Hash, Don’t Cache
(the Page Table)

ldan Yaniv, Dan Tsafrir

~

TECHNION

Israel Institute
of Technology

SIGMETRICS 16
June 14 - 18, 2016
Antibes Juan-Les-Pins, France

Presentation by Nicolas Winkler



Outline

Background

Skip, Don't Walk (the Page Table)
Motivation

Rethinking Hash-based Page Tables
Evaluation

Strengths & Weaknesses

Discussion



Outline

e Background
o Virtual Memory
o Page Table Design
o Memory Management Unit



Virtual Memory Basics

e Virtual memory introduces indirect addressing to:
o Provide the impression of infinite memory
o Enable application-transparent memory management

Virtual address Physical address
0Ox0000 0Ox0000
Ox1000 Ox1000
0x2000 0x2000
0Ox3000 0Ox3000
Ox4000 0Ox4000
0Ox5000
Ox6000
OxFOOO... 0Ox7000

e Virtual memory is used in many modern computing
systems like CPUs and GPUs




Virtual Memory Basics

e OS creates virtual-to-physical mapping for each process

e Thevirtual and physical address space is split into
chunks which are called pages or frames

e VM frameworks use a data structure called page table to
store the virtual to physical page mapping

Virtual address Physical address

0X0000 0x0000
0x1000 0x1000
0x2000 >< 0x2000
0x3000 0x3000
Ox4000 Ox4000

0x5000

0x6000
OXF000.. 0x7000




x86-64 Page Table Walk

36 bits 12 bits
A A
- N A
Virtual Address
Index 4 Index 3 Index 2 Index 1 Offset
9 %its 9 %its 9 %its 9 %its
L4 Table / L3 Table /L2 Table |/ L1Table
— — —| Physical Page Number @ Offset

Physical Address

Radix-based page tables are storage-efficient and easily modifiable but
require four sequential memory accesses to perform address translation




x86-64 Nested Page Table Walk

'nCR3

l = guest PTE (::>:= host PTE

INn the case of Nested Page Walks even 24 memory accesses are
needed




Virtual Memory - Address Translation

e [or each memory access a program does, the memory
address has to be translated

mov rax, [rdx] Translate load at physical address



Virtual Memory - Hardware Support

e |n order to speed up address translation, current
systems have hardware support — called the Memory

Management Unit (MMU)

Processor Core e

WVirtuaI Address
Processj MMU

Physical Address

/

Memory




Translation Lookaside Buffer

e TLB keeps recently used translations cached
o VPN » PPN

e Hardware Page Table Walker
e Page Walk Caches are used to accelerate PTWs

MMU

Virtual Address TLB - Physical Address

10



Page Walk Caches

e TwO consecutive memory accesses often share part of

the page walk

Virtual Address ldX 4 ldx 3 ldx 2 ldX 1 Offset

Ox41felc 515]%) 515]%) 002 01f elc

Ox5df2a4 515]%) 515]%) 002 1df 2a4
L4 Table L3 Table /L2 Table L1 Table

11



Page Walk Caches

e Two consecutive memory accesses often share part of

the page walk

Virtual Address ldX 4 ldx 3 ldx 2 ldX T Offset
Ox41felc 000 000 002 B1f elc
Ox5df2a4 000 000 002 1df 2a4

Tag Value Tag Value Tag Value

000 L3 Table 000/000 L2 Table 000/000/002 | L1 Table

- B T I e [---]---

12



X86-64 Radix-Based Page Table

Advantages

e Easily growable/shrinkable according to needs
e Veryfast using TLB and PWCs

Disadvantages

e Relies on locality of accesses (although over wide
memory ranges), slow if a full page walk happens
e Requires a lot of *helper hardware”

13



Hash-based Page Table

36 bits 12 bits
N N
- Y N
Virtual Address
Virtual Page Number Offset

Index

XXX

XXX

Physical Page Number

Offset

Physical Address

14



Hashed Page Table

e Need collision resolution
o One possible solution is to use a chain table

Ox1234
VPN PPN Chain VPN PPN Chain
Pointer Pointer
XXX XXX XXX
0x2143 | xxx 4
Index /

