HBM devices than
PROC-HBM. Using the system described in Section VI, we
measure the power consumption and execution time of PIM-
HBM and PROC-HBM. We estimate the power consumption

0
1
2
3
4
5
6

0
1
2
3
4
5
6

PR
O

C
-H

BM

PR
O

C
-H

BM
x4

PR
O

C
-H

BM

PR
O

C
-H

BM
x4

PR
O

C
-H

BM

PR
O

C
-H

BM
x4

PR
O

C
-H

BM

PR
O

C
-H

BM
x4

PR
O

C
-H

BM

PR
O

C
-H

BM
x4

GEMV
(G. mean)

ADD
(G. mean)

DS2 GNMT AlexNet

R
el

at
iv

e
En

er
gy

 E
ff.

R
el

at
iv

e
Po

w
er Rel. Power Rel. Energy Efficiency

8

10
98.25

PI
M

-H
BM

PI
M

-H
BM

PI
M

-H
BM

PI
M

-H
BM

PI
M

-H
BM

Fig. 12: The relative power and energy consumption of pro-
cessors with HBM, PIM-HBM, and HBM×4.

and execution time of PROC-HBM×4 after breaking down
those of PROC-HBM and considering the effect of increasing
the number of HBM devices by 4 times.

For GEMV, PIM-HBM gives 8.25× higher energy efficiency
than PROC-HBM. PROC-HBM×4 shows energy efficiency
similar to PROC-HBM, as the system’s power consumption
and performance increase proportionally with higher band-
width for memory-bound applications. PIM-HBM performing
ADD shows relatively lower energy efficiency than performing
GEMV operations, 1.4× improvement, because it provides only
1.6× performance improvement for ADD.

For end-to-end execution of applications, the improvement
in energy efficiency is smaller than microbenchmarks because
PIM operations cannot be applied to all the layers and other
essential parts of the software stack. For DS2, GNMT, and
AlexNet, PIM-HBM gives 3.2×, 1.38×, and 1.5× higher
energy efficiency than PROC-HBM, respectively. For the three
ML applications, PIM-HBM gives 2.8×, 1.1×, and 1.3×
higher energy efficiency than PROC-HBM×4, respectively.
Lastly, Fig. 13 shows the measured average power consump-
tion of DS2 over time. This demonstrates that PIM-HBM
improves energy efficiency not only with shorter execution
time but also with lower average power consumption.

D. Design Space Exploration

As part of design space exploration, we also evaluate other
PIM (micro)architectures that could not be implemented due to
constraints such as die size, pin compatibility, timing, and use
of a JEDEC-compliant DRAM controller for the time being.
For evaluation of such PIM (micro)architectures, we perform
simulations with a modified version of DRAMSim2 [48].
Since simulations using DRAMSim2 do not model the per-

0
20
40
60
80

100
120
140
160
180
200

S
ys

te
m

 P
ow

e
r

(W
at

t)

Time

HBM PIM-HBM

3.2x faster

Fig. 13: Average system power of DS2 over time.

53

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

0
1
2
3
4
5
6

 1 2 3 4

G
m

ea
n 1 2 3 4

G
m

ea
n 1 2 3 4

G
m

ea
n

G
m

ea
n

GEMV ADD BN All

R
el

at
iv

e
Pe

rfo
rm

an
ce PIM-HBM SRW2BA2X

Fig. 14: The performance improvement of a processor with
PIM-HBM-2×, - 2BA, and -SRW over the processor with
HBM.

formance of the host processor, estimated performance values
are theoretical upper-bound but close to the true performance
for very memory-bound kernels. Specifically, we simulate the
performance of three more enhanced PIM architectures: a PIM
execution unit that can (1) provide 2× more resources (denoted
by PIM-HBM-2×); (2) access EVEN BANK and ODD
BANK at the same time to get two operands for one PIM
instruction (PIM-HBM-2BA where 2BA stands for 2 bank
access); and (3) get a 32-byte data sent over the DRAM write
datapath by a WR command and another 32-byte data from
the column address of the EVEN BANK or ODD BANK
(PIM-HBM-SRW where SRW stands for simultaneous DRAM
column RD and WR commands).

