
350  •  2021 IEEE International Solid-State Circuits Conference

ISSCC 2021 / SESSION 25 / DRAM / 25.4

25.4    A 20nm 6GB Function-In-Memory DRAM, Based on HBM2  

          with a 1.2TFLOPS Programmable Computing Unit Using  

          Bank-Level Parallelism, for Machine Learning Applications 

 

Young-Cheon Kwon1, Suk Han Lee1, Jaehoon Lee1, Sang-Hyuk Kwon1,  
Je Min Ryu1, Jong-Pil Son1, Seongil O1, Hak-Soo Yu1, Haesuk Lee1,  
Soo Young Kim1, Youngmin Cho1, Jin Guk Kim1, Jongyoon Choi1,  
Hyun-Sung Shin1, Jin Kim1, BengSeng Phuah1, HyoungMin Kim1,  
Myeong Jun Song1, Ahn Choi1, Daeho Kim1, SooYoung Kim1, Eun-Bong Kim1,  
David Wang2, Shinhaeng Kang1, Yuhwan Ro3, Seungwoo Seo3, JoonHo Song3, 
Jaeyoun Youn1, Kyomin Sohn1, Nam Sung Kim1 
 
1Samsung Electronics, Hwaseong, Korea 
2Samsung Electronics, San Jose, CA 
3Samsung Electronics, Suwon, Korea 
 

In recent years, artificial intelligence (AI) technology has proliferated rapidly and widely 
into application areas such as speech recognition, health care, and autonomous driving. 
To increase the capabilities of AI more powerful systems are needed to process a larger 
amount of data. This requirement has made domain-specific accelerators, such as GPUs 
and TPUs, popular; as they can provide orders of magnitude higher performance than 
state-of-the-art CPUs. However, these accelerators can only operate at their peak 
performance when they get the necessary data from memory as quickly as it is 
processed: requiring off-chip memory with a high bandwidth and a large capacity [1]. 
HBM has thus far met the bandwidth and capacity requirement [2-6], but recent AI 
technologies such as recurrent neural networks require an even higher bandwidth than 
HBM [7-8]. While a further increase in off-chip bandwidth can be accomplished by 
various techniques, it is often limited by power constraints at the chip or system level 
[9]. Hence, it is essential to decrease demand for off-chip bandwidth with unconventional 
architectures: such as processing-in-memory. In this paper, we present function-In-
memory DRAM (FIMDRAM) that integrates a 16-wide single-instruction multiple-data 
engine within the memory banks and that exploits bank-level parallelism to provide 4× 
higher processing bandwidth than an off-chip memory solution. Second, we show 
techniques that do not require any modification to conventional memory controllers and 
their command protocols, which make FIMDRAM more practical for quick industry 
adoption. Finally, we conclude this paper with circuit- and system-level evaluations of 
our fabricated FIMDRAM. 
 
Figure 25.4.1 shows the architecture of a conventional HBM2 and FIMDRAM. To 
maintain the same physical dimension as HBM2 and preserve mechanical compatibility 
with the existing 2.5D system-in-package, half of the cell array in each bank was removed 
and replaced with the programmable computing unit (PCU). Additionally, two banks 
share one PCU, and there are 8 PCUs per pseudo-channel: the location and the number 
of PCUs are optimized by considering the area overhead of a PCU and the number of 
simultaneous operation bank is considered by the reduction of peak noise. By locating 
the PCU adjacent to the cell array, the FIMDRAM is able to utilize bank-level parallelism; 
the number of simultaneously internal operations is maximized, and the overhead due 
to the data bus connected between the cell array and PCU is minimized. To support 
concurrent multi-bank operations a special FIM mode for FIMDRAM is added. During 
FIM mode, all PCUs are turned on simultaneously and multiple banks execute the same 
command from the host, while normal mode supports basic operation of the HBM2. 
 