Ox4321 | xxx 1 XXX XXX XXX
XXX XXX XXX
0x1234 | xxx XXX

[ Many collisions means we have to traverse a long linked list




Example: [tanium Hash Table Design

Figure 4-12. VHPT Long Format
offset 63 52 51 50 49 32 31 211 98 7 65654 2

% O
£ ig ed- ppn ar pl [dla| ma .E|

+16 ti tag
+24 ig
64

Intel® Itanium® Architecture Software Developer’s Manual, Volume 2

16



Hashed Page Tables

Advantages

e Only one memory access (if no collision, on average
slightly higher)
e Doesn't require PWCs to be fast

Disadvantages

e Can't be easily extended/shrunk
e Underutilization
e Potentially high number of collisions

17



Outline

e Skip, Don't Walk (the Page Table)

18



Translation Caching: Skip, Don’t Walk (the Page Table)

Thomas W. Barr, Alan L. Cox, Scott Rixner

Rice University
Houston, TX
{twb, alc, rixner}@rice.edu

ISCA, 2010

e Analyzes effect of page walk caches
e Compares them against hashed page tables similar to
the implementation in ltanium processors

Conclusion: Radix Page Tables are superior to Hashed Page
Tables by a large margin.

e Hashed Page Tables cause about 1.2 memory accesses
per lookup, only 44% of which L2 hits
e over 400% more DRAM accesses than radix page tables.

19



Motivation

“In all affairs it's a healthy thing now and then to hang
a question mark on the things you have long taken for

granted.” (B. Russell)

We show that, when carefully optimized, hashed page
tables in fact outperform existing PWC-aided x86-64
hardware, shortening benchmark runtimes by 1%-27%

[..].
- Hash, Don't Cache (the Page Table)

20



Goals of this work

e Optimize the Itanium hash-based page table
Implementation

e Compare the optimized hash-based page table to Radix
Page Tables with PWCs

e Demonstrate that optimizing hash-based page table
leads to highly efficient address translation

21



Outline

Background

Skip, Don't Walk (the Page Table)
Contradiction

Rethinking Hash-based Page Tables
o Optimization #1: Open Addressing

o Optimization #2: Clustering

o Optimization #3: Compaction
Evaluation

Strengths & Weaknesses

Discussion

22



Rethinking Hash-based Page Tables

Open Addressing

e Linear search
e Allows usto get rid of the chain table
e Shrinks Hash Table Entries to 16 bytes

Bx1234

VPN PPN

Index

Ox4321 | xxx

0x3412 | xxx

0x1234 | xxx




Rethinking Hash-based Page Tables

Clustering

e Cluster entries to cache line size
e Better cache locality - leverage spatial locality

VPN

Block number Block offset

Tag PTE O PTE 1 PTE 2 PTE 3

Index

= BI. N. XXX XXX




Rethinking Hash-based Page Tables

Clustering

e Cluster entries to cache line size
e Better cache locality - leverage spatial locality

VPN: 9x1234

Bx48d Bx0

Tag PTE O PTE 1 PTE 2 PTE 3

Align slots
to 64 bytes

Index

Ox48D | xxx XXX




Rethinking Hash-based Page Tables

Compaction

e Discard unneeded bits

PTE: 64 bits
Unused PPN Offset
Ny A A ,
s s s
12 bits 40 bits 12 bits

PTE: 56 bits = 7 bytes

26



Rethinking Hash-based Page Tables

Compaction

e Discard unneeded bits
e Allows storing 8 PTEs in one cache line like for radix
page tables

Tag PTE PTE PTE PTE PTE PTE PTE PTE

N A A A A A A N A J
Y Y Y Y Y Y Y Y Y

8 bytes 7 bytes 7 bytes 7 bytes 7 bytes 7 bytes 7 bytes 7 bytes 7 bytes

8 bytes + 8 * 7 bytes = 64 bytes =1 Cache Line

27



Putting it All Together

e Open Addressing

e Clustering

e Compaction

VPN

Block number

Block offset

Tag

PTEO

PTE 1

PTE 2

PTE 3

PTE 4

PTE 5

PTE 6

PTE 7

Index

BI. N.