Fig. 14 shows the performance improvement of a processor
with PIM-HBM-2×, - 2BA, and -SRW over the processor
with HBM, where we also evaluate a batch-normalization
kernel (BN) with the same input size as ADD. PIM-HBM-2×
gives ∼40% higher geo-mean performance than PIM-HBM,
but it increases the die size by 24%. PIM-HBM-2BA offers
∼20% higher geo-mean performance. It is useful especially
for ADD because it reduces the performance bottleneck by
the limited number of GRF registers. It does not notably
increase the die size, but it consumes 60% more power than
PIM-HBM. PIM-HBM-SRW provides only ∼10% higher geo-
mean performance than PIM-HBM, but it offers ∼25% higher
performance especially for GEMV because it does not need
to write the vector to GRF registers first with a DRAM
column WR command and then execute the operation with
a subsequent DRAM column RD command.

VIII. DISCUSSION

In this section, we discuss various challenges, how we
tackled some of them in this work, and how we can better
handle them in the future.

Cache Bypassing: PIM requires data to be located in memory.
Thus, we need to make memory regions that PIM operates on
uncacheable or flush cached data associated with the memory
regions to memory before PIM starts to operate on the data.
These approaches, however, can lead to notable performance
degradation. To reduce such performance degradation, we
use cache bypass instructions (e.g., LDNP/STNP in ARMv8)

Channel 0

(a) Sample address map

row (3b) column (2b) bank (1b)

(b) Data placement of vector a and b (allocated to 128-bytes aligned address)

a0

channel (1b) offset (5b)

a4 a8 a12

b0 b4 b8 b12

Bank 0

a2 a6 a10 a14

b2 b6 b10 b14

Bank 1

Channel 1

a1 a5 a9 a13

b1 b5 b9 b13

Bank 0

a3 a7 a11 a15

b3 b7 b11 b15

Bank 1

Addressing 128-bytes

a16

b16

Fig. 15: Data layout for PIM ADD.

that directly send write requests to memory through a write-
combining buffer. Note that PIM targets to accelerate applica-
tions with large data sets that do not fit into caches. As such,
making such memory regions uncacheable in fact reduces
interference and contention at caches and thus improves the
performance when such data can be processed by PIM.
ECC, Virtualization and Multi-tenancy: Our current PIM-
HBM does not support ECC yet. However, future PIM based
on the proposed architecture can easily support ECC as each
PIM execution unit reads and writes data at the same the data
access granularity as a host processor. In addition, DRAM
began to have on-die ECC including HBM3. Thus, PIM may
leverage the on-die ECC engine to generate and check the
ECC parity bits even in PIM mode. Currently, we developed
an ECC scheme for an HBM3-generation PIM-HBM with
the company that integrated PIM-HBM with its unmodified
processor. Lastly, PIM-HBM can support virtualization and
multi-tenancy at some degrees since it allows a processor
to independently controls PIM operations of each memory
channel.
Memory Interleaving and Data Layout: As discussed ear-
lier, (1) the host processor can independently control PIM
operations of each memory channel, and (2) a PIM execution
unit accesses the memory at the same data access granular-
ity as a host processor. These two aspects make our PIM
architecture more agnostic to a physical address mapping
scheme of the host processor than prior PIM architectures.
For example, suppose a physical address mapping scheme
depicted in Fig. 15(a). In case of ADD, two operands can
be allocated at the 128-byte aligned boundary as illustrated
in Fig. 15(b). This is the same data layout as a standard
processor except that the size of vectors should be multiple of
128 bytes. If the size of vectors is not multiple of 128 bytes,
we can concatenate dummy values to the end of the vectors.
Even so, the overhead or inefficiency is negligible as we target
very large vectors that do not fit into cache. To maximize the
performance of GEMV, however, our PIM architecture may still
require some changes in data layout and/or software needs to
be aware of the physical address mapping scheme; currently
PIM BLAS APIs automatically rearrange data layout when the
host processor brings weight matrix values to memory. Note
that we expect to shun such data rearrangement for GEMV in

54

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

a HBM3-generation PIM-HBM architecture that will support
fine-grained interleaving between SB and AB-PIM modes. In
such a PIM architecture, we see an opportunity that both the
host processor and PIM can perform GEMV in a collaborative
way and eliminate the need for data layout rearrangement. We
will leave such an approach as future work.

