
Duality Cache for Data Parallel Acceleration

Daichi Fujiki
dfujiki@umich.edu

University of Michigan

Scott Mahlke
mahlke@umich.edu

University of Michigan

Reetuparna Das
reetudas@umich.edu

University of Michigan

Abstract

Duality Cache is an in-cache computation architecture that

enables general purpose data parallel applications to run on

caches. This paper presents a holistic approach of building

Duality Cache system stackwith techniques of performing in-

cache loating point arithmetic and transcendental functions,

enabling a data-parallel execution model, designing a com-

piler that accepts existing CUDA programs, and providing

lexibility in adopting for various workload characteristics.

Exposure to massive parallelism that exists in the Duality

Cache architecture improves performance of GPU bench-

marks by 3.6× and OpenACC benchmarks by 4.0× over a

server class GPU. Re-purposing existing caches provides

72.6× better performance for CPUs with only 3.5% of area

cost. Duality Cache reduces energy by 5.8× over GPUs and

21× over CPUs.

ACM Reference Format:

Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2019. Duality

Cache for Data Parallel Acceleration. In ISCA ’19: The 46th Inter-

national Symposium on Computer Architecture, June 22ś26, 2019,

Phoenix, AZ. ACM, New York, NY, USA, 14 pages. htps://doi.org/

10.1145/3307650.3322257

1 Introduction

Modern general purpose processors and accelerators are in-

tegrated with large on-chip caches to fully exploit locality.

They are utilized as a low-latency temporary storage and

occupy a large fraction (over 70%) of the die area. For ex-

ample, the latest Intel’s server class Xeon processors devote

more than 30MB SRAM just for the last level cache (LLC).

Furthermore, data-movement over the cache hierarchy is

costly, both in terms of time and energy.

To tackle these ineiciencies, recent works re-purpose the

elements in cache structures and transform them into large

data-parallel compute units. Compute Caches [2] introduces

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for proit or commercial advantage and that

copies bear this notice and the full citation on the irst page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speciic

permission and/or a fee. Request permissions from permissions@acm.org.

ISCA ’19, June 22ś26, 2019, Phoenix, AZ

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6669-4/19/06. . . $15.00

htps://doi.org/10.1145/3307650.3322257

an in-SRAM computing technique referred to as bit-line com-

puting, which activates multiple word lines and performs

logical operations. Neural Cache [10] further augments com-

pute capability to eiciently support ixed point arithmetic

operations. Neural Cache transforms a 35 MB Xeon Cache

into 1,146,880 bit-line ALUs with a die area overhead of 2%.

The proposed bit-line ALU operates on transposed or ver-

tically aligned data in a bit-serial manner. These additional

compute resources improve the eiciency of Convolutional

Neural Networks (CNNs) by 679× (speedup 18.3×, energy

savings 37.1×) over a CPU (Xeon E5) and 128× over a GPU

(Titan Xp). The source of the eiciency is the combined efect

of reduced data movement and massive parallelism.

While compute-capable caches ofer signiicant beneits,

previous works have just provided low-level interface for

in-cache operation [2] or relied on a manual mapping of

convolution kernels to the cache arrays [10]. This paper pro-

poses the Duality Cache system stack that makes in-cache

computing accessible to general purpose data-parallel pro-

grams.

Our proposed system solves several challenges to make

caches capable of general purpose data processing. First, to

address a wide set of data-intensive applications, having a

rich set of computation primitives is essential. Prior work

is limited to logical and ixed-point arithmetic operations.

Most data-parallel workloads require loating point opera-

tions. Manipulation of mantissa based on exponents in an

in-cache vector architecture is a non-trivial challenge. We

devise techniques that support bit-serial loating point oper-

ations for applications with high precision or large dynamic

range demands. We present techniques that reduce the la-

tency of bit-serial operations based on the dynamic range of

operands. The proposed techniques can support 1,146,880

parallel loating-point operations at 3.5% processor die area

overhead for a Xeon E5-2697 with 35MB cache. CORDIC

algorithms [37, 38] are leveraged to support in-cache tran-

scendental functions.

Second, a critical challenge for in-cache computing is the

design of the interface between the CPU cores and compute

caches, execution model, and cache addressing structure.

Operands of in-cache operations need to be aligned on a bit-

line ALU (constraining them to speciic locations in cache).

We address these problems by developing a single instruction

multiple thread (SIMT) architecture, where each thread is

mapped to bit-line ALUs. The data bit-cells on a bit-line ALU

become thread-local bit-serial registers which are directly ad-

dressable in the instruction set architecture (ISA). Compute

https://doi.org/10.1145/3307650.3322257
https://doi.org/10.1145/3307650.3322257
https://doi.org/10.1145/3307650.3322257

ISCA ’19, June 22ś26, 2019, Phoenix, AZ Fujiki et al.

operations are allowed only on the thread-local registers.

Duality Cache threads are organized into control blocks and

mapped to cache ways. We design a micro-architecture that

orchestrates control block SIMT instructions. The proces-

sor can switch between cache mode and accelerator mode.

The SIMT Duality Cache architecture is activated only in

accelerator mode. Duality Cache extensions incur a modest

area overhead (3.5%) but do not afect the functionality or

performance of conventional cache mode operation.

Finally, compute capable caches require a programming

model and compiler that are capable of exposing parallelism

in applications to the underlying hardware and harnessing its

full potential. We adopt CUDA/OpenACC as a programming

model and develop a compiler which can translate arbitrary

CUDA/OpenACC programs to the Duality Cache ISA. The

compiler allocates resources, schedules VLIW instructions,

and conducts several optimizations exploiting unique op-

portunities in our in-cache architecture. We also develop

compiler assisted techniques to lexibly allocate a fraction of

cache to be used as SIMT compute units and regular cache

storage.

In summary, this paper ofers the following contributions:

• We design Duality Cache architecture that re-purposes

caches on demand to data-parallel accelerators capable

of executing arbitrary programs. The proposed archi-

tecture adopts the SIMT execution model. Cache data

arrays act both as vector processing units and register

ile. Each thread supports in-order VLIW instructions.

• Duality Cache features a Turing complete ISA simi-

lar to NVIDIA’s PTX [27]. We extend SRAM arrays to

support loating point operations and leverage the dy-

namic range of operands to reduce bit-serial operation

latency. In-SRAM transcendental functions (sin, cos,

etc.) are supported using CORDIC algorithms [37, 38].

• Wedevelop a compiler that translates CUDA/OpenACC

programs to native Duality Cache ISA. The compiler

implements several optimizations to enhance paral-

lelism and eiciency within the constraints of in-cache

computation, exploiting the unique architectural fea-

tures.

• We observe some applications exploit locality through

on-chip storage such as shared memory in CUDA. To

respond to these demands, we develop a compiler-

assisted framework that adjusts the portion of cache

which is used as SIMT compute units. The remaining

operates as cache.

• We compare a Xeon server with Duality Cache exten-

sions to a Xeon server with a Titan Xp GPU. Our exper-

imental results show thatDuality Cache can provide an

overall speedup of 3.6× for Rodinia benchmarks and

4.0× for OpenACC benchmarks over the GPU. Com-

pared to a CPU, Duality Cache provides 72.6× speedup

for Rodinia benchmarks and 9.6× for OpenACC bench-

marks. The proposed architecture improves the energy

eiciency by 5.9× and reduces the average power by

1.6× compared to a GPU. Duality Cache extensions

incur an area of 15.8mm2 in 22 nm (resulting in a 3.5%

area cost over a CPU die), while the evaluated GPU

die area is 471mm2 in 16 nm.

2 Background and Motivation

2.1 Bit Serial In-Cache Computation

Compute Caches [2] introduces an in-cache computation

framework that supports copy, zeroing, xor, compare, and

search. Jeloka et al. [19] shows data corruption due to multi-

row access is prevented by lowering the word-line voltage to

bias against write of SRAM array. Their measurement across

20 test chips fabricated using 28 nm technology demonstrates

no data corruption even with activating 64 word-lines simul-

taneously for in-place computation. They also demonstrate

the stability of six sigma robustness, equivalent to indus-

try standard robustness against process variation, by Monte

Carlo simulation.

Neural Cache [10] expands on compute cache’s logical op-

eration capabilities to support arithmetic operations inside

the SRAM arrays for machine learning workloads. Neural

Cache chooses to implement a bit-serial architecture as op-

posed to bit-parallel. Bit-parallel requires communicating

data across bit-lines to propagate a carry. By using a bit-serial

format, carries can be stored in a latch along the bit-line, sav-

ing the complexity of communication across bit-lines and

also allowing conigurable precision. A few hardware trans-

pose memory units (TMUs) are placed in the cache control

box and used to transpose the inputs to allow bit-serial com-

putations. TMU design is based on an 8T SRAM array.

Data is mapped to a transposed layout where diferent bit-

lines hold data from diferent elements in the operand vector.

Each n-bit element is stored across n word-lines, and thus

each word-line holds one bit-slice from 256 vector elements

as shown in Figure 1 (c). The bits in each bit-slice are of the

same bit position.

By activating two word-lines in the SRAM, we are able to

sense logical and at bit-line (BL) and logical nor at bit-

line complement (BLB). Note, a re-conigurable diferential

senseamp [2] is used to sense BL and BLB independently. A

1-bit full adder can be created by augmenting few gates to the

ends of the sense amps as shown in Figure 1 (d). Thus, when

activating two word-lines, we can add the values in each

word-line together with the carry in the latch and generate a

new sum and carry. The sum can be written to a new word-

line in the same cycle. By adding each bit iteratively, we

can perform the addition of two n bit numbers in n cycles.

Multiplication takes n2 + 3n − 2 cycles and is performed as a

series of additions of partial products.

