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Virtual Memory Basics

● Virtual memory is used in many modern computing 
systems like CPUs and GPUs 

4

● Virtual memory introduces indirect addressing to:
○ Provide the impression of infinite memory 
○ Enable application-transparent memory management 
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Virtual Memory Basics

● OS creates  virtual-to-physical mapping for each process
● The virtual and physical address space is split into 

chunks which are called pages or frames
● VM frameworks use a data structure called page table to 

store the virtual to physical page mapping
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x86-64 Page Table Walk 

Virtual Address

Index 4 Index 3 Index 2 Index 1

9 bits 9 bits 9 bits 9 bits

L4 Table

…

36 bits 12 bits

L3 Table

…

L2 Table

…

L1 Table

…

Physical Page Number Offset

Physical Address

Radix-based page tables are storage-efficient and easily modifiable but 
require four sequential memory accesses to perform address translation

Offset



x86-64 Nested Page Table Walk 

In the case of Nested Page Walks even 24 memory accesses are 
needed



Virtual Memory - Address Translation

● For each memory access a program does, the memory 
address has to be translated
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mov rax, [rdx] load at physical addressTranslate



Virtual Memory - Hardware Support

● In order to speed up address translation, current 
systems have hardware support – called the Memory 
Management Unit (MMU)
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Translation Lookaside Buffer

● TLB keeps recently used translations cached
○ VPN → PPN

● Hardware Page Table Walker
● Page Walk Caches are used to accelerate PTWs
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Page Walk Caches

● Two consecutive memory accesses often share part of 
the page walk
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Virtual Address Idx 4 Idx 3 Idx 2 Idx 1 Offset
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Page Walk Caches

● Two consecutive memory accesses often share part of 
the page walk
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Virtual Address Idx 4 Idx 3 Idx 2 Idx 1 Offset

0x41fe1c 000 000 002 01f e1c

0x5df2a4 000 000 002 1df 2a4

Tag Value

000/000/002 L1 Table

---/---/--- -

---/---/--- -

Tag Value

000/000 L2 Table

---/--- -

---/--- -

Tag Value

000 L3 Table

--- -

--- -



X86-64 Radix-Based Page Table

Advantages

● Easily growable/shrinkable according to needs
● Very fast using TLB and PWCs

Disadvantages

● Relies on locality of accesses (although over wide 
memory ranges), slow if a full page walk happens

● Requires a lot of “helper hardware”
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Hash-based Page Table

Virtual Page Number Offset

36 bits 12 bits

Virtual Address

Hash Function VPN PPN

xxx xxx
Index

Physical Page Number Offset

Physical Address
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Hashed Page Table

● Need collision resolution
○ One possible solution is to use a chain table

15

VPN PPN Chain 
Pointer

0x4321 xxx 1

Hash Function

Index

0x1234
VPN PPN Chain 

Pointer

xxx xxx xxx

0x2143 xxx 4

xxx xxx xxx

xxx xxx xxx

0x1234 xxx xxx

Many collisions means we have to traverse a long linked list



Example: Itanium Hash Table Design

Intel® Itanium® Architecture Software Developer’s Manual, Volume 2
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Hashed Page Tables

Advantages

● Only one memory access (if no collision, on average 
slightly higher)

● Doesn’t require PWCs to be fast

Disadvantages

● Can’t be easily extended/shrunk
● Underutilization
● Potentially high number of collisions
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Conclusion: Radix Page Tables are superior to Hashed Page 
Tables by a large margin.

● Hashed Page Tables cause about 1.2 memory accesses 
per lookup, only 44% of which L2 hits

● over 400% more DRAM accesses than radix page tables.

● Analyzes effect of page walk caches 
● Compares them against hashed page tables similar to 

the implementation in Itanium processors

ISCA, 2010



Motivation

We show that, when carefully optimized, hashed page 
tables in fact outperform existing PWC-aided x86-64 
hardware, shortening benchmark runtimes by 1%–27% 
[...].

- Hash, Don’t Cache (the Page Table)
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“In all affairs it’s a healthy thing now and then to hang 
a question mark on the things you have long taken for 
granted.” (B. Russell)



Goals of this work

● Optimize the Itanium hash-based page table 
implementation

● Compare the optimized hash-based page table to Radix 
Page Tables with PWCs

● Demonstrate that optimizing hash-based page table 
leads to highly efficient address translation
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Rethinking Hash-based Page Tables
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VPN PPN

0x4321 xxx

0x3412 xxx

0x1234 xxx

Hash Function

Index

0x1234

Open Addressing

● Linear search
● Allows us to get rid of the chain table
● Shrinks Hash Table Entries to 16 bytes



VPN

Rethinking Hash-based Page Tables
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Tag PTE 0 PTE 1 PTE 2 PTE 3

Bl. N. xxx xxx

Hash Function

Index

Block number

Clustering

● Cluster entries to cache line size
● Better cache locality - leverage spatial locality 

Block offset



VPN: 0x1234

Rethinking Hash-based Page Tables
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Tag PTE 0 PTE 1 PTE 2 PTE 3

0x48D xxx xxx

Hash Function

Index

0x48d

Clustering

● Cluster entries to cache line size
● Better cache locality - leverage spatial locality 