IX. RELATED WORK

Many researchers have explored diverse PIM architectures
so far (e.g., [2], [12], [19], [33]–[35], [49], [54]). These
architectures share a common concept, exploiting the array-
and/or bank-level parallelism to expose the abundant on-chip
bandwidth of DRAM to processors. However, the past PIM
architectures including the most recent one exploiting bank-
level parallelism (dubbed Newton [19]) lack the following
considerations for practicality and wide industry adoption.

Interface between Host and DRAM: The interfaces between
commercial processors and DRAM devices are defined by
JEDEC standards [25]–[28]. To adopt custom DRAM devices
that do not follow the standard interfaces, host processors also
need to be customized. The engineering cost and time of not
only customizing both the processors and the DRAM devices
but also building necessary ecosystems will inevitably hinder
wide adoption by the industry which is often driven by the cost
and time to market. That is, the compatibility with the current
standard DRAM interfaces is essential to successfully and
quickly deploy PIM-DRAM devices to commercial systems.

Software Stack: Prior PIM work [2], [12], [19], [35], [49]
discusses necessary programming models and software stacks,
but it only approximates the effects of the programming
models and software stacks on performance without imple-
menting them. In contrast, the software stack for our PIM
architecture is fully implemented to precisely evaluate the
performance effects of (1) performing non-cacheable mem-
ory accesses; (2) translating a virtual address to a physical
one [22] and correctly accessing a target DRAM bank, row,
and column of the (interleaved or scrambled) physical address;
(3) maintaining the ordering of DRAM commands to ensure
the functional correctness [47]; and (4) executing existing
applications without or with minimal modifications of the
source code.

Lastly, comparing our work with Newton in depth, we
see that Newton accelerates only matrix-vector multiplication
with MAC units that are placed near DRAM banks. This
limits applications that can benefit from the architecture.
Furthermore, it requires special DRAM commands that are not
part of the JEDEC standard, which increases the complexity
of DRAM controller and DRAM designs due to more CA
pins and associated states than the standard DRAM interfaces.
As such, it will lose the compatibility with existing JEDEC-
compliant DRAM controllers. More importantly, unlike our
work, Newton has been neither implemented with a com-
mercial DRAM technology, integrated with a commercial
processor, nor supported by a necessary software stack for
full system-level evaluations yet.

X. CONCLUSION

In this paper, we proposed a practical yet innovative PIM ar-
chitecture that can seamlessly work with unmodified commer-
cial processors as a drop-in-replacement of standard DRAM.
To demonstrate its practicality and efficacy at the system level,
we implemented the proposed PIM architecture based on a
commercial HBM2 DRAM die design, fabricated it with a
20nm DRAM technology, integrated the fabricated PIM-HBM
with an unmodified commercial processor, and developed the
necessary software stack. Our system-level evaluation showed
that PIM reduced the end-to-end execution time of memory-
bound neural network kernels and applications by up to 11.2×
and 3.5×, respectively, and improved the energy efficiency of
the system running the applications by up to 3.2×. This work
is the first silicon implementation, software stack development,
and system-level evaluation by a major memory manufacturer,
and it opens the door for wider adoption and further develop-
ment of PIM by other industry players.

REFERENCES

[1] “TensorFlow,” https://github.com/tensorflow.
[2] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A Scalable Processing-

in-Memory Accelerator for Parallel Graph Processing,” in Int’l Symp. on
Computer Architecture (ISCA), 2015.