Duality Cache for Data Parallel Acceleration ISCA ’19, June 22ś26, 2019, Phoenix, AZ

(a) 18-core Xeon processor

45 MB LLC
(b) 2.5MB LLC slice (c) 8kB SRAM array (d) Bitline ALU

18 LLC slices 5760 arrays 1,474,560 ALUs

WLBit-Slice 3
Bit-Slice 2
Bit-Slice 1
Bit-Slice 0

Bit-Slice 3
Bit-Slice 2
Bit-Slice 1
Bit-Slice 0

R
o

w

d
e

co
d

e
r

s

0

255

255

= A + B

BL/BLB

Logic

A
rr

a
y

 A
A

rr
a

y
 B

0
1
1
0

0
0
1
1

1
0
0
1A

 +
 B

360 ways

Way 1

Way 20

Way 19

C
B

O
X

TMU
Way 2

� �
�

�
�

���

���

�
��	

���

���

����

�������

����

�
	

�
	

�
�
�

�
��

���

�
�

�
�

� �

�
��
�

 ��!�"�
���

�

�
�

�	

�
� ���	

�����������������

Figure 1. Neural Cache architecture [10].

Bit-serial computing in cache provides massive through-

put. In the above SRAM architecture, 256 bit-lines in one 8

KB SRAM array are turned into 256 bit-line ALUs in a vector

unit, and 5760 such 8 KB arrays in a 45MB LLC transform to

1,474,560 bit-serial ALUs (Figure 1) operating at frequency of

2.5 GHz when computing. Note, while a 45 MB LLC cache ac-

cess from core takes 20-30 ns, the smaller 8 KB SRAM arrays

can themselves operate at a frequency up to 4 GHz [16].

2.2 Motivation

Duality Cache can morph general purpose processors into

data-parallel accelerators. In this context, its compute re-

sources are comparable to GPGPU, a representative throughput-

oriented parallel accelerator. Although performance bot-

tlenecks of GPGPU are workload dependent, commonly

claimed causes include CPU-GPU communication through

PCIe bus, load imbalance, on-chip storage size, bandwidth

utilization, and compute lops [6, 23, 40]. Duality Cache can

alleviate these bottlenecks.

Datamovement between CPU host and accelerator de-

vice. Since disjoint address space of GPU and CPU neces-

sitates explicit data transfer through PCIe, workloads with

ine-grained interleaving of serial and parallel phases are

diicult to achieve speedups due to communication over-

heads. Likewise, initial data transfer between the host and

device memory is costly especially when data reuse is not

high. Duality Cache has an advantage of tight integration

with the host memory hierarchy and can minimize these

overheads.

Cost. While tighter integration of GPU and CPU can allevi-

ate the above problems, the area of modern GPUs (e.g. Titan

Xp die area is 471mm2 in 16 nm) makes on-die integration

with CPU impractical. In contrast, Duality Cache extensions

require an area of 15.8mm2 in 22 nm, while providing nearly

9.3× more compute resources, making it a cost efective so-

lution. Besides area savings, cost manifests itself in terms

of power usage and maintenance. The TDP of a server with

Xeon E5 dual socket processor and Titan XP GPU is 640 W,

whereas TDP of a server with Xeon E5 processor extended

with Duality Cache is 296 W (Table 2).

Increased on-chipmemory capacity. On-chip SRAM can

alleviate external memory bandwidth pressure and help re-

duce memory access latency. GPU’s cache size is limited

compared to CPU as its die area is dominated by compute

units. Duality Cache can provide lexible partitioning of com-

pute and cache allocation, which enables memory bounded

applications to beneit from a large cache allocation. GPU’s

memory bandwidth resources can potentially be underuti-

lized by not having enough kernels that request memory

accesses. In such case, Duality Cache can increase bandwidth

utilization by having enough active kernels exploiting its

higher compute resources.

3 System Stack

In this section, we present a system stack for Duality Cache

for accelerating data-parallel applications. This section dis-

cusses the proposed bit serial arithmetic primitives, execu-

tion model, microarchitecture, compiler, and programming

model.

3.1 ISA

Prior works support a limited set of logical and integer op-

erations. Compute caches [2] introduces basic bit-parallel

operations which perform logical operations to horizon-

tally aligned data in caches. Neural cache [10] proposes bit-

serial computation that enables several integer operations

of vertically aligned data. Our work proposes general ISA

for in-cache architecture, leveraging the bit-serial computa-

tion scheme. Proposed ISA adopts an early version of PTX

(SM2.x), an ISA for low-level parallel thread execution vir-

tual machine employed in NVIDIA’s compiler for Fermi GPU

family [27]. Our ISA is thus Turing complete. This design

choice is made to maximize portability of existing source

code while minimizing hardware complexity; any other op-

erations that are not natively supported by the ISA are dealt

with by compiler lowering and/or a software library.

Table 1 lists major arithmetic operations supported by our

ISA, their algorithm, and baseline latency. Machine learning

workloads, which Neural Cache targets, can provide reason-

able results using reduced precision datatypes (e.g. 8-bit ixed

point). However, a class of scientiic applications requires

more precision in computation, which necessitates full 32-bit

integer or loating point support. In this work, we develop

in-cache loating point arithmetic. Since some operations

listed take latency that scales quadratic with the size of data,

native implementation of the algorithms presented in the

ISCA ’19, June 22ś26, 2019, Phoenix, AZ Fujiki et al.

Operation Type Algorithm Latency

add uint, int [10] n

sub uint, int Bit-serial∗ 2n

mul uint [10] n2 + 3n − 2

mul int Bit-serial∗ n2 + 5n

div, rem uint [10] 1.5n2 + 5.5n

div, rem int Bit-serial∗ 1.5n2 + 9.5n

and, or, xor uint [2] n

shl, shr uint, int Bit-serial∗ n2

add, sub loat Bit-serial∗ O(n2) - variable

mul loat Bit-serial∗ O(n2) - variable

div loat Bit-serial∗ O(n2) - variable

sin, cos ixed point CORDIC∗ (7k + 1)n + 7k + 1

exp ixed point CORDIC∗ 4kn + 4k + 2

log ixed point CORDIC∗ 4kn + 4k

sqrt ixed point CORDIC∗ 4kn + 4k

rsqrt loat
Fast inverse

square root∗
O(n2) - variable

Table 1. Supported in-cache arithmetic operations.
∗ = This work. n = #of bits of datatype. k = iteration count.

past work may critically impact performance. Below we dis-

cuss our techniques to minimize the bit-serial latency for

these operations based on their dynamic range.

3.1.1 Floating Point Arithmetic

Prior in-cache architectures do not support loating point

(FP) arithmetic. Unlike integer and ixed-point arithmetic,

loating point needs normalization of exponents, which re-

quires shift operations of mantissa by an arbitrary value for

addition and subtraction.

The proposed algorithm for loating point addition is

shown in Algorithm 1. The algorithm leverages bit-serial

ixed point addition and subtraction operations discussed in

Neural Cache [10]. A loating point addition irst requires

normalization or shifting of mantissa by the diference of ex-

ponents. Note a compute SRAM array is a SIMD unit which

does exactly same operation on 256 operands (vectors A and

B) at the same time (Figure 2). The proposed design irst

computes the diference in exponents for all vector elements

(vector ediff).

The next step needs to shift second operands’ mantissa

(B[i].mnt) by the diference of exponents (ediff[i]) for all

i such that ediff[i]> 0 and then add it to the irst operand’s

mantissa (A[i].mnt).We introduce arshadd (arithmetic right

shift and add) primitive to accomplish this in few cycles.

arshadd is equivalent to a+ (b ≫ d). For given d , shift opera-

tion is free for bit-serial architecture. For example, a+ (b ≫ 1)

can be performed by activating correct bits (ai and bi+1) and

adding them.

Since the vector architecture of compute SRAM arrays

forces all threads in an array to perform exactly the same

operation, arithmetic shift by the values in ediff vector may

Algorithm 1 Floating Point Add (C=A+B)

1: procedure VECTOR_FPADD

2: Arshadd(X, Y, k) = X + (Y≫ k)

3: type loat {.exp, .mnt}

4: vector <loat> A,B,C

5: vector edif← A.exp − B.exp

6: if edif[i] < 0 then

7: Swap(A[i], B[i])

8: edif[i]← A[i].exp − B[i].exp

9: end if

10: for each unique k in edif do

11: if edif[i] == k then

12: C[i].mnt =

13: Arshadd(A[i].mnt , B[i].mnt , k)

14: end if

15: end for

16: if overlowi then

17: C[i].exp = A[i].exp + 1; C[i].mnt ≫ 1

18: else

19: C[i].exp = A[i].exp

20: end if

21: end procedure

take in the worst case O(n2) cycles for n-bit data, since there

are 256 values in ediff vector and each element of vector

is shifted serially. We observe that the dynamic range of

exponents is small in real-world workloads and leverage this

to reduce the operation latency. The algorithm takes O(dn)

cycles by searching for all unique d edif values instead of

the worst-case. Note that the worst case variation of d is

equal to the number of mantissa bits (23 for IEEE 754 FP32).

We do a leading zero search to ind the upper-bound value

of ediff to be searched.

The search operation for each unique value is executed

in two cycles as follows. In the irst cycle, all word-lines that

correspond to bit 1s in the search value are activated and

logical AND of the bit-positions is sensed on each bit-line. In

the second cycle, all word-lines that correspond to bit 0s in

the search value are activated and NOR result is sensed on

each bit-line-bar. A logical AND of the results from these two

cycles produces the inal search hit vector.

Additionally, we swap operands with negative ediff as

shown in Figure 2, to avoid divergent execution.Without this

swap, we have to repeat the for-block (Line 10 in Algorithm 1)

twice, which dominates the processing time of the naive

algorithm. Therefore, it is worth doing a swap.

