
Hash, Don’t Cache
(the Page Table)

Idan Yaniv, Dan Tsafrir

Presentation by Nicolas Winkler

SIGMETRICS ’16
June 14 - 18, 2016

Antibes Juan-Les-Pins, France

Outline

● Background
● Skip, Don’t Walk (the Page Table)
● Motivation
● Rethinking Hash-based Page Tables
● Evaluation
● Strengths & Weaknesses
● Discussion

2

Outline

● Background
○ Virtual Memory
○ Page Table Design
○ Memory Management Unit

● Skip, Don’t Walk (the Page Table)
● Motivation
● Rethinking Hash-based Page Tables
● Evaluation
● Strengths & Weaknesses
● Discussion

3

Virtual Memory Basics

● Virtual memory is used in many modern computing
systems like CPUs and GPUs

4

● Virtual memory introduces indirect addressing to:
○ Provide the impression of infinite memory
○ Enable application-transparent memory management

0x0000
0x1000
0x2000
0x3000
0x4000
…

0xF000…

0x0000
0x1000
0x2000
0x3000
0x4000
0x5000
0x6000
0x7000

Virtual address Physical address

Virtual Memory Basics

● OS creates virtual-to-physical mapping for each process
● The virtual and physical address space is split into

chunks which are called pages or frames
● VM frameworks use a data structure called page table to

store the virtual to physical page mapping

5

0x0000
0x1000
0x2000
0x3000
0x4000
…

0xF000…

0x0000
0x1000
0x2000
0x3000
0x4000
0x5000
0x6000
0x7000

Virtual address Physical address

x86-64 Page Table Walk

Virtual Address

Index 4 Index 3 Index 2 Index 1

9 bits 9 bits 9 bits 9 bits

L4 Table

…

36 bits 12 bits

L3 Table

…

L2 Table

…

L1 Table

…

Physical Page Number Offset

Physical Address

Radix-based page tables are storage-efficient and easily modifiable but
require four sequential memory accesses to perform address translation

Offset

x86-64 Nested Page Table Walk

In the case of Nested Page Walks even 24 memory accesses are
needed

Virtual Memory - Address Translation

● For each memory access a program does, the memory
address has to be translated

8

mov rax, [rdx] load at physical addressTranslate

Virtual Memory - Hardware Support

● In order to speed up address translation, current
systems have hardware support – called the Memory
Management Unit (MMU)

9

Processor Core

Process
Virtual Address

MMU
Physical Address

Memory

Translation Lookaside Buffer

● TLB keeps recently used translations cached
○ VPN → PPN

● Hardware Page Table Walker
● Page Walk Caches are used to accelerate PTWs

10

Virtual Address

MMU

Physical AddressTLB

Hardware Page Table
Walker

PWC

Page Walk Caches

● Two consecutive memory accesses often share part of
the page walk

11

Virtual Address Idx 4 Idx 3 Idx 2 Idx 1 Offset

0x41fe1c 000 000 002 01f e1c

0x5df2a4 000 000 002 1df 2a4

L4 Table

…

L3 Table

…

L2 Table

…

L1 Table

…

…
PTE

PTE

Page Walk Caches

● Two consecutive memory accesses often share part of
the page walk

12

Virtual Address Idx 4 Idx 3 Idx 2 Idx 1 Offset

0x41fe1c 000 000 002 01f e1c

0x5df2a4 000 000 002 1df 2a4

Tag Value

000/000/002 L1 Table

---/---/--- -

---/---/--- -

Tag Value

000/000 L2 Table

---/--- -

---/--- -

Tag Value

000 L3 Table

--- -

--- -

X86-64 Radix-Based Page Table

Advantages

● Easily growable/shrinkable according to needs
● Very fast using TLB and PWCs

Disadvantages

● Relies on locality of accesses (although over wide
memory ranges), slow if a full page walk happens

● Requires a lot of “helper hardware”

