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25.4 A 20nm 6GB Function-In-Memory DRAM, Based on HBM2
with a 1.2TFLOPS Programmable Computing Unit Using
Bank-Level Parallelism, for Machine Learning Applications
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§In recent years, artificial intelligence (Al) technology has proliferated rapidly and widely
Zinto application areas such as speech recognition, health care, and autonomous driving.
2To increase the capabilities of Al more powerful systems are needed to process a larger
—amount of data. This requirement has made domain-specific accelerators, such as GPUs
Sand TPUs, popular; as they can provide orders of magnitude higher performance than
5state—0f—the—art CPUs. However, these accelerators can only operate at their peak
Qperformance when they get the necessary data from memory as quickly as it is
mprocessed: requiring off-chip memory with a high bandwidth and a large capacity [1].
EHBM has thus far met the bandwidth and capacity requirement [2-6], but recent Al
gtechnologles such as recurrent neural networks require an even higher bandwidth than
SHBM [7-8]. While a further increase in off-chip bandwidth can be accomplished by
©var|0us techniques, it is often limited by power constraints at the chip or system level
S [9] Hence, it is essential to decrease demand for off-chip bandwidth with unconventional
garcmtectures such as processing-in-memory. In this paper, we present function-In-
omemory DRAM (FIMDRAM) that integrates a 16-wide single-instruction multiple-data
oengme within the memory banks and that exploits bank-level parallelism to provide 4x
C“h|gher processing bandwidth than an off-chip memory solution. Second, we show
Qltechniques that do not require any modification to conventional memory controllers and
s their command protocols, which make FIMDRAM more practical for quick industry
ﬁladoption. Finally, we conclude this paper with circuit- and system-level evaluations of
—our fabricated FIMDRAM.
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—Figure 25.4.1 shows the architecture of a conventional HBM2 and FIMDRAM. To
8 maintain the same physical dimension as HBM2 and preserve mechanical compatibility
S with the existing 2.5D system-in-package, half of the cell array in each bank was removed
Hand replaced with the programmable computing unit (PCU). Additionally, two banks
:share one PCU, and there are 8 PCUs per pseudo-channel: the location and the number
oOf PCUs are optimized by considering the area overhead of a PCU and the number of
Osmultaneous operation bank is considered by the reduction of peak noise. By locating
“the PCU adjacent to the cell array, the FIMDRAM is able to utilize bank-level parallelism;
‘Sthe number of simultaneously internal operations is maximized, and the overhead due
éto the data bus connected between the cell array and PCU is minimized. To support
wconcurrent multi-bank operations a special FIM mode for FIMDRAM is added. During
gFIM mode, all PCUs are turned on simultaneously and multiple banks execute the same
command from the host, while normal mode supports basic operation of the HBM2.

]
“To control FIM operations without modification of the memory controller, an internal
§FIM controller was designed as shown in Fig. 25.4.2. The internal FIM controller consists
‘= of a mode generator to manage FIM mode entry and exit, and a clock divider to enable
Edirect control the PCUs. FIM mode entry can be initiated by a row activate (ACT)
Ecommand, and exit can be performed by ACT and precharge (PRE) commands. When
Ethe host wants to change the operation mode, it can do so by conventional row
= commands with a specific address: including setting the 13" row-address (RA) bit high.
= The most significant bit is used to switch in and out of FIM mode: this is to ensure safe
S operation by applying a high address bit to the memory region where the cell array was
removed in FIMDRAM. Additionally, read (RD) and write (WR) commands, and the 13
RA are used to control the three types of data movement between cell array and PCU
during FIM mode, as shown in Fig. 25.4.3. In addition, a multi-bank operation can be
directed according to the bank address (BA): ACT/PRE/RD/WR commands can
simultaneously control all even banks or all odd banks depending on BAO. Concurrent
operations on multiple banks increases performance during FIM mode of operation
without DRAM read/write latency, because the data bus for normal operations is same
as the conventional one, and a local data bus for FIM operations is isolated to prevent
any change to normal operations. Additionally, a data bus control scheme is adopted to

reduce power consumption: for data movement between the cell array and PCUs the
local data bus is active and the global one is not, since there is no need to move data to
the external host. Thus, power impact is reduced due to processing operations in DRAM.

Figure 25.4.4 shows the PCU’s block diagram and its instruction set. The PCU is divided
into a register group, an execution unit, and an interface unit. To support universal and
programmable FIM operations, the register group consists of a command-register file
(CRF) for instruction memory, a general-purpose register file (GRF) for weight and
accumulation, and a scalar register file (SRF) to store constants for MAC operations.
Additionally, the PCU contains execution units, a decoding unit for parsing instructions
needed to perform operations, and interface units to control data flow. The PCU is
controlled by conventional memory commands from the host via the newly implemented
control paths to enable the in-DRAM computations. The input signals to the PCU are
divided into two groups. (1) Conventional signals for DRAM (internal read/write master
signal, addresses, and DQs), and (2) generated signals to control PCUs: such as mode
control signal and a generated clock for FIM operations. These signals control the
instruction sequences for floating point matrix-vector calculations in the register group.
The execution unit in the PCU uses a variable four-stage pipeline operation; depending
on the decoded source operands, the stored data from the register files or cell data from
the bank array, are selected and used as inputs for the execution unit by the decoded
opcode. Additionally, the execution unit has a one stage pipeline for the JUMP
instruction, which supports looping. Computed results from the execution units are
directed by the destination operand and stored in the GRF. The updated GRF data can
be moved into a target bank with a MOVE instruction.

Figure 25.4.5 shows FIMDRAM operation flow in normal and FIM mode; it is set to
normal mode after initialization. During normal mode, the host can access each bank as
a regular DRAM; it is used to set up input vectors for FIM mode. In order to operate
PCUs, the host must send a command to change to FIM mode. After which, even or odd
banks receive commands as a group and the PCU is ready to calculate in FIM mode.
After that, the host issues a programming sequence and sends the weights for matrix-
vector calculation via the DQ interface. The PCU can save 32 instructions in the CRF,
and the instructions are sequentially read by CRF program counter. Upon completion of
the computation phase, the results of the register files are transferred from PCU to
memory cell arrays by multi-bank operations. To read the results from each bank, the
host must switch back to normal mode, and then the stored data in each bank can be
read.

The FIMDRAM was fabricated using a 20nm DRAM process. Figure 25.4.6 shows a key
feature summary and the measurement results. These show that the FIMDRAM achieves
2.4Gbps/pin operation without increasing power consumption, and that the PCU can
operate at 300MHz. In addition, an FPGA-based platform and an emulation environment
based on an application model was developed to confirm system performance
improvements by FIMDRAM. The evaluation results show a 2.1x improvement in
performance with a 71% system energy reduction compared to a typical GPU system
using HBM2. The chip micrograph is shown in Fig. 25.4.7.
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Figure 25.4.1: Architecture of FINDRAM based on HBM2 compared to a

conventional HBM2 for 1CH. FIMDRAM.
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Figure 25.4.6: Measurement results and system performance improvements based

Figure 25.4.5: Operation flow for data computing of FIMDRAM. on application benchmarks.
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Figure 25.4.7: Chip micrograph of FIMDRAM with PCU block fabricated in the 20nm
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