Floating point addition and subtraction require conversion

of sign bit format to 2’s complement format, also unhiding

the implicit leading digit. The mantissa of input values to

Algorithm 1 is in 2’s complement format, and this conversion

is handled by an instruction that precedes. We also introduce

an instruction that does re-conversion to sign bit format

and mantissa normalization. We minimize the number of

Duality Cache for Data Parallel Acceleration ISCA ’19, June 22ś26, 2019, Phoenix, AZ

A + B

Row

decoders

0

255

255BL/BLB

Sum

Carry

A
rr

a
y

 B
A

 +
 B

W
o

rd
 3

W
o

rd
 2

W
o

rd
 1

W
o

rd
 0

}

}

S S S S

Transposed data

0 0 0 0

A
rr

a
y

 A

}

A
rr

a
y

 A
A

rr
a

y
 B

C
 =

 A
 +

 B

ediff

= exp_a

-exp_b

2. Swap operands
Calculate ediff

If ediff[i] < 0 Then

swap(A[i], B[i])

3. Enumerate

unique ediff
Using search

1

uniq_ediff

= {1}

4. ARSHADD
Foreach uniq_ediff

A[i]+(B[i]>>ediff)

+

sgn

exp

mnt

1. Convert into

2’s complement

msb

exp

mnt

swap
A[1], B[1]

0

0

1

5. Normalize exp
If bit_overflow

Then exp_c=exp_a+1

mnt_c>>=1

B
[
i
]
>
>
1

Figure 2. In-SRAM loating point addition overview. The mantissa (mnt) is normalized with the diference in exponents (exp)

using a search operation.

conversions by skipping re-conversions between operations.

This is helped by a compiler analysis, which scans through

the input code and inserts these conversion operators.

We also support eicient loating point multiplication and

division. Floating point multiplication (division) is a combi-

nation of addition (subtraction) of exponent bits and multi-

plication (division) of mantissa bits, where we can apply the

same technique as integer multiplication (division) which

we will discuss in the following section.

We do not support denormal loating point numbers (non-

zero numbers with magnitude smaller than the smallest nor-

mal number). Note that since denormal number handling

signiicantly reduces process speed in general, some systems

omit this hardware support. Intel’s SIMD instruction set han-

dles it by calling a software exception, also providing a knob

to disable the exception call [17].

3.1.2 Integer Arithmetic Optimization’s

We apply several optimizations to the baseline integer al-

gorithm to skip redundant cycles depending on the data.

For example, when performing multiplication, we can avoid

calculating partial sums if i-th bit are all zero across all the

data entry. Below lists other optimizations we introduce for

multiplication and division.

• We perform a leading zero search onmultiplicands and

dividends to identify the efective data size. Leading k

zeros will reduce more than n × k cycles.

• We perform a leading zero search on divisors. Since

we know the number of digits of quotient Q of A/B is

at most x = ⌊logA − logB⌋ + 1, we can skip the irst

n − x iterations, which saves more than
∑

x−1
i=0 (n + i)

cycles. Leading zeros of divisors can also contribute to

reducing cycles by interpreting it as data with a smaller

datatype. Note that the leading zero searches can be

done in parallel for both operands using search.

• We perform search on the partial residues to judge

whether they are zero. For example, 1001/10 will see

zero partial residue after calculating Q=01xx. We set 0

to the third MSB of Q without performing subtraction

in the iteration.

3.1.3 Transcendental Functions

In addition to loating point operations, we support tran-

scendental functions. Previous work on in-memory memris-

tive computing [15] utilizes look-up tables (LUTs) for those

functions to get initial guess and reines it by an iterative

process such as the Newton-Raphson method. However, this

approach not only requires a large area for LUTs for each

cache bank but also makes LUTs a serialization point which

ends up in limiting computation throughput.

For our in-cache architecture, we utilize a diferent al-

gorithm called COordinate Rotation DIgital Computer or

CORDIC [4, 24, 37, 38]. CORDIC does not require access-

ing LUTs for each operand value but calculates and reines

the result digit-by-digit using pre-calculated constant num-

bers that can be shared by any operand value. CORDIC does

not make any serialization point, which makes it highly

eicient for the Duality Cache ’s massively parallel vector

architecture. Furthermore, with using pre-calculated con-

stants, CORDIC only involves addition, subtraction, and

ixed-amount-bitshift, but not multiplication, thus being suit-

able for bit-serial computing, as their latency is O(n) (mul

is O(n2)). Further, our compiler exposes the ILP in CORDIC

algorithms with its VLIW instruction scheduling.

CORDIC approach can be applied to various operations

including exp, log, trigonometric / hyperbolic functions, and

square root. We set the iteration count to 17 to retain the

accuracy of FP32 format.While our CORDIC implementation

accept ixed point numbers with ixed region (e.g. [0°, 90°]),

it is trivial to normalize data to it within the region (e.g.

sin(120°) = sin(120° − 90°), log 1234 = 3 × log 1.234). This

ISCA ’19, June 22ś26, 2019, Phoenix, AZ Fujiki et al.

normalization and type conversion to the ixed point are

handled by a software library.

3.2 Programming Model

Programming model creates a direct and signiicant impact

on programmability and architecture design. While simple

models (e.g. wide SIMD [10]) simplify the hardware, it limits

lexibility. On the other hand, guaranteeing too much free-

dom may result in over provisioning of hardware resources

in order to handle all communication patterns. To expose the

massive parallelism of Duality Cache to applications with

irregular (or data-dependent) memory access, we adopt a

SIMT programming model of CUDA (NVIDIA’s GPGPU pro-

gramming framework) and OpenACC.

CUDA describes kernels as multi-threaded programs and

groups threads into warps. In a warp, threads are executed

in a synchronized manner. Inter-thread synchronization and

sharing are allowed within a group of threads called thread

block or Cooperative Thread Array (CTA). In other words,

diferent CTAs are independent and can be scheduled and

executed in any order.

Proposed architecture beneits from this programming

model from two aspects. First, CUDA is a popular and widely

used framework across diferent ields spanning from sci-

entiic computing to machine learning. Leveraging it for

Duality Cache architecture with direct translation or trivial

source code changes will archive portability and opportunity

to use the existing software. Second, having independent

CTAs entails minimum network resources for inter-thread

communications that happen locally within a CTA.

On top of CUDA, we support OpenACC. OpenACC pro-

vides OpenMP-like pragma to programmers, making it eas-

ier to convert existing serial programs to parallel programs.

Currently, commodity OpenACC compilers support multi-

thread, multi-core CPUs and NVIDIA GPUs. OpenACC is

characterized by its ability to describe ine-grained interleav-

ing of serial computation on the host and parallel kernels to

be executed on an accelerator (e.g. GPU) using pragma.While

GPUs tends to face communication bottleneck for those Ope-

nACC programs with frequent host-device communication,

Duality Cache enables seamless execution between host code

and kernel code, as caches share the same memory hierarchy

as the host.

3.3 Execution Model and Architecture

Our execution model relects the programming model, but

when compared to GPUs it is simpler and coarser-grained.

The cache acts in two modes: accelerator mode and cache

mode. In accelerator mode a bit-line in a cache array becomes

one thread lane of a SIMT processor. In our architecture,

registers and compute units are identical. We assign registers

in a thread to the bit-line and perform computation in-place.

Operands are vertically aligned within the registers mapped

on the bit-line. In cache mode, the cache arrays are part of the

processor’s traditional multi-level memory hierarchy. Note

that the accelerator mode does not change the functionality

or performance of the cache mode.

SIMT Architecture. Instruction issue is performed at the

Control Block (CB) granularity. Figure 3 shows theDuality

Cache architecture. A CB consists of a group of 1,024 threads

and is allocated to a single way of a cache slice. Each way

consists of 4 banks, each bank is capable of executing 256

threads referred to as Thread Block (TB). Hereafter, we use

TB to refer to this 256 thread group, and CTA to software

thread block of CUDA or a gang of OpenACC.

We choose to dedicate an entire bank with four SRAM

arrays to a TB to provide a suicient number of registers

per thread and prevent frequent register spilling. One SRAM

array has 256 bit-cells along a bit-line, thus can aford only 8

32-bit bit-serial registers as shown in Figure 3 (b). By allocat-

ing 256 threads to a bank of four SRAM arrays we can aford

32 32-bit bit-serial registers per thread. Thus each thread in

a TB is virtually mapped to multiple arrays in a bank, and

each member array has a slice of registers. The proposed

architecture restricts the maximum number of threads in a

CTA to 1,024.

We only allow inter-thread communication within CB.

This design choice is made to balance programmability and

hardware complexity. We utilize a 256×256 local crossbar in

the C-Box to shule / broadcast CTA local data as shown

in Figure 3 (a). Although the throughput of the crossbar is

limited by the interconnect bandwidth, it can service arbi-

trary inter-thread communication within a CB in a ixed

time-frame. Kernels that do not require inter-thread commu-

nication can span across multiple CBs.

A CB and GPU’s Streaming Multiprocessor (SM) are sim-

ilar in the thread and register capacity. While latest GPUs

have large register iles (64K 32-bit reg / SM) so that cores

can time multiplex diferent warps in blocks assigned to the

SM, we directly execute instructions in-situ in numerous

Duality Cache threads mapped within the registers.

In-Order VLIW Architecture. Mapping a TB to a bank of

four arrays opens up an interesting opportunity: each array

can execute a diferent operation in the same cycle. Thus

we can perform VLIW-like instruction scheduling, allowing

Duality Cache to exploit ILP in the program. All the banks

in a way (i.e. CB) process the same (VLIW) instructions.

Instructions are bufered in the tag array in each way which

is continuously fed entries by a host processor core. The

bufered instructions are then decoded and issued through

four issue windows where each instruction is broadcasted

to corresponding member arrays of all threads in the CB.

Duality Cache performs computation in a bit-serial manner.

Each bit-line acts as a computation unit, and all bit-lines in

an array perform the same operation as in a SIMD processor.