[3] M. Alian, S. W. Min, H. Asgharimoghaddam, A. Dhar, D. K. Wang,
T. Roewer, A. McPadden, O. O’Halloran, D. Chen, J. Xiong, D. Kim,
W.-m. Hwu, and N. S. Kim, “Application-Transparent Near-memory
Processing Architecture with Memory Channel Network,” in Int’l Symp.
on Microarchitecture (MICRO), 2018.

[4] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Battenberg,
C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen, J. Chen, J. Chen,
Z. Chen, M. Chrzanowski, A. Coates, G. Diamos, K. Ding, N. Du,
E. Elsen, J. Engel, W. Fang, L. Fan, C. Fougner, L. Gao, C. Gong,
A. Hannun, T. Han, L. Johannes, B. Jiang, C. Ju, B. Jun, P. LeGresley,
L. Lin, J. Liu, Y. Liu, W. Li, X. Li, D. Ma, S. Narang, A. Ng, S. Ozair,
Y. Peng, R. Prenger, S. Qian, Z. Quan, J. Raiman, V. Rao, S. Satheesh,
D. Seetapun, S. Sengupta, K. Srinet, A. Sriram, H. Tang, L. Tang,
C. Wang, J. Wang, K. Wang, Y. Wang, Z. Wang, Z. Wang, S. Wu,
L. Wei, B. Xiao, W. Xie, Y. Xie, D. Yogatama, B. Yuan, J. Zhan, and
Z. Zhu, “Deep Speech 2: End-to-end Speech Recognition in English and
Mandarin,” in Int’l Conf. on Machine Learning (ICML), 2016.

[5] H. Asghari-Moghaddam, Y. H. Son, J. H. Ahn, and N. S. Kim,
“Chameleon: Versatile and Practical Near-DRAM Acceleration Archi-
tecture for Large Memory Systems,” in Int’l Symp. on Microarchitecture
(MICRO), 2016.

[6] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,
and E. Shelhamer, “CuDNN: Efficient Primitives for Deep Learning,”
arXiv preprint arXiv:1410.0759, 2014.

[7] K. Cho, H. Lee, and J. Kim, “Signal and Power Integrity Design of 2.5
D HBM (High Bandwidth Memory Module) on SI Interposer,” in Pan
Pacific Microelectronics Symp., 2016.

[8] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera,
L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin,
K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz,
K. Kagi, R. K. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel,
B. Perez, A. Rapsang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera,
S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D. Zhang,
R. Zhao, and D. Burger, “Serving DNNs in Real Time at Datacenter
Scale with Project Brainwave,” IEEE Micro, vol. 38, no. 2, 2018.

[9] A. Dakkak, C. Li, J. Xiong, I. Gelado, and W.-m. Hwu, “Accelerating
Reduction and Scan Using Tensor Core Units,” in Int’l Conf. on
Supercomputing (ICS), 2019.

[10] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKen-
zie, “Computational RAM: Implementing Processors in Memory,” IEEE
Design & Test of Computers, vol. 16, no. 1, 1999.

55

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

[11] M. Gao, G. Ayers, and C. Kozyrakis, “Practical Near-data Processing
for In-memory Analytics Frameworks,” in Int’l Conf. on Parallel Archi-
tecture and Compilation (PACT), 2015.

[12] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and Efficient Neural Network Acceleration with 3D Memory,”
in Int’l Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2017.

[13] M. Gokhale, B. Holmes, and K. Iobst, “Processing in Memory: The
Terasys Massively Parallel PIM Array,” Computer, vol. 28, no. 4, 1995.

[14] U. Gupta, S. Hsia, V. Saraph, X. Wang, B. Reagen, G.-Y. Wei, H.-H. S.
Lee, D. Brooks, and C.-J. Wu, “DeepRecSys: A System for Optimizing
End-To-End At-Scale Neural Recommendation Inference,” in Int’l Symp.
on Computer Architecture (ISCA), 2020.

[15] U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia, H.-H. S. Lee, A. Male-
vich, D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang, “The Ar-
chitectural Implications of Facebook’s DNN-Based Personalized Recom-
mendation,” in Int’l Symp. on High Performance Computer Architecture
(HPCA), 2020.