13

Hash-based Page Table

Virtual Page Number Offset

36 bits 12 bits

Virtual Address

Hash Function VPN PPN

xxx xxx
Index

Physical Page Number Offset

Physical Address

14

Hashed Page Table

● Need collision resolution
○ One possible solution is to use a chain table

15

VPN PPN Chain
Pointer

0x4321 xxx 1

Hash Function

Index

0x1234
VPN PPN Chain

Pointer

xxx xxx xxx

0x2143 xxx 4

xxx xxx xxx

xxx xxx xxx

0x1234 xxx xxx

Many collisions means we have to traverse a long linked list

Example: Itanium Hash Table Design

Intel® Itanium® Architecture Software Developer’s Manual, Volume 2

16

Hashed Page Tables

Advantages

● Only one memory access (if no collision, on average
slightly higher)

● Doesn’t require PWCs to be fast

Disadvantages

● Can’t be easily extended/shrunk
● Underutilization
● Potentially high number of collisions

17

Outline

● Background
● Skip, Don’t Walk (the Page Table)
● Motivation
● Rethinking Hash-based Page Tables
● Evaluation
● Strengths & Weaknesses
● Discussion

18

19

Conclusion: Radix Page Tables are superior to Hashed Page
Tables by a large margin.

● Hashed Page Tables cause about 1.2 memory accesses
per lookup, only 44% of which L2 hits

● over 400% more DRAM accesses than radix page tables.

● Analyzes effect of page walk caches
● Compares them against hashed page tables similar to

the implementation in Itanium processors

ISCA, 2010

Motivation

We show that, when carefully optimized, hashed page
tables in fact outperform existing PWC-aided x86-64
hardware, shortening benchmark runtimes by 1%–27%
[...].

- Hash, Don’t Cache (the Page Table)

20

“In all affairs it’s a healthy thing now and then to hang
a question mark on the things you have long taken for
granted.” (B. Russell)

Goals of this work

● Optimize the Itanium hash-based page table
implementation

● Compare the optimized hash-based page table to Radix
Page Tables with PWCs

● Demonstrate that optimizing hash-based page table
leads to highly efficient address translation

21

Outline

● Background
● Skip, Don’t Walk (the Page Table)
● Contradiction
● Rethinking Hash-based Page Tables

○ Optimization #1: Open Addressing
○ Optimization #2: Clustering
○ Optimization #3: Compaction

● Evaluation
● Strengths & Weaknesses
● Discussion

22

Rethinking Hash-based Page Tables

23

VPN PPN

0x4321 xxx

0x3412 xxx

0x1234 xxx

Hash Function

Index

0x1234

Open Addressing

● Linear search
● Allows us to get rid of the chain table
● Shrinks Hash Table Entries to 16 bytes

VPN

Rethinking Hash-based Page Tables

24

Tag PTE 0 PTE 1 PTE 2 PTE 3

Bl. N. xxx xxx

Hash Function

Index

Block number

Clustering

● Cluster entries to cache line size
● Better cache locality - leverage spatial locality

Block offset

VPN: 0x1234

Rethinking Hash-based Page Tables

25

Tag PTE 0 PTE 1 PTE 2 PTE 3

0x48D xxx xxx

Hash Function

Index

0x48d

Clustering

● Cluster entries to cache line size
● Better cache locality - leverage spatial locality

0x0

Align slots
to 64 bytes

PTE: 64 bits

Rethinking Hash-based Page Tables

26

Compaction

● Discard unneeded bits

OffsetPPNUnused

PTE: 56 bits = 7 bytes

12 bits 40 bits 12 bits

Rethinking Hash-based Page Tables

27

Compaction

● Discard unneeded bits
● Allows storing 8 PTEs in one cache line like for radix

page tables

PTETag

8 bytes 7 bytes

PTE

7 bytes

PTE

7 bytes

PTE

7 bytes

PTE

7 bytes

PTE

7 bytes

PTE

7 bytes

PTE

7 bytes

8 bytes + 8 * 7 bytes = 64 bytes = 1 Cache Line

Putting it All Together

28

● Open Addressing
● Clustering
● Compaction

VPN

Tag PTE 0 PTE 1 PTE 2 PTE 3 PTE 4 PTE 5 PTE 6 PTE 7

Bl. N. xxx xxx

Hash Function

Index

Block number Block offset

Outline

● Background
● Skip, Don’t Walk (the Page Table)
● Motivation
● Rethinking Hash-based Page Tables
● Evaluation
● Strengths & Weaknesses
● Discussion