Instruction Sequencing. All threads in a Control Block

(CB) perform blocking execution, includingmemory accesses,

Duality Cache for Data Parallel Acceleration ISCA ’19, June 22ś26, 2019, Phoenix, AZ

Tag Array

64

Bank 3

32
32

 S/AArray Array

 S/AArray Array

64

Bank 2

32
32

 S/AArray Array

 S/AArray Array

64

Bank 1

32
32

 S/AArray Array

 S/AArray Array

Way 20
(Reserved)

64

Bank 4

32
32

 S/AArray Array

 S/AArray Array

64

Bank 3

32
32

 S/AArray Array

 S/AArray Array

64

Bank 2

32
32

 S/AArray Array

 S/AArray Array

64

Bank 1

32
32

 S/AArray Array

 S/AArray Array

64

Bank 4

32
32

 S/AArray Array

 S/AArray Array

256 Threads / TB

256 Bitlines

32
 b

it
bi

t-s
er

ia
l r

eg

256

Way n - 20
(Used as Cache)

More CBs

.
(Way 3 - Way n)

Control Block 1

Way 1

Bank 1

6432
32

 S/ATB1 TB1Array Array

 S/ATB1 TB1Array Array

Bank 2

6432
32

 S/ATB2 TB2Array Array

 S/ATB2 TB2Array Array

Bank 3

6432
32

 S/ATB3 TB1Array Array

 S/ATB3 TB3Array Array

Bank 4

6432
32

 S/ATB4 TB4Array Array

 S/ATB4 TB4Array Array

Control Block 2

Way 2

Bank 1

6432
32

 S/ATB5 TB5Array Array

 S/ATB5 TB5Array Array

Bank 2

6432
32

 S/ATB6 TB6Array Array

 S/ATB6 TB6Array Array

Bank 3

6432
32

 S/ATB7 TB7Array Array

 S/ATB7 TB7Array Array

Bank 4

6432
32

 S/ATB8 TB8Array Array

 S/ATB8 TB8Array Array ...

256 W
ordlines

(8 32-bit regs)

.

.

.

4 Arrays

.

.

.

.

.

.

Thread

1 thread has
32 32-bit registers

CBox TMUXB

Tag Array Tag Array

Dec / Ctrl XB Dec / Ctrl

Tag Array

(a) (b)

Figure 3. In-Cache SIMT execution model and architecture overview.

Tag compare

0

2047

W
in

do
w

 0

PC

Loop FSM

Command
Selector

W
in

do
w

 1

Loop FSM

Command
Selector

W
in

do
w

 2

Loop FSM

Command
Selector

W
in

do
w

 3

Loop FSM

Command
Selector

+1

Decoder

Tag Array

jmp_en

Bank

TMU

BB1

BB2

MSHR

LLC / Mem

add //!1
sub //!2
…

@p jmp

47 bits

Figure 4. Frontend architecture.

with implicit synchronization between threads. On the other

hand, diferent CBs can execute diferent instructions at a

time. This implements compute and memory access overlap

at a coarse level: while GPUs schedule for warps to overlap

compute and memory access within the block, we ire a lot

more CBs at one time using rich compute/register resources

(9.3× more than Titan Xp) and overlap memory accesses

with other CB’s computations.

This means each CB maintains its own programming

counter (PC). PC is incremented before fetching next instruc-

tion and points to an entry in the tag array, which works

as a ring bufer. The frontier PCs are monitored by the host

processor to prevent overwriting instructions that have not

been executed. While ixed length loops are unrolled by host

run-time or by the compiler, data-dependent loops in applica-

tions which iterate under a condition (e.g. convergence) are

handled inside CB. For these loops, we maintain entire loop

body block in the tag array, and a conditional jump (predi-

cated jump) instruction resets the PC to the loop entry. The

loop exits upon negative jump_en, which receives wired-OR

of predicate bits stored in the cache peripheral. A CPU core

can continue to ill successor instructions of the loop, but

it cannot overwrite the loop block until after PC exits the

loop.One CPU core is suicient to launch and feed all CBs.

Control low is handled by predication, and indirect jumps

(branches) are not supported, following the PTX language.

The control box in a cache slice is implemented with inite

state machines (FSMs) in hardware that can dispatch low-

level control signals to the cache banks for performing cycle-

by-cycle bit-serial operations based on issued instructions.

Load and Store Instructions.Duality Cache interfaceswith

memory hierarchy through TransposeMemoryUnit (TMU) [10].

TMUs have 8T transpose bit-cells which can read and write

data in both horizontal and vertical directions to enable the

conversion between regular bit-parallel layout and trans-

posed bit-serial format. TMUs are placed in cache control

box (CBox in Figure 3). When performing load instruction,

target addresses are irst read out from an array that belongs

to one of the issue windows. Unlike other compute opera-

tions, only one memory instruction can be included in one

VLIW instruction because of the interconnect bandwidth.

The bit-serial addresses are transposed in TMU, registered

in Miss Status Handling Register (MSHR), and sent to the

memory. MSHR enables simple memory coalescing; dupli-

cated accesses to a cache line are treated as an MSHR hit and

suppressed. MSHR keeps track of source thread numbers.

When the target cache line arrives from the memory, it is

irst sent to TMU. The destinations are set by coniguring

the local crossbars so that it can rearrange or multicast data

into the data banks. The data is then read out from TMU in

bit-serial format and sent to awaiting threads through the

crossbar.

Data that can be accessed byDuality Cache has to be stored

in specially allocated pages (DC-pages) in the main memory

address space. A simple MMU placed at the memory con-

troller performs address translation. The address translation

is mainly aimed to balance the DRAM load by shuling the

physical address allocation.

3.4 Compiler

Wedevelop a backend compiler that transforms PTX, NVIDIA’s

low-level parallel thread execution virtual machine ISA, into

VLIW-style code for Duality Cache which we refer to as DC-

PTX. Opcodes of DC-PTX are a subset of PTX opcodes; some

instructions designed speciically to GPUs are eliminated.

On the other hand, DC-PTX adds several ields to PTX to

include operand locations.

Figure 5 shows the overall compilation low. CUDA source

code is irst compiled by NVIDIA’s CUDA compiler (nvcc).

The output CUDA executable includes three kinds of object

iles (i.e. elf, PTX, and SASS). Our backend compiler extracts

and parses the PTX iles, applies several optimization passes

to PTX IR, schedules instructions, allocates resources, and

ISCA ’19, June 22ś26, 2019, Phoenix, AZ Fujiki et al.

NVCC

NVIDIA CUDA
Compiler

ompcc

OpenACC Compiler
Frontend

CUDA BIN

E
LF

S
A

S
S

P
TX

Duality Cache Compiler
DC BIN

E
LF

D
C

PTX

DC RuntimeCuda Runtime

Kernel
Analysis

PTX
Optimizer

Inst.
Scheduler

Reg.
Allocator

Figure 5. Compilation tool low. CUDA source code is irst compiled by NVIDIA CUDA compiler (nvcc). Duality Cache

compiler extracts PTX assembly from CUDA executable and generates DC-PTX code. OpenACC program is compiled by an

OpenACC compiler which generates GPU code that is then compiled by nvcc.

generates DC-PTX code. DC-PTX kernel is loaded and exe-

cuted by API calls to DC-Runtime library in a similar way

as CUDA runtime.

The compiler is currently built on top of GPU Ocelot dy-

namic compilation framework [9].We choose PTX as IR since

most of the CUDA compilation tool low is closed-source

(including ptxas which performs resource allocation and

scheduling). Currently, GPU Ocelot is the only compilation

framework academically available to work on GPU object

iles. We also utilize Rose compilation framework [8] to per-

form source-to-source compilation to apply optimization

passes to the source code before nvcc compilation.

OpenACC programs can also be compiled using the same

infrastructure, except that the source code is irst compiled by

an OpenACC compiler which extracts the accelerator code

and generates GPU code that is then internally compiled by

nvcc.

Duality Cache compiler framework translates a CUDA

code to VLIW SIMD ISA. Although VLIW is not as eicient as

out-of-order execution for exploiting ILP, it enables ILP to be

exploited with lower hardware complexity since complicated

ILP aware scheduling is handled by the compiler. Unlike

traditional VLIW architecture, the proposed Duality Cache

architecture has to take operand locality into account; all

operands need to reside in the member array where the

operation is executed, otherwise, we have to explicitly copy

the operands to the member array.

Following are the implemented features of our compiler:

Register Pressure Aware Instruction Scheduling

Register pressure and eicient VLIW instruction scheduling

are an inseparable problem. In our design, instruction sched-

uling is tightly coupled with resource allocation. While many

compilers for VLIW architecture schedule instructions irst

before register allocation to maximize parallelism utilizing

abundant register resources shared by many execution units,

our execution model has limited number of private registers,

which may result in frequent register spilling. On the other

hand, resource-allocation-irst approaches often introduce

many false dependencies in return for minimized register

usage, which can reduce available parallelism. We tackle

this problem by performing resource allocation and instruc-

tion scheduling at the same time. We use Bottom-Up Greedy

(BUG) [11] as the baseline scheduling algorithm, and linear

scan register allocation as the baseline resource allocation

algorithm. By taking register pressure into account while

performing instruction scheduling, the compiler can pick

better strategy to balance parallelism and register spilling.

In our design, we allocate computation units considering

register pressure as well as operand movement overhead.

This approach balances the register pressure of each mem-

ber array and maximizes parallelism as long as there are

available registers. When register pressure is too high for all

the member arrays, we start spilling a register according to

the spill policy of the linear scan algorithm. Parallelism can

be sacriiced due to high data movement cost.