XXX

XXX

28



Outline

e Evaluation

29



System Configuration + Evaluated Workloads

bare-metal system
processor | dual-socket Intel Xeon E5-2420 (SandyBridge),
6 cores/socket, 2 threads/core, 1.90 GHz
memory | component latency [cycles]
hierarchy | 64 KB L1 data cache (per thread) | 4
64 KB L1 inst. cache (per thread) | not simulated

512 KB L2 cache (per core) 12

15 MB L3 cache (per chip) 30

96 GB DDR2 SDRAM 100
TLB 64 entries L1 data TLB

128 entries L1 instruction TLB (not simulated)
512 entries L2 TLB

all TLBs are 4-way associative

PSC 2 entries PML4 cache, 4 entries PDP cache

32 entries PDE cache, 4-way associative

all caches have 2 cycles access latency

Spec cpu2006 graph500 gups
e mcf o 4GB e 2GB
e cactusADM e 8GCB e 8GB
e Xxalacbmk e 10GB e 32GB




Evaluated Configurations

e Study the performance of memory-intensive programs
when using the improved Hash-based Page Table

e Compare the optimized Hash-based Page table against:
o Current Intel Radix Page Table design with PWCs.
o A system with an MMU that uses “perfect PWCs”

e FEvaluate all designs in both native and virtualized
environments

_ VS. _ VS. _

31



Perfect PWCs

Virtual Address ldX 4 ldx 3 ldx 2 ldX 1 Offset
Bx41felc 515]%) 515]%) 002 01f elc
Bx5df2a4 515]%) 515]%) 002 1df 2a4
L4 Table L3 Table /L2 Table L1 Table
- e |
Tag Value Tag Value Ta Value
000 L3 Table 000/000 L2 Table 000/ L1 Table

32



Measurements

e Trace all memory accesses of a run using Pin
e Sample a set of these accesses and simulate them in

the proposed Architectures
o optimized Hash Table
o perfect PWCs

e Add up simulated latencies and calculate runtime

33



Optimizing Hash-based Page Tables

relative walk latency

g T

0.8 [ PRAL rvvvooo- - r Li2 2
()] —

o ()]

0.6 / B “‘2 1.09 Q
7} &

b Q

04 ecncmran [ DN . ioEs - a 106 ; o
S =

D2 [t h— £ 1.03 x
a

= TS

0 ** 1

0.8
0.6
0.4
0.2

itanium <A

+ open addressing [25%]
+ cluster ||

+ compact [\

“Overall, the inverted page table increases

By implementing the proposed three optimizations, DRAM
references and therefore the walk latency can be reduced by almost

a factor of 10

34



Evaluation Results

Hashed Page Tables

EE }‘2‘ 6%  21% 2% 1% 1% 2% 5%  -8%  -15%
€ g '1 -17% -32% -9% -6% -7% -8% -17% -24% -29%
S i Y iDL, i B Y mimi i Y i THAO i DO s TR i D T D
';8 1 R, [ CUNCOURP————) | SEEe—— | SN ol SRS o | NSRRI [ (SR o S
&)ﬁ 06 — S Sdmm M I BB S
;—E';‘Cj O_ﬂ_ NSl ) ( Tl T 6! e, ) 4] e 4l e e 1 ) | B

Replacing the Radix-based Page Table with a Hash-based one
yields improvements by 1%-27% in a bare-metal setup and even
6%-32% in a virtualized one.

The improvements are similar to those observed with perfect
PW(Cs.