[16] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing GPU
Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-precision
Iterative Refinement Solvers,” in Int’l Conf. for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2018.

[17] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss,
J. Granacki, J. Brockman, A. Srivastava, W. Athas, V. Freeh, J. Shin,
and J. Park, “Mapping Irregular Applications to DIVA, a PIM-based
Data-intensive Architecture,” in Conf. on Supercomputing (SC), 1999.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Conf. on Computer Vision and Pattern Recognition
(CVPR), 2016.

[19] M. He, C. Song, I. Kim, C. Jeong, S. Kim, I. Park, M. Thottethodi,
and T. N. Vijaykumar, “Newton: A DRAM-maker’s Accelerator-in-
Memory (AiM) Architecture for Machine Learning,” in Int’l Symp. on
Microarchitecture (MICRO), 2020.

[20] Y. He, T. N. Sainath, R. Prabhavalkar, I. McGraw, R. Alvarez, D. Zhao,
D. Rybach, A. Kannan, Y. Wu, R. Pang, Q. Liang, D. Bhatia, Y. Shang-
guan, B. Li, G. Pundak, K. C. Sim, T. Bagby, S.-y. Chang, K. Rao, and
A. Gruenstein, “Streaming End-to-End Speech Recognition for Mobile
Devices,” in Int’l Conf. on Acoustics, Speech and Signal Processing
(ICASSP), 2019.

[21] Intel, oneAPI Deep Neural Network Library, https://github.com/oneapi-
src/oneDNN.

[22] Intel, “Intel Virtualization Technology for Directed I/O Architecture
Specification,” 2006.

[23] Intel, Intel® oneAPI Math Kernel Library., 2020, https://software.intel.
com/content/www/us/en/develop/tools/math-kernel-library.html.

[24] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift,” arXiv preprint
arXiv:1502.03167, 2015.

[25] JEDEC, “High Bandwidth Memory (HBM) DRAM,” JESD235, 2013.
[26] JEDEC, “Graphics Double Data Rate 6 (GDDR6) SGRAM,” JESD250B,

2018.
[27] JEDEC, “DDR5 SDRAM,” JESD79-5, 2020.
[28] JEDEC, “Low Power Double Data Rate (LPDDR5),” JESD209-5A,

2020.
[29] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting

the NVIDIA Volta GPU Architecture via Microbenchmarking,” arXiv
preprint arXiv:1804.06826, 2018.

[30] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “FlexRAM: Toward an Advanced Intelligent Memory
System,” in Int’l Conf. on Computer Design (ICCD), 1999.

[31] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“GPUs and the Future of Parallel Computing,” IEEE Micro, vol. 31,
no. 5, 2011.

[32] J. Khan, P. Fultz, A. Tamazov, D. Lowell, C. Liu, M. Melesse, M. Nand-
himandalam, K. Nasyrov, I. Perminov, T. Shah, V. Filippov, J. Zhang,
J. Zhou, B. Natarajan, and M. Daga, “MIOpen: An Open Source Library
For Deep Learning Primitives,” 2019.

[33] B. Kim, J. Chung, E. Lee, W. Jung, S. Lee, J. Choi, J. Park, M. Wi,
S. Lee, and J. Ahn, “MViD: Sparse Matrix-Vector Multiplication in
Mobile DRAM for Accelerating Recurrent Neural Networks,” IEEE
Transactions on Computers, vol. 69, no. 7, 2020.

[34] B. Kim, J. Park, E. Lee, M. Rhu, and J. H. Ahn, “TRiM: Tensor
Reduction in Memory,” IEEE Computer Architecture Letters, 2020.

[35] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A Programmable Digital Neuromorphic Architecture with
High-density 3D Memory,” in Int’l Conf. on Computer Architecture
(ISCA), 2016.

[36] J. Kim and Y. Kim, “HBM: Memory Solution for Bandwidth-Hungry
Processors,” in Hot Chips Symp. (HCS), 2014.