PTX Optimizations

AST balancing: To maximize ILP, it is better to distribute

operands of a chain of associative binary operations evenly

to available VLIW slots. Generally compiler frontend left-

folds an expression of binary operation chain if it does not

have parentheses when constructing Abstract Syntax Tree

(AST) (e.g. a + b + c + d ⇒ (+ (+ (+ a b) c) d)), making a

true dependency between the temporary value (partial sum)

and the next operand. One of the optimizations we apply

reconstructs the AST to form a balanced tree (e.g. a + b + c

+ d⇒ (+ (+ a b) (+ c d))) so that unnecessary dependencies

will not hinder exploring ILP when scheduling instructions

for our in-order VLIW architecture.

Thread independent variable isolation: We further include

an optimization to reduce register pressure by not storing

thread independent variables. For example, a ixed length

loop is unrolled by Duality Cache runtime and the induction

variable is provided as a constant if necessary. DC compiler

identiies thread independent variables by conducting de-

pendency analysis and aixes metadata as a marker for the

instruction that only processes thread independent variables.

3.5 Cache Partitioning

Duality Cache architecture can utilize memory arrays in LLC

for both computing and caching. Generally, CUDA programs

are optimized for GPUs, which typically have 88-144KB

SRAM storage in SM for L1+texture cache and shared mem-

ory (Pascal GPUs). Therefore, reserving one way (128KB)

per CB provides a similar coniguration as GPUs. However,

Duality Cache for Data Parallel Acceleration ISCA ’19, June 22ś26, 2019, Phoenix, AZ

cache utilization is highly dependent on applications, and

our architecture is able to lexibly adjust the cache resource

allocation based on reuse patterns. Prior works [20, 39] have

shown that some classes of GPU applications are known to

receive small beneits from caches because of less locality.

Also, compute intensive kernels can underutilize memory

bandwidth. In those cases, we can increase the compute al-

location in the cache. On the other hand, we observe many

applications with irregular memory access patterns beneit

from caches if the working set its in the caches. Here we can

increase the cache allocation to reduce memory bandwidth

pressure.

Our compiler can analyze kernel dimension and shared

memory usage to determine the cache allocation so that

we can leverage the locality of the applications which is

explicitly speciied by programmer in the form of shared,

constant, or texture memory (Note that these local memories

are remapped to global memory by the compiler.) We also an-

alyze memory access patterns, and estimate memory traic

and data reuse through static kernel code instrumentation.

4 Methodology

Benchmarks: Weuse applications fromRodinia GPU bench-

mark suite [6] and PathScale OpenACC benchmark [30] as

listed in Table 3. We compile the CUDA applications using

nvcc 4.2 using default compile options of the benchmark suite

(except for the target architecture which we set to sm_20

to make CUDA binary compatible with GPU Ocelot [9]).

The OpenACC applications are compiled using Omni Com-

piler [36], an open-source academic OpenACC compiler,

which is internally linked with CUDAToolkit. Wemodify the

source code of Omni Compiler to disable the automatic inser-

tion of cache coniguration API calls which are not supported

by CUDA Toolkit 4.2. While we use the old CUDA version to

work with GPU Ocelot dynamic compilation tool [9], we use

latest CUDA Toolkit 9.2 [26] and community standard PGI

OpenACC compiler 18.10 [28] for the native run on GPU.

We mostly use the dataset preset by the benchmark suite.

For some benchmarks, such as gaussian, lud, nn fromRodinia,

we use the OpenMP dataset or a data-generator generated

large dataset to augment the utilization of computation unit.

Moreover, we modify the source code of some benchmarks

to further expose the parallelism of Duality Cache . These

custom optimizations are discussed in detail in Section 5.4.

Area and Power Model: Area and power parameters

are summarized in Table 4. The energy and power model of

Duality Cache peripherals and Transpose Memory Unit is

from Neural Cache [10]. We synthesize the controller and

state machine using Synopsis Design Compiler in a 45nm

process. We assume average ILP 1.25 and 10% activity factor

for TDP. We employ the energy and power model in [1]

for the local crossbar and assume an activity factor of 5%

for TDP. We use CACTI [25] to model energy and area for

scratch SRAM used in MSHR.

Power and energy for CPU and DRAM activity are mea-

sured by proiling microbenchmarks using Intel Rapl inter-

face. We use NVIDIA nvprof to measure GPU power.

Performance Model: We develop a Duality Cache tim-

ing model and functional model on GPU Ocelot’s tracer

framework and PTX emulator. Since some of the in-cache

operations are data dependent, the timing model interacts

with the functional model in the emulator. Target applica-

tions are executed on the DC-PTX emulator in GPU Ocelot

and we obtain front-end and back-end traces using our tracer

for each CTA. We then rerun the traces using our simula-

tor and feed the trace iles to Ramulator [22]. We perform

CPU-trace driven DRAM simulation on Ramulator with a

modiied processor model.

5 Results

5.1 Conigurations Studied

In this section, we evaluate the proposed Duality Cache and

compare it to two baselines. The irst baseline (CPU) uses In-

tel Xeon E5-2697 v3 multi-socket server. The second baseline

(GPU) is a server with host Xeon E5 and NVIDIA Titan Xp

GPU. The details of both conigurations are shown in Table 2.

We assume Duality Cache to be implemented in the 2-socket

Xeon server system. When entire LLC geometry is allocated

for computation, Duality Cache has 150× more threads than

GPU. The massive parallelism comes at the cost of larger

operation latency of the bit-serial algorithms (Section 5.5).

5.2 Performance

In this section, we study the application performance. The

execution time for the GPU server and Duality Cache server

is shown in Figure 6 (normalized to GPU, lower is better). It

shows the breakdown of memcpy time and kernel execution

time for GPU. We consider the memory transfer (cudaMem-

Copy) time, but time spent on GPU initialization, CUDA API

calls (including CUDA malloc), and OpenACC API calls is

not included. GPU’s kernel time includes memory access

time. For Duality Cache , we show compute and memory

access time. The compute time of Duality Cache is the aggre-

gate latency of issued instructions on the critical path, and

the memory access time is total time − compute time.

Duality Cache provides a 3.6× average speedup for the

Rodinia benchmarks and 4.0× speedup for the OpenACC

benchmarks, compared to GPU. Figure 10 shows the average

system speedup of Duality Cache compared with CPU. Du-

ality Cache provides a 72.6× speedup compared to CPU for

the Rodinia benchmarks, and 9.6× for the OpenACC bench-

marks. The OpenACC benchmarks can have ine-grain serial

and parallel interleaving making their GPU acceleration less

efective compared to Rodinia benchmarks.

We discuss the key factors that contribute to the Duality

Cache performance below:

A. ReducedMemcpy Time: Memcpy time takes a substan-

tial portion of the GPU execution time for some applications.

ISCA ’19, June 22ś26, 2019, Phoenix, AZ Fujiki et al.

Model
Die Benchmark Servers

mm2 nm GHz TDP On-Chip Memory Dies DRAM Size mm2 TDP

Xeon E5-2697 v3 456 22 2.6 145 W 35 MB Shared LLC 2 64 GB DDR4 912 290 W

NVIDIA Titan Xp 471 16 1.6 250 W 3MB Shared LLC 1 + 2 (host)
12 GB GDDR5

+ 64 GB DDR4
1,383 640 W

Duality Cache 471 22 2.6 148 W 35 MB Shared LLC 2 64 GB DDR4 942 296 W

Table 2. Benchmark server coniguration.

Applications Dataset
Custom

Optimization

R
o
d
in
ia

backprop, bfs, b+tree, dwt2d, hotspot,

hotspot3D, hybridsort, nw, streamcluster
default None

gaussian omp_default Increased CTA size

heartwall, leukocyte default Loop unrolling

lud, nn large (1k, 2k) CPU hybrid (lud)

a
cc

divergence, gradient, lapgsrb, laplacian,

tricubic, tricubic2, uxx1, vecadd, wave13pt
256 128 1024 Increased CTA size

gameolife, gaussblur, matvec, whispering 256 1024 Increased CTA size

Table 3. Evaluated workloads. (acc = OpenACC Benchmark)

Area (mm2) Power (W)
Area

Overhead

CPU 456 145 -

Duality Cache

Peripheral
3.15 2.96 0.69 %

TMU 5.32 0.06 1.17 %

Controller / FSM 6.16 0.33 1.35 %

MSHR 0.86 0.05 0.19 %

Local Crossbar 0.28 0.01 0.06 %

Total 471.77 148.40 3.5 %

Table 4. Duality Cache parameters.

b
ac

kp
ro

p
b

fs
b

+
tr

ee
d

w
t2

d
ga

us
si

an
h

ea
rt

w
al

l
h

ot
sp

ot
h

ot
sp

ot
3

D
h

yb
ri

d
so

rt
la

va
M

D
le

uk
oc

yt
e

lu
d nn nw

p
at

h
fin

d
er

st
re

am
cl

u.
.

d
iv

er
ge

nc
e

ga
m

eo
fli

fe
ga

us
sb

lu
r

gr
ad

ie
nt

la
p

gs
rb

la
p

la
ci

an
m

at
ve

c
tr

ic
ub

ic
tr

ic
ub

ic
2

ux
x1

ve
ca

d
d

w
av

e1
3

p
t

G
eo

m
ea

n

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Rodinia OpenACC

GPU:Memcpy GPU:Kernel DC:Memory DC:Compute

Figure 6. System performance. GPU:GDDR5+memcpy, DC:DDR4.

ba
ck

pr
op bf

s
b+

tre
e

dw
t2

d
ga

us
sia

n
he

ar
tw

al
l

ho
ts

po
t

ho
ts

po
t3

D
hy

br
id

so
rt

la
va

M
D

le
uk

oc
yt

e
lu

d nn nw
pa

th
fin

de
r

st
re

am
clu

..
di

ve
rg

en
ce

ga
m

eo
fli

fe
ga

us
sb

lu
r

gr
ad

ie
nt

la
pg

sr
b

la
pl

ac
ia

n
m

at
ve

c
tri

cu
bi

c
tri

cu
bi

c2
ux

x1
ve

ca
dd

wa
ve

13
pt

Ge
om

ea
n

0.0

0.5

1.0

1.5

2.0

No
rm

al
ize

d
Ex

ec
ut

io
n

Ti
m

e

Rodinia OpenACC

GPU:Kernel DC:Memory DC:Compute

Figure 7. Kernel performance. GPU:GDDR5, DC:GDDR5.

ba
ck

pr
op bf

s
b+

tre
e

dw
t2

d
ga

us
sia

n
he

ar
tw

al
l

ho
ts

po
t

ho
ts

po
t3

D
hy

br
id

so
rt

la
va

M
D

le
uk

oc
yt

e
lu

d nn nw
pa

th
fin

de
r

st
re

am
clu

..
di

ve
rg

en
ce

ga
m

eo
fli

fe
ga

us
sb

lu
r

gr
ad

ie
nt

la
pg

sr
b

la
pl

ac
ia

n
m

at
ve

c
tri

cu
bi

c
tri

cu
bi

c2
ux

x1
ve

ca
dd

wa
ve

13
pt

Ge
om

ea
n

0.00
0.20
0.40
0.60
0.80
1.00
1.20

No
rm

al
ize

d
En

er
gy

Rodinia OpenACC

DC:CPU+DRAM DC:LoadStore DC:Compute

Figure 8. Energy eiciency (system).