To control FIM operations without modification of the memory controller, an internal 
FIM controller was designed as shown in Fig. 25.4.2. The internal FIM controller consists 
of a mode generator to manage FIM mode entry and exit, and a clock divider to enable 
direct control the PCUs. FIM mode entry can be initiated by a row activate (ACT) 
command, and exit can be performed by ACT and precharge (PRE) commands. When 
the host wants to change the operation mode, it can do so by conventional row 
commands with a specific address: including setting the 13th row-address (RA) bit high. 
The most significant bit is used to switch in and out of FIM mode: this is to ensure safe 
operation by applying a high address bit to the memory region where the cell array was 
removed in FIMDRAM. Additionally, read (RD) and write (WR) commands, and the 13 
RA are used to control the three types of data movement between cell array and PCU 
during FIM mode, as shown in Fig. 25.4.3. In addition, a multi-bank operation can be 
directed according to the bank address (BA): ACT/PRE/RD/WR commands can 
simultaneously control all even banks or all odd banks depending on BA0. Concurrent 
operations on multiple banks increases performance during FIM mode of operation 
without DRAM read/write latency, because the data bus for normal operations is same 
as the conventional one, and a local data bus for FIM operations is isolated to prevent 
any change to normal operations. Additionally, a data bus control scheme is adopted to 

reduce power consumption: for data movement between the cell array and PCUs the 
local data bus is active and the global one is not, since there is no need to move data to 
the external host. Thus, power impact is reduced due to processing operations in DRAM. 
 
Figure 25.4.4 shows the PCU’s block diagram and its instruction set. The PCU is divided 
into a register group, an execution unit, and an interface unit. To support universal and 
programmable FIM operations, the register group consists of a command-register file 
(CRF) for instruction memory, a general-purpose register file (GRF) for weight and 
accumulation, and a scalar register file (SRF) to store constants for MAC operations. 
Additionally, the PCU contains execution units, a decoding unit for parsing instructions 
needed to perform operations, and interface units to control data flow. The PCU is 
controlled by conventional memory commands from the host via the newly implemented 
control paths to enable the in-DRAM computations. The input signals to the PCU are 
divided into two groups. (1) Conventional signals for DRAM (internal read/write master 
signal, addresses, and DQs), and (2) generated signals to control PCUs: such as mode 
control signal and a generated clock for FIM operations. These signals control the 
instruction sequences for floating point matrix-vector calculations in the register group. 
The execution unit in the PCU uses a variable four-stage pipeline operation; depending 
on the decoded source operands, the stored data from the register files or cell data from 
the bank array, are selected and used as inputs for the execution unit by the decoded 
opcode. Additionally, the execution unit has a one stage pipeline for the JUMP 
instruction, which supports looping. Computed results from the execution units are 
directed by the destination operand and stored in the GRF. The updated GRF data can 
be moved into a target bank with a MOVE instruction. 
 
Figure 25.4.5 shows FIMDRAM operation flow in normal and FIM mode; it is set to 
normal mode after initialization. During normal mode, the host can access each bank as 
a regular DRAM; it is used to set up input vectors for FIM mode. In order to operate 
PCUs, the host must send a command to change to FIM mode. After which, even or odd 
banks receive commands as a group and the PCU is ready to calculate in FIM mode. 
After that, the host issues a programming sequence and sends the weights for matrix-
vector calculation via the DQ interface. The PCU can save 32 instructions in the CRF, 
and the instructions are sequentially read by CRF program counter. Upon completion of 
the computation phase, the results of the register files are transferred from PCU to 
memory cell arrays by multi-bank operations. To read the results from each bank, the 
host must switch back to normal mode, and then the stored data in each bank can be 
read. 
 
The FIMDRAM was fabricated using a 20nm DRAM process. Figure 25.4.6 shows a key 
feature summary and the measurement results. These show that the FIMDRAM achieves 
2.4Gbps/pin operation without increasing power consumption, and that the PCU can 
operate at 300MHz. In addition, an FPGA-based platform and an emulation environment 
based on an application model was developed to confirm system performance 
improvements by FIMDRAM. The evaluation results show a 2.1× improvement in 
performance with a 71% system energy reduction compared to a typical GPU system 
using HBM2. The chip micrograph is shown in Fig. 25.4.7. 
 