[37] A. Kolli, J. Rosen, S. Diestelhorst, A. Saidi, S. Pelley, S. Liu, P. M.
Chen, and T. F. Wenisch, “Delegated Persist Ordering,” in Int’l Symp.
on Microarchitecture (MICRO), 2016.

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Int’l Conf. on Neural
Information Processing Systems (NIPS), 2012.

[39] V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted
Boltzmann Machines,” in Int’l Conf. on Machine Learning (ICML),
2010.

[40] M. Naumov, D. Mudigere, H. M. Shi, J. Huang, N. Sundaraman, J. Park,
X. Wang, U. Gupta, C. Wu, A. G. Azzolini, D. Dzhulgakov, A. Malle-
vich, I. Cherniavskii, Y. Lu, R. Krishnamoorthi, A. Yu, V. Kondratenko,
S. Pereira, X. Chen, W. Chen, V. Rao, B. Jia, L. Xiong, and M. Smelyan-
skiy, “Deep Learning Recommendation Model for Personalization and
Recommendation Systems,” arXiv preprint arXiv:1906.00091, 2019.

[41] Netlib, Basic Linear Algebra Subprograms, http://www.netlib.org/blas.
[42] NVIDIA, “CUDA C++ Programming Guide,” 2020.
[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Information
Processing Systems, 2019.

[44] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A Case for Intelligent RAM,”
IEEE Micro, vol. 17, no. 2, 1997.

[45] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan,
A. Buyuktosunoglu, A. Davis, and F. Li, “NDC: Analyzing the Impact
of 3D-stacked Memory+Logic Devices on MapReduce Workloads,” in
Int’l Symp. on Performance Analysis of Systems and Software (ISPASS),
2014.

[46] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J.
Wu, B. Anderson, M. Breughe, M. Charlebois, W. Chou et al., “MLPerf
Inference Benchmark,” in Int’l Symp. on Computer Architecture (ISCA),
2020.

[47] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory Access Scheduling,” ACM SIGARCH Computer Architecture
News, vol. 28, no. 2, 2000.

[48] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A Cycle
Accurate Memory System Simulator,” IEEE Computer Architecture
Letters, vol. 10, no. 1, 2011.

[49] H. Shin, D. Kim, E. Park, S. Park, Y. Park, and S. Yoo, “McDRAM:
Low Latency and Energy-Efficient Matrix Computations in DRAM,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, 2018.

[50] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-scale Image Recognition,” arXiv preprint arXiv:1409.1556,
2014.

[51] K. Sohn, W.-J. Yun, R. Oh, C.-S. Oh, S.-Y. Seo, M.-S. Park, D.-H. Shin,
W.-C. Jung, S.-H. Shin, J.-M. Ryu, H.-S. Yu, J.-H. Jung, H. Lee, S.-Y.
Kang, Y.-S. Sohn, J.-H. Choi, Y.-C. Bae, S.-J. Jang, and G. Jin, “A 1.2
V 20 nm 307 GB/s HBM DRAM with at-speed Wafer-level IO Test
Scheme and Adaptive Refresh Considering Temperature Distribution,”
IEEE Journal of Solid-State Circuits, vol. 52, no. 1, 2016.

[52] S. Wang and P. Kanwar, “BFloat16: The secret to high performance
on Cloud TPUs,” https://cloud.google.com/blog/products/ai-machine-
learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus, 2019.

[53] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah,
M. Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa,
A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s
Neural Machine Translation System: Bridging the Gap between Human
and Machine Translation,” arXiv preprint arXiv:1609.08144, 2016.

[54] A. Yazdanbakhsh, C. Song, J. Sacks, P. Lotfi-Kamran, H. Esmaeilzadeh,
and N. S. Kim, “In-DRAM near-Data Approximate Acceleration for
GPUs,” in Int’l Conf. on Parallel Architectures and Compilation Tech-
niques (PACT), 2018.

56

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on October 13,2021 at 15:01:40 UTC from IEEE Xplore. Restrictions apply.

		2021-07-31T16:30:55-0400
	Preflight Ticket Signature