�

���

���

���

���

����

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�
�
�
��
�
�
��
	
�

��

�
��
��
�
�

����������	
��
���

����������	����
���

����

Figure 9. Control Block utilization.

This can be explained by the fact that some applications have

very small reuse factor of data, which can make inter-DRAM

data movement cost prominent as shown in Figure 6. Dual-

ity Cache is integrated into the same memory hierarchy as

the host, and thus this data movement cost does not exist,

resulting in higher performance.

Some CPU models [18] using integrated on-chip GPU

could possibly reduce the data movement cost. However,

they have typically 10× smaller compute resources than our

baseline server GPU (Titan Xp), while taking more than the

half of CPU die area. Duality Cache is clearly distinguishable

from them by the ability to provide the orders of magnitude

higher compute resources with only 3.5% of area cost.

B. Massively Parallel Execution: Compute-intensive ker-

nels enjoy Duality Cache ’s massive parallelism. Figure 9

shows the average number of active Control Blocks (CBs)

in the kernels. A CB has 1024 threads and can map several

CTAs. Since CBs are independent of each other, this chart

indicates the available parallelism of the applications. Each

Xeon socket can execute 280 CBs (yellow dash line), thus

we have 560 CBs (dark orange line) in total in the baseline

dual-socket system. Our GPU has 30 SMs, each can have up

to 2 CTAs (Note that this is a register size based calculation;

threads in CTAs use GPU cores in a time-multiplexed way).

We can see kernels with a high level of parallelism (e.g.

backprop, b+tree, nn, gaussian, gausblur, etc.) signiicantly re-

duces execution time in Figure 6 as they can harness Duality

Cache resources. On the other hand, other benchmarks such

as lud, nw and streamcluster have limited parallelism avail-

able, resulting in large critical compute time in the kernel

Duality Cache for Data Parallel Acceleration ISCA ’19, June 22ś26, 2019, Phoenix, AZ

performance. In Section 5.4 we discuss several optimizations

we applied to enhance the parallelism beyond the original

CUDA programs.

C. Compute / Memory Access Overlap: Some applica-

tions show a large compute time portion in the kernel per-

formance, despite enough parallelism (e.g. lavaMD). These

kernels can successfully hide memory latency with compu-

tation. Note few benchmarks show a slowdown (hotspot3D

and streamcluster) with Duality Cache because they are

memory bandwidth bound. For those, newer memory tech-

nology (GDDR5) could help improving performance, as ex-

plained shortly (Figure 7),

D. Flexible Cache Allocation: While GPU may under-

utilize / overutilize its memory bandwidth, Duality Cache

can adjust parallelism and cache allocation size to balance

memory bandwidth (Section 3.5). Many of the evaluated ap-

plications beneit from the cache partitioning. By default,

we assign the unused Control Block units as cache, but we

changed the allocation size based on the applications’ behav-

ior. We will discuss it in Section 5.5.

5.3 Performance without Host-Device Transfer

Figure 7 presents kernel execution time for Duality Cache

and GPU. This experimental setup eliminates memcpy time

from GPU and provides a GDDR5 memory to both Duality

Cache and GPU. The goal is to compare the raw compute

power of both architectures in a bandwidth neutral fash-

ion. The execution time is normalized to that of GPU. We

observe a 1.92× average speedup for Rodinia kernels and

2.39× speedup for OpenACC kernels. This speedup comes

at a fraction of area cost of the CPU (3.5%), while the GPU

server adds a new die of size 471mm2.

5.4 Deep Dive of Applications

Harnessing Full Potential of Duality Cache : Applica-

tions can fully exploit Duality Cache by exposing large par-

allelism and reusing data. We notice that many CUDA ap-

plications are optimized to GPU architectures, being aware

of warp size and CTA size. Generally, programmers write

a tiled program where each tile owns its sub-problem as-

signed to a CTA. Internally they use for-loops to iterate over

the data for the sub-problem, often incrementing induction

variable of a thread by warp size (32) to make warps sweep

on the data. This creates a dependency between iterations,

despite the absence of actual dependency. This is also driven

by the fact that CTA size is limited to 1,024 threads due to

the maximum register size of an SM. Although our CB can

own 1,024 threads, we can expand CTA size beyond this limit

provided there is no local communication between threads,

as we discussed in section 3. Eliminating local communica-

tion is trivial by using atomic operations etc., so we modify

some of the source code to unroll the outer for-loops and/or

increase the CTA size, as shown in Table 3. OpenACC pro-

grams can also easily change the CTA size by setting the

vector and worker size option in pragma. This optimization

provides signiicant improvement in performance (e.g. 8.5×

for leukocyte and 10.2× for heartwall).

Another important factor is data reuse. Given enough

threads to ill CBs and existence of shared data, it is rec-

ommended to load the data and reuse it using ixed-length

for-loops after launching CTAs to ill CBs. By this, we can

avoid multiple fetches of shared data by diferent CTAs, and

also take advantage of thread independent variable isolation.

Fine Interleaving of Serial andParallel CodeUsingCPU:

Since host-device communication cost is non-trivial for GPUs,

CUDA programs tend to incorporate serial or nearly se-

rial code with parallel code. Figure 11(left) illustrates ker-

nel launch patterns of bfs and lud by showing number of

launched CTAs (x-axis) vs. time (y-axis, advances from top

to bottom). Ideal truly parallel kernels have a pattern simi-

lar to bfs, however, as can be seen, lud iteratively launches

three kinds of kernels, one of which only contains 32 threads.

Taking advantage of Duality Cache ’s tight integration with

CPU, we optimize lud to execute these small kernels on the

host CPU using OpenMP. Figure 11(right) shows the execu-

tion time breakdown (normalized to the original version).

We observe the optimized version of lud achieves a 2.26×

speedup. Since the single operation latency of Duality Cache

is much higher than CPU, we study CPU is more eicient

to execute those small kernels. The same idea applies to

OpenACC benchmarks as well.

5.5 Impact of Optimizations

Arithmetic Operation Latency: Figure 12 shows average

arithmetic operation latency before (base) and after (opt) op-

timizations we present in Section 3.1. The operation latency

is measured using Rodinia benchmarks. Integer multiplica-

tion observes the highest reduction in latency (13× better

than the baseline). This is because, in many practical cases,

integer multiplication is used to calculate address or some

variables based on induction variables, and thus contains

many leading zeros which we can skip by our optimization.

Floating point addition in many applications has a small

dynamic range. The number of unique edif found usually

has its peak at 1 in the distribution (Section 3.1). Overall,

optimized fpadd is 6.1× faster than the baseline. The pro-

posed optimizations are not as efective for loating point

multiplication and division compared to the correspondent

integer operations. This is because the loating point is nor-

malized and has implicit leading 1, which disables the leading

zero optimization. However, Duality Cache still beneits from

skipping iterations of bit 0s.

Cache Allocation: By default, we use unassigned CBs as

cache. However, depending on the workload, allocating more

cache can improve performance despite sacriicing paral-

lelism. We analyze the source code through static analysis

and identify some kernels that can possibly beneit from

ISCA ’19, June 22ś26, 2019, Phoenix, AZ Fujiki et al.

���

���

���

���

���

���

�	
���
 �������

�

�

�

�

�

�

�

���

���

����	
����
��

���

����

����

����

Figure 10. Average speedup.

 512 1024
CTAs

←←
 T

im
e

←←

 4 32 256
CTAs

←←
 T

im
e

←←

�

���

���

���

���

�

���

�	
��
���
��� �	
��
���
���

�����

�	�

�

�

�

�

�

�

�

�

	

�

�

	

�

�

�

�

�

�

�

�

�

�

	

��������	
�

����������

���

Figure 11. Kernel launch patterns (time vs.

#CTAs) of bfs(top) and lud(bottom) and

CPU Hybrid execution.

�

���

����

����

����

�
�
��

�
�
�

�
�
��

�
�
�

�
�
��

�
�
�

�
�
��

�
�
�

�
�
��

�
�
�

��� �	
 ��
�� ����� ���	

��
��
	

�
�

�

��
�
�

Figure 12.Average operation latency.

����

����

����

����

����

����

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

	

	

�

�

�

�

�

�

	

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���	
��
�	���
	 �������
�	���
	 ������
������
���
�����

Figure 13. Efect of compiler optimizations.