References: 
[1] N. Jouppi et al., “In-Datacenter Performance Analysis of a Tensor Processing Unit,” 
ISCA, pp. 1-12, June 2017. 
[2] D. Lee et al., “A 1.2V 8Gb 8-Channel 128GB/s High-Bandwidth Memory (HBM) 
Stacked DRAM with Effective Microbump I/O Test Methods Using 29nm Process and 
TSV,” ISSCC, pp. 432-433, 2014. 
[3] K. Sohn et al., “A 1.2V 20nm 307GB/s HBM DRAM with At-Speed Wafer-Level I/O 
Test Scheme and Adaptive Refresh Considering Temperature Distribution,” ISSCC, pp. 
316-317, 2016. 
[4] J. H. Cho et al., “A 1.2V 64Gb 341GB/s HBM2 Stacked DRAM with Spiral Point-to-
Point TSV Structure and Improved Bank Group Data Control,” ISSCC, pp. 208-209, 2018. 
[5] C.-S. Oh et al., “A 1.1V 16GB 640GB/s HBM2E DRAM with a Data-Bus Window-
Extension Technique and a Synergetic On-Die ECC Scheme,” ISSCC, pp.330-331, 2020. 
[6] D. Lee et al., “A 128Gb 8-High 512GB/s HBM2E DRAM with a Pseudo Quarter Bank 
Structure, Power Dispersion and an Instruction-Based At-Speed PMBIST,” ISSCC, pp. 
334-335, 2020. 
[7] H. Shin et al., “McDRAM: Low Latency and Energy-Efficient Matrix Computations in 
DRAM,” IEEE TCADICS, vol. 37, no. 11, pp. 2613-2622, Nov. 2018. 
[8] F. Devaux, “The True Processing in Memory Accelerator,” IEEE Hot Chips Symp., 
pp. 1-24, 2019. 
[9] S. Kim et al., “Charge-Aware DRAM Refresh Reduction with Value Transformation,” 
IEEE HPCA, pp. 663-676, 2020.

978-1-7281-9549-0/21/$31.00 ©2021 IEEE

20
21

 I
E

E
E

 I
nt

er
na

tio
na

l S
ol

id
- 

St
at

e 
C

ir
cu

its
 C

on
fe

re
nc

e 
(I

SS
C

C
) 

| 9
78

-1
-7

28
1-

95
49

-0
/2

0/
$3

1.
00

 ©
20

21
 I

E
E

E
 | 

D
O

I:
 1

0.
11

09
/I

SS
C

C
42

61
3.

20
21

.9
36

58
62

Authorized licensed use limited to: Carleton University. Downloaded on June 16,2021 at 08:33:40 UTC from IEEE Xplore.  Restrictions apply. 



351DIGEST OF TECHNICAL PAPERS  •

ISSCC 2021 / February 18, 2021 / 8:09 AM

Figure 25.4.1: Architecture of FIMDRAM based on HBM2 compared to a 

conventional HBM2 for 1CH.

Figure 25.4.2: Mode change method and timing diagram for operation of 

FIMDRAM.

Figure 25.4.3: Data movement and multi bank operation in accordance with FIM 

mode.

Figure 25.4.5: Operation flow for data computing of FIMDRAM.

Figure 25.4.6: Measurement results and system performance improvements based 

on application benchmarks.

Figure 25.4.4: Block diagram and available instruction list of PCU block.

25

Authorized licensed use limited to: Carleton University. Downloaded on June 16,2021 at 08:33:40 UTC from IEEE Xplore.  Restrictions apply. 



•  2021 IEEE International Solid-State Circuits Conference 978-1-7281-9549-0/21/$31.00 ©2021 IEEE

ISSCC 2021 PAPER CONTINUATIONS

Figure 25.4.7: Chip micrograph of FIMDRAM with PCU block fabricated in the 20nm 

DRAM process.

Authorized licensed use limited to: Carleton University. Downloaded on June 16,2021 at 08:33:40 UTC from IEEE Xplore.  Restrictions apply. 