29

System Configuration + Evaluated Workloads

30

Spec cpu2006

● mcf
● cactusADM
● xalacbmk

graph500

● 4GB
● 8GB
● 16GB

gups

● 2GB
● 8GB
● 32GB

Evaluated Configurations

31

● Study the performance of memory-intensive programs
when using the improved Hash-based Page Table

● Compare the optimized Hash-based Page table against:
○ Current Intel Radix Page Table design with PWCs.
○ A system with an MMU that uses “perfect PWCs”

● Evaluate all designs in both native and virtualized
environments

Real x86-64 System Hash Page Table Perfect PWCsvs. vs.

Perfect PWCs

32

Virtual Address Idx 4 Idx 3 Idx 2 Idx 1 Offset

0x41fe1c 000 000 002 01f e1c

0x5df2a4 000 000 002 1df 2a4

L4 Table

…

L3 Table

…

L2 Table

…

L1 Table

…

…

Tag Value

000/000/002 L1 Table

---/---/--- -

---/---/--- -

Tag Value

000/000 L2 Table

---/--- -

---/--- -

Tag Value

000 L3 Table

--- -

--- -

Measurements

33

● Trace all memory accesses of a run using Pin
● Sample a set of these accesses and simulate them in

the proposed Architectures
○ optimized Hash Table
○ perfect PWCs

● Add up simulated latencies and calculate runtime

Optimizing Hash-based Page Tables

34

“Overall, the inverted page table increases
the number of DRAM accesses per walk by
over 400%.”

Translation Caching: Skip, Don’t Walk
(the Page Table)

By implementing the proposed three optimizations, DRAM
references and therefore the walk latency can be reduced by almost

a factor of 10

Evaluation Results

35

Hashed Page Tables

Perfect PWCs

Replacing the Radix-based Page Table with a Hash-based one
yields improvements by 1%–27% in a bare-metal setup and even

6%–32% in a virtualized one.
The improvements are similar to those observed with perfect

PWCs.

Strengths & Weaknesses

Strengths

● Questions an established state-of-the-art solution and brings
new insight about the performance of hash based page
tables

Weaknesses

● Many unsolved Problems left for future work
○ no support for multiple page sizes
○ how to share pages between processes
○ how to resize the page table

● Optimizes only a small set of programs
● The optimizations seem like small tweaks coming from

existing literature
● Only analyzes single program performance

○ No multi-programmed results

36

Questions

37

Discussion

● What is more important: Efficient memory usage or
performance?
○ Is designing a system that is trading a big chunk of

memory usage for some better performance a worthy
tradeoff?

● Is it better to use one global hash table or have one per
process?
○ What size should they be?

● Can we grow and shrink hash tables, depending on the
memory usage?
○ allow the process to control its size?

38

Thanks!

● Also thanks a lot to my Mentors
○ Konstantinos Kanellopoulos

39

Measurements

40

Virtual Memory Basics

41

Page Table Design - Hash-based

42

Page Table Design - Radix-based

43

Address Translation in Virtualized Environments

44

Background – Virtual Memory & Page Tables

45

Optimizations

2. Clustering

- cluster entries to
cache line size

- better cache
locality

46

Optimizations

2. Compaction

- allows storing 8 PTEs in one cache line like for radix
page tables

47

x86-64 Radix-based Page Table

L4 Table

…

L3 Table

…

L2 Table

…

L1 Table

…

L3 Table

…

L2 Table

…

L2 Table

…

L1 Table

…

Measurements

49

● Model the runtime of a benchmark
● runtime = A * walk_cycles + B
● determine parameters A and B by running the program

twice with different page granule size
○ measure time spent during page walks

Virtual Memory Basics

● In order to speed up the translation, current systems
have hardware support – called the Memory
Management Unit (MMU)

50

Virtual Address

MMU

Physical AddressTLB

Hardware Page Table
Walker

PWC