���

���

���

���

���

���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	

�

�

�

������� ��� ���	

 ��
����
	

�

�

�

�

�

�

�

�

	

�

�

�

�

	

�

�

�

�

�

�

���	
��
�

������
�����
� ��
���������
�

Figure 14. Efect of diferent cache allocation size.

larger cache size, and adjust the cache allocation. Figure 14

illustrates the system performance of diferent cache alloca-

tion size for some representative applications. As in Figure 9,

these applications have a high level of parallelism and can

ill more than half of total CBs. The blue bars show compute

cycles, and the orange lines present overall performance in-

cluding memory access. The largest cache size we allocate is

32MB, which is equivalent to the half of the total CBs in our

2-socket baseline. We normalize the cycle count to that of

0-cache coniguration. Although augmented cache allocation

roughly doubles the computation due to reduced compute

units, overall execution cycles decrease substantially because

of improved memory performance contributed by the large

caches. This optimization provides 3.54× performance im-

provement on average for applications with a high level of

parallelism (CB utilization ≥ 512).

Compiler Optimization: To assess the efect of our com-

piler optimization, we compare the execution time of appli-

cations using two compilers: our compiler and a simple ISA

translator. The simple ISA translator replaces PTX with DC-

PTX without any scheduling and PTX optimizations. Since

kernels cannot use multiple arrays without appropriate han-

dling of operands between arrays, simple ISA translator uses

one array per TB. This, on the other hand, provides 4× more

available threads, thus each CB maintains 4K threads, each

with 8 32-bit registers. For both compilers, we apply our

arithmetic operation latency optimizations.

Figure 13 presents the application speedup of our compiler.

Compute speedup shows the speedup of the critical com-

putation path, and overall speedup includes memory access

latency. The green dots show the reduction in the number of

memory access saved by the parallel instruction scheduling.

PTX optimizations and our instruction scheduler’s eforts to

maximize parallelism and to reduce register spilling achieve

1.52× faster computation and 14.3% less memory access. This

translates into 1.14× better overall performance.

5.6 Energy

Figure 8 shows the energy breakdown of the benchmarks.

This is a system-to-system comparison; GPU includes en-

ergy for both memcpy and kernel. Duality Cache energy

is normalized to the GPU energy and has a breakdown of

CPU+DRAM (including memory controller), load/store in-

structions, and computation in Duality Cache . Because of

the reduced execution time, we achieve 5.85× energy ei-

ciency compared to GPU system. One core is active during

execution to serve instructions. This makes CPU and DRAM

access dominant in energy consumption. The only exception

is tricubic, one of compute-intensive kernels, where compute

energy accounts for 30.7% of total energy consumption.

6 Related Work

To the best of our knowledge, this is the irst work that

demonstrates the feasibility of in-cache general purpose

SIMT computing, leveraging an existing parallel program-

ming framework. In this section, we discuss some of the

closely related work.

For decades, processing-in-memory (PIM) has been an

attractive idea that has the potential to break the memory

wall. PIM solutions move compute near memory [3, 5, 12, 14,

21, 29, 31ś33, 41, 42] , and thereby reduce the gap between

memory and compute. In contrast, in-memory computing

architectures can morph themselves into compute engines

Duality Cache for Data Parallel Acceleration ISCA ’19, June 22ś26, 2019, Phoenix, AZ

by exploiting the physical properties of the memory array,

which makes them intrinsically more eicient then PIM.

In-SRAM computing has been envisioned to provide dis-

ruptive technology that can enhance commodity processors

with massively parallel compute engines for almost free of

cost [2, 10, 19]. On the other hand, in-place DRAM compu-

tation faces several challenges to attain true in-place oper-

ations. First, since DRAM performs destructive access, in-

place computation inevitably corrupts stored data, and thus

needs to clone it paying its cost. Also, the small margin for

sensing DRAM capacitor makes analog domain computation

error prone. Despite several approaches proposed for better

DRAM cells, it comes at the cost of non-trivial area overhead

(2-3×). Further, the peripheral logic needed to accomplish

in-place arithmetic operation is diicult to be integrated with

DRAM because of the technology diference. Likewise, vari-

ous scrambling approaches in address and data employed in

commodity DRAM make it challenging to re-purpose it for

an in-memory computing device.

Recent works have leveraged compute capability of Non-

Volatile Memories (NVMs) such as memristors to perform

in-place bit-line computing for domain-speciic accelera-

tion [7, 34, 35]. They leverage the dot-product analog compu-

tation capability of memristors mainly for machine learning

workloads. IMP [15] explores general purpose computing

in memristors and proposes a compute stack using Tensor-

Flow frontend. Duality Cache supports CUDA programming

model, which is widely used for data-parallel applications,

is more expressive than TensorFlow, and can be used for

applications with irregular memory access patterns.

Floating point is diicult formemristive analog in-memory

computing [7, 13, 15, 34], because the resolution of memory

cells and ADC is quite limited. It is not realistic to repre-

sent a FP value using a single cell. In addition, exponent

normalization takes many cycles, which is disadvantageous

for memristors with low frequency and low durability. Prior

work [13] thus supports ixed-point arithmetic that has the

equivalent precision to loating point. They express 64 bit

double numbers using 128 memristor cells (1 bit/cell). The

extra 64 padding bits are included to normalize and to align

numbers with diferent exponents with respect to a com-

mon exponent value of the array. The results are converted

to loating points outside the array. In comparison, our bit-

serial digital in-SRAM computing supports in-place loating

point computation.

While computing in memristors is promising, they remain

an emerging technology waiting for large scale production.

They are also signiicantly slower than SRAM and are en-

cumbered with limited endurance.

7 Conclusion

The Duality Cache system stack that runs general purpose

GPU programs on caches is presented. Enabling in-situ loat-

ing point and transcendental functions brings computation

capability that can execute SIMT programs. Our compiler

introduces optimizations to enhance parallelism and ei-

ciency within the constraints of in-cache computation, and

compiles CUDA and OpenACC programs for Duality Cache .

Our experimental results show the Duality Cache architec-

ture improves performance of GPU benchmarks by 3.6× and

OpenACC benchmarks by 4.0× over a server class GPU. Re-

purposing existing caches provides 72.6× better performance

for CPU with only 3.5% of area cost.

Acknowledgments

We thank members of M-Bits research group and the anony-

mous reviewers for their feedback. This work was supported

in part by the NSF under the CAREER-1652294 award, the

XPS-1628991 award, the SHF-1763918 award and Applica-

tions Driving Architectures (ADA) Research Center, a JUMP

Center co-sponsored by SRC and DARPA.

References

[1] N. Abeyratne, R. Das, Q. Li, K. Sewell, B. Giridhar, R. G. Dreslinski,

D. Blaauw, and T. Mudge. 2013. Scaling towards kilo-core processors

with asymmetric high-radix topologies. In 2013 IEEE 19th International

Symposium on High Performance Computer Architecture (HPCA). 496ś

507. htps://doi.org/10.1109/HPCA.2013.6522344

[2] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and

R. Das. 2017. Compute Caches. In 2017 IEEE International Symposium

on High Performance Computer Architecture (HPCA). 481ś492. htps:

//doi.org/10.1109/HPCA.2017.21

[3] JunwhanAhn, Sungjoo Yoo, OnurMutlu, and Kiyoung Choi. 2015. PIM-

enabled Instructions: A Low-overhead, Locality-aware Processing-in-

memory Architecture. In Proceedings of the 42Nd Annual International

Symposium on Computer Architecture (ISCA ’15).

[4] Ray Andraka. 1998. A survey of CORDIC algorithms for FPGA based

computers. In Proceedings of the 1998 ACM/SIGDA sixth international

symposium on Field programmable gate arrays. ACM, 191ś200.

[5] Jay B. Brockman, Shyamkumar Thoziyoor, Shannon K. Kuntz, and

Peter M. Kogge. 2004. A Low Cost, Multithreaded Processing-in-

memory System. In Proceedings of the 3rd Workshop on Memory Perfor-

mance Issues: In Conjunction with the 31st International Symposium on

Computer Architecture (WMPI ’04). ACM, New York, NY, USA, 16ś22.

htps://doi.org/10.1145/1054943.1054946

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheafer, S. Lee, and K.

Skadron. 2009. Rodinia: A benchmark suite for heterogeneous com-

puting. In 2009 IEEE International Symposium on Workload Characteri-

zation (IISWC). 44ś54. htps://doi.org/10.1109/IISWC.2009.5306797

[7] Ping Chi, Shuangchen Li, and Cong Xu. 2016. PRIME : A Novel

Processing-in-memory Architecture for Neural Network Computation

in ReRAM-based Main Memory. In IEEE International Symposium on

Computer Architecture. IEEE, 27ś39. htps://doi.org/10.1109/ISCA.

2016.13

[8] ROSE compiler infrastructure. 2018. Rose Compiler. htp://

rosecompiler.org/.

[9] Gregory Frederick Diamos, Andrew Robert Kerr, Sudhakar Yalaman-

chili, and Nathan Clark. 2010. Ocelot: A Dynamic Optimization Frame-

work for Bulk-synchronous Applications in Heterogeneous Systems.

In Proceedings of the 19th International Conference on Parallel Archi-

tectures and Compilation Techniques (PACT ’10). ACM, New York, NY,

USA, 353ś364. htps://doi.org/10.1145/1854273.1854318

[10] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,

D. Blaaauw, and R. Das. 2018. Neural Cache: Bit-Serial In-Cache

Acceleration of Deep Neural Networks. In 2018 ACM/IEEE 45th Annual

https://doi.org/10.1109/HPCA.2013.6522344
https://doi.org/10.1109/HPCA.2017.21
https://doi.org/10.1109/HPCA.2017.21
https://doi.org/10.1145/1054943.1054946
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/ISCA.2016.13
https://doi.org/10.1109/ISCA.2016.13
http://rosecompiler.org/
http://rosecompiler.org/
https://doi.org/10.1145/1854273.1854318

ISCA ’19, June 22ś26, 2019, Phoenix, AZ Fujiki et al.