0x0

Align slots 
to 64 bytes



PTE: 64 bits

Rethinking Hash-based Page Tables
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Compaction

● Discard unneeded bits

OffsetPPNUnused

PTE: 56 bits = 7 bytes

12 bits 40 bits 12 bits



Rethinking Hash-based Page Tables
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Compaction

● Discard unneeded bits
● Allows storing 8 PTEs in one cache line like for radix 

page tables

PTETag

8 bytes 7 bytes

PTE

7 bytes

PTE

7 bytes

PTE

7 bytes

PTE

7 bytes

PTE

7 bytes

PTE

7 bytes

PTE

7 bytes

8 bytes + 8 * 7 bytes = 64 bytes = 1 Cache Line



Putting it All Together 
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● Open Addressing
● Clustering
● Compaction

VPN

Tag PTE 0 PTE 1 PTE 2 PTE 3 PTE 4 PTE 5 PTE 6 PTE 7

Bl. N. xxx xxx

Hash Function

Index

Block number Block offset



Outline

● Background
● Skip, Don’t Walk (the Page Table)
● Motivation
● Rethinking Hash-based Page Tables
● Evaluation
● Strengths & Weaknesses
● Discussion

29



System Configuration + Evaluated Workloads
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Spec cpu2006

● mcf
● cactusADM
● xalacbmk

graph500

● 4GB
● 8GB
● 16GB

gups

● 2GB
● 8GB
● 32GB



Evaluated Configurations
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● Study the performance of memory-intensive programs 
when using the improved Hash-based Page Table

● Compare the optimized Hash-based Page table against:
○ Current Intel Radix Page Table design with PWCs.
○ A system with an MMU that uses “perfect PWCs”

● Evaluate all designs in both native and virtualized 
environments

Real x86-64 System Hash Page Table Perfect PWCsvs. vs.



Perfect PWCs
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Virtual Address Idx 4 Idx 3 Idx 2 Idx 1 Offset

0x41fe1c 000 000 002 01f e1c

0x5df2a4 000 000 002 1df 2a4

L4 Table

…

L3 Table

…

L2 Table

…

L1 Table

…

…

Tag Value

000/000/002 L1 Table

---/---/--- -

---/---/--- -

Tag Value

000/000 L2 Table

---/--- -

---/--- -

Tag Value

000 L3 Table

--- -

--- -



Measurements
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● Trace all memory accesses of a run using Pin
● Sample a set of these accesses and simulate them in 

the proposed Architectures
○ optimized Hash Table
○ perfect PWCs

● Add up simulated latencies and calculate runtime



Optimizing Hash-based Page Tables

34

“Overall, the inverted page table increases 
the number of DRAM accesses per walk by 
over 400%.”

Translation Caching: Skip, Don’t Walk
(the Page Table)

By implementing the proposed three optimizations, DRAM 
references and therefore the walk latency can be reduced by almost 

a factor of 10



Evaluation Results
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Hashed Page Tables

Perfect PWCs

Replacing the Radix-based Page Table with a Hash-based one 
yields improvements by 1%–27% in a bare-metal setup and even 

6%–32% in a virtualized one.
The improvements are similar to those observed with perfect 

PWCs.



Strengths & Weaknesses

Strengths

● Questions an established state-of-the-art solution and brings 
new insight about the performance of hash based page 
tables 

Weaknesses

● Many unsolved Problems left for future work
○ no support for multiple page sizes
○ how to share pages between processes
○ how to resize the page table

● Optimizes only a small set of programs
● The optimizations seem like small tweaks coming from 

existing literature
● Only analyzes single program performance

○ No multi-programmed results
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Questions
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Discussion

● What is more important: Efficient memory usage or 
performance?
○ Is designing a system that is trading a big chunk of 

memory usage for some better performance a worthy 
tradeoff?

● Is it better to use one global hash table or have one per 
process?
○ What size should they be?

● Can we grow and shrink hash tables, depending on the 
memory usage?
○ allow the process to control its size?
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Thanks!

● Also thanks a lot to my Mentors
○ Konstantinos Kanellopoulos
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Measurements
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Virtual Memory Basics
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Page Table Design - Hash-based
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Page Table Design - Radix-based
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Address Translation in Virtualized Environments
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Background – Virtual Memory & Page Tables
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Optimizations

2. Clustering

- cluster entries to 
cache line size

- better cache 
locality
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Optimizations

2. Compaction

- allows storing 8 PTEs in one cache line like for radix 
page tables
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x86-64 Radix-based Page Table  

L4 Table

…

L3 Table

…

L2 Table

…

L1 Table

…

L3 Table

…

L2 Table

…

L2 Table

…

L1 Table

…



Measurements
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● Model the runtime of a benchmark
● runtime = A * walk_cycles + B
● determine parameters A and B by running the program 

twice with different page granule size
○ measure time spent during page walks



Virtual Memory Basics

● In order to speed up the translation, current systems 
have hardware support – called the Memory 
Management Unit (MMU)
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Virtual Address

MMU

Physical AddressTLB

Hardware Page Table 
Walker

PWC