Yy

normalized r

with perfect
coooo
N DO ®
[ T

A bare-metal
[ virtualized spec cpu2006 graph500 gups



Strengths & Weaknesses

Strengths

e Questions an established state-of-the-art solution and brings
new insight about the performance of hash based page
tables

Weaknesses

e Many unsolved Problems left for future work
o no support for multiple page sizes
o how to share pages between processes
o how to resize the page table

e Optimizes only a small set of programs
e The optimizations seem like small tweaks coming from
existing literature

e Only analyzes single program performance
o No multi-programmed results

36



Questions

37



Discussion

e What is more important: Efficient memory usage or

performance?

o Is designing a system that is trading a big chunk of
memory usage for some better performance a worthy
tradeoff?

e Is it better to use one global hash table or have one per

process?
o What size should they be?

e Can we grow and shrink hash tables, depending on the
memory usage?
o allow the process to control its size?

38



Thanks!

e Also thanks a lot to my Mentors
o Konstantinos Kanellopoulos

39



Measurements

benchmark bare-metal virtualized
perfect  hashed | perfect hashed
PWCs paging | PWCs  paging
SPEC mcf -4% -6% -14% -17%
SPEC cactusADM -T% 2% -T% -32%
SPEC xalancbmk -1% -2% -7% -9%
graph500 4GB -1% -1% -6% -6%
graph500 8GB -2% -1% -8% -T%
graph500 16GB -2% -2% -10% -8%
GUPS 2GB -6% -5% -19% -17%
GUPS 8GB -11% -8% -30% -24%
GUPS 32GB -19% -15% -35% -29%

40



Virtual Memory Basics

63 48 | 47 39|38 30|29 21|20 12 |11 0

signext.| idx4 idx 3 idx 2 idx 1 |offset

L PTE

- PTE |-

> PTE

2| PTE L
CR3 >

Figure 1: Bare-metal radix page table walk.

\ 4

41



Page Table Design - Hash-based

63 48 | 47 12|11 o0
sign ext. | VPN |offset
hash table chain table
tag|value
tag|value|

\tag value

tag|value tag|value

CR3 . tag|value

Figure 4: Hashed page table utilizing closed addressing.

42



Page Table Design - Radix-based

63 48 | 47 12|11 o0
sign ext. | VPN |offset
hash table chain table
tag|value
tag|value|

\tag value

tag|value tag|value

CR3 . tag|value

Figure 4: Hashed page table utilizing closed addressing.

43



Address Translation in Virtualized Environments

B-®-®-®

data
page

offset

l = guest PTE = host PTE

Figure 2: 2D radix page table walk.



Background - Virtual Memory & Page Tables

nCR3

“hash™. )

N\
N

func
fung /

gCR3 }—»%

hash - 1

\\\/

T

VPN offset

[:] = guest PTE Q = host PTE

Figure 8: 2D hashed page table walk.

45



Optimizations

2. Clustering

- cluster entries to
cache line size

- better cache
locality

63

48 | 47

14|13

12

11 0

sign ext.

block number

block offset

offset

CR3

E tag

collision?".

PTEO

PTE1

PTEZ

P

E3

- tag

PTEO

PTE1

PTE2

PTE3

~>| tag

PTEOQ

FIEL

EIE2

PIE3

\ 4

Figure 7: Clustered page table walk.

46



Optimizations

8 B

7B

7B

7B

7B

2. Compaction

tag

PTEO

PTE1

PTEG6

PTET

- allows storing 8 PTEs in one cache line like for radix

page tables

Table 2: Compact cluster of PTEs.

47



x86-64 Radix-based Page Table




Measurements

e Model the runtime of a benchmark
e runtime = A * walk_cycles + B
e determine parameters A and B by running the program

twice with different page granule size
o measure time spent during page walks

49



Virtual Memory Basics

e |n order to speed up the translation, current systems
have hardware support — called the Memory
Management Unit (MMU)

MMU

Virtual Address TLB - Physical Address

50