International Symposium on Computer Architecture (ISCA). 383ś396.

htps://doi.org/10.1109/ISCA.2018.00040

[11] John R. Ellis. 1986. Bulldog: A Compiler for VLSI Architectures. MIT

Press, Cambridge, MA, USA.

[12] A. Farmahini-Farahani, Jung Ho Ahn, K. Morrow, and Nam Sung

Kim. 2015. NDA: Near-DRAM acceleration architecture leveraging

commodity DRAM devices and standard memory modules. In High

Performance Computer Architecture (HPCA), 2015 IEEE 21st International

Symposium on.

[13] Ben Feinberg, Uday Kumar Reddy Vengalam, Nathan Whitehair, Shibo

Wang, and Engin Ipek. 2018. Enabling scientiic computing on mem-

ristive accelerators. In 2018 ACM/IEEE 45th Annual International Sym-

posium on Computer Architecture (ISCA). IEEE, 367ś382.

[14] Basilio B. Fraguela, Jose Renau, Paul Feautrier, David Padua, and

Josep Torrellas. 2003. Programming the FlexRAM Parallel Intel-

ligent Memory System. SIGPLAN Not. 38, 10 (June 2003), 49ś60.

htps://doi.org/10.1145/966049.781505

[15] Daichi Fujiki, Scott Mahlke, and Reetuparna Das. 2018. In-Memory

Data Parallel Processor. In Proceedings of the Twenty-Third International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS ’18). ACM, New York, NY, USA, 1ś14.

htps://doi.org/10.1145/3173162.3173171

[16] Min Huang, Moty Mehalel, Ramesh Arvapalli, and Songnian He. 2013.

An Energy Eicient 32-nm 20-MB Shared On-Die L3 Cache for Intel®

Xeon® Processor E5 Family. J. Solid-State Circuits (2013).

[17] Intel. 2008. x87 and SSE Floating Point Assists in IA-32: Flush-To-Zero

(FTZ) and Denormals-Are-Zero (DAZ). htps://sotware.intel.com/en-

us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-

zero-tz-and-denormals-are-zero-daz/.

[18] Intel. 2018. Intel Processor Graphics. htps://sotware.intel.com/en-

us/articles/intel-graphics-developers-guides.

[19] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw. 2016. A 28 nm

Conigurable Memory (TCAM/BCAM/SRAM) Using Push-Rule 6T Bit

Cell Enabling Logic-in-Memory. IEEE Journal of Solid-State Circuits 51,

4 (April 2016), 1009ś1021. htps://doi.org/10.1109/JSSC.2016.2515510

[20] Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. 2012. Character-

izing and improving the use of demand-fetched caches in GPUs. In

Proceedings of the 26th ACM international conference on Supercomputing.

ACM, 15ś24.

[21] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and

Saibal Mukhopadhyay. 2016. Neurocube: A Programmable Digital Neu-

romorphic Architecture with High-Density 3DMemory. In Proceedings

of ISCA, Vol. 43.

[22] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramulator: A Fast

and Extensible DRAM Simulator. Computer Architecture Letters 15, 1

(2016), 45ś49.

[23] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Dae-

hyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy,

Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep

Dubey. 2010. Debunking the 100X GPU vs. CPU Myth: An Evaluation

of Throughput Computing on CPU and GPU. SIGARCH Comput. Ar-

chit. News 38, 3 (June 2010), 451ś460. htps://doi.org/10.1145/1816038.

1816021

[24] MathWorks. 2018. Compute Square Root Using CORDIC.

htps://www.mathworks.com/help/fixedpoint/examples/compute-

square-root-using-cordic.html.

[25] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P

Jouppi. 2009. CACTI 6.0: A tool to model large caches. HP laboratories

(2009), 22ś31.

[26] NVIDIA. 2018. CUDA Toolkit. htps://developer.nvidia.com/cuda-

toolkit.

[27] NVIDIA. 2018. Parallel Thread Execution ISA. htps://docs.nvidia.

com/cuda/parallel-thread-execution/index.html.

[28] NVIDIA. 2018. PGI Compilers & Tools. htps://www.pgroup.com/.
[29] Mark Oskin, Frederic T Chong, Timothy Sherwood, Mark Oskin, Fred-

eric T Chong, and Timothy Sherwood. 1998. Active Pages: A Computa-

tion Model for Intelligent Memory. ACM SIGARCH Computer Architec-

ture News 26, 3 (1998), 192ś203. htps://doi.org/10.1145/279358.279387

[30] PathScale. 2013. Performance test suite for openacc compiler, intel mic,

patus and single-core cpu. htps://github.com/pathscale/OpenACC-

benchmarks.

[31] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C.

Kozyrakis, R. Thomas, and K. Yelick. 1997. A case for intelligent

RAM. Micro, IEEE (1997).

[32] S.H. Pugsley, J. Jestes, Huihui Zhang, R. Balasubramonian, V. Srini-

vasan, A. Buyuktosunoglu, A. Davis, and Feifei Li. 2014. NDC: Analyz-

ing the impact of 3D-stacked memory+logic devices on MapReduce

workloads. In Performance Analysis of Systems and Software (ISPASS),

2014 IEEE International Symposium on.

[33] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata

Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,

Phillip B. Gibbons, Michael A. Kozuch, and Todd C. Mowry. [n.d.].

RowClone: Fast and Energy-eicient in-DRAM Bulk Data Copy and

Initialization. In Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-46).

[34] Ali Shaiee, Anirban Nag, Naveen Muralimanohar, and Rajeev Balasub-

ramonian. 2016. ISAAC : A Convolutional Neural Network Accelerator

with In-Situ Analog Arithmetic in Crossbars. 2016 ACM/IEEE 43rd

Annual International Symposium on Computer Architecture (ISCA) (jun

2016), 14ś26. htps://doi.org/10.1109/ISCA.2016.12

[35] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. PipeLayer: A

Pipelined ReRAM-Based Accelerator for Deep Learning. In Proceedings

- International Symposium on High-Performance Computer Architecture.

541ś552. htps://doi.org/10.1109/HPCA.2017.55

[36] Akihiro Tabuchi, Masahiro Nakao, and Mitsuhisa Sato. 2014. A Source-

to-Source OpenACC Compiler for CUDA. In Euro-Par 2013: Parallel

Processing Workshops, Dieter an Mey, Michael Alexander, Paolo Bien-

tinesi, Mario Cannataro, Carsten Clauss, Alexandru Costan, Gabor

Kecskemeti, Christine Morin, Laura Ricci, Julio Sahuquillo, Martin

Schulz, Vittorio Scarano, Stephen L Scott, and Josef Weidendorfer

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 178ś187.

[37] J. E. Volder. 1959. The CORDIC Trigonometric Computing Technique.

IRE Transactions on Electronic Computers EC-8, 3 (Sept 1959), 330ś334.

htps://doi.org/10.1109/TEC.1959.5222693

[38] John S Walther. 1971. A uniied algorithm for elementary functions.

In Proceedings of the May 18-20, 1971, spring joint computer conference.

ACM, 379ś385.

[39] Xiaolong Xie, Yun Liang, Guangyu Sun, and Deming Chen. 2013. An

eicient compiler framework for cache bypassing on GPUs. In 2013

IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

IEEE, 516ś523. htps://doi.org/10.1109/ICCAD.2013.6691165

[40] Q. Xu, H. Jeon, and M. Annavaram. 2014. Graph processing on GPUs:

Where are the bottlenecks?. In 2014 IEEE International Symposium on

Workload Characterization (IISWC). 140ś149. htps://doi.org/10.1109/

IISWC.2014.6983053

[41] Dongping Zhang, Nuwan Jayasena, Alexander Lyashevsky, Joseph L.

Greathouse, Lifan Xu, and Michael Ignatowski. 2014. TOP-PIM:

Throughput-oriented Programmable Processing in Memory. In Pro-

ceedings of the 23rd International Symposium on High-performance

Parallel and Distributed Computing (HPDC ’14).

[42] Qiuling Zhu, B. Akin, H.E. Sumbul, F. Sadi, J.C. Hoe, L. Pileggi, and

F. Franchetti. 2013. A 3D-stacked logic-in-memory accelerator for

application-speciic data intensive computing. In 3D Systems Integra-

tion Conference (3DIC), 2013 IEEE International.

https://doi.org/10.1109/ISCA.2018.00040
https://doi.org/10.1145/966049.781505
https://doi.org/10.1145/3173162.3173171
https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/
https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/
https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/
https://software.intel.com/en-us/articles/intel-graphics-developers-guides
https://software.intel.com/en-us/articles/intel-graphics-developers-guides
https://doi.org/10.1109/JSSC.2016.2515510
https://doi.org/10.1145/1816038.1816021
https://doi.org/10.1145/1816038.1816021
https://www.mathworks.com/help/fixedpoint/examples/compute-square-root-using-cordic.html
https://www.mathworks.com/help/fixedpoint/examples/compute-square-root-using-cordic.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://www.pgroup.com/
https://doi.org/10.1145/279358.279387
https://github.com/pathscale/OpenACC-benchmarks
https://github.com/pathscale/OpenACC-benchmarks
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1109/TEC.1959.5222693
https://doi.org/10.1109/ICCAD.2013.6691165
https://doi.org/10.1109/IISWC.2014.6983053
https://doi.org/10.1109/IISWC.2014.6983053

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Bit Serial In-Cache Computation
	2.2 Motivation

	3 System Stack
	3.1 ISA
	3.2 Programming Model
	3.3 Execution Model and Architecture
	3.4 Compiler
	3.5 Cache Partitioning

	4 Methodology
	5 Results
	5.1 Configurations Studied
	5.2 Performance
	5.3 Performance without Host-Device Transfer
	5.4 Deep Dive of Applications
	5.5 Impact of Optimizations
	5.6 Energy

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

