
Towards General Purpose Acceleration by Exploiting Common
Data-Dependence Forms

Vidushi Dadu Jian Weng Sihao Liu Tony Nowatzki
vidushi.dadu,jian.weng,sihao,tjn@cs.ucla.edu

University of California, Los Angeles

ABSTRACT
With slowing technology scaling, specialized accelerators are
increasingly attractive solutions to continue expected genera-
tional scaling of performance. However, in order to accelerate
more advanced algorithms or those from challenging domains,
supporting data-dependence becomes necessary. This manifests
as either data-dependent control (eg. join two sparse lists), or
data-dependent memory accesses (eg. hash-table access). These
forms of data-dependence inherently couple compute with memory,
and also preclude efficient vectorization – defeating the traditional
mechanisms of programmable accelerators (eg. GPUs).

Our goal is to develop an accelerator which is broadly applica-
ble across algorithms with and without data-dependence. To this
end, we first identify forms of data-dependence which are both
common and possible to exploit with specialized hardware: specif-
ically stream-join and alias-free indirection. Then, we create an
accelerator with an interface to support these, called the Sparse
Processing Unit (SPU). SPU supports alias-free indirection with
a compute-enabled scratchpad and aggressive stream reordering
and stream-join with a novel dataflow control model for a reconfig-
urable systolic compute-fabric. Finally, we add robustness across
datatypes by adding decomposability across the compute and mem-
ory pipelines. SPU achieves 16.5×, 10.3×, and 14.2× over a 24-core
SKL CPU on ML, database, and graph algorithms respectively. SPU
achieves similar performance to domain-specific accelerators. For
ML, SPU achieves 1.8-7× speedup against a similarly provisioned
GPGPU, with much less area and power.

CCS CONCEPTS
• Computer systems organization → Reconfigurable com-
puting; Data flow architectures; Heterogeneous (hybrid) systems.

KEYWORDS
Irregularity, data-dependence, accelerators, generality, dataflow,
systolic, reconfigurable, join, indirection
ACM Reference Format:
Vidushi Dadu, Jian Weng, Sihao Liu, Tony Nowatzki. 2019. Towards General
Purpose Acceleration by Exploiting Common Data-Dependence Forms. In
The 52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-52), October 12–16, 2019, Columbus, OH, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3352460.3358276

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MICRO’19, October 12-16, 2019, Columbus, OH, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6938-1/19/10.
https://doi.org/10.1145/3352460.3358276

Kernel Stream Join
(Irreg. Control)

Indirect Memory
(Irreg. Memory)

Non-data-
dep. (Regular)

M
ac
hi
ne

Le
ar
ni
ng

(M
L) Conv N/A Outer-prod. [72]

(sparsity)
Dense
Conv [29]

FC/
KSVM

Inner-prod. [59]
(Sparsity+better at
skewed dist.)

Outer-prod. [40]
(Sparsity+better for
large datasets)

Dense MV

GBDT Sort-based [20]
(Sparsity+accuracy
on weighted data)

Histo [49] (Spar-
sity+accuracy on
unweighted)

Not Possible

Arith.
Circits.

N/A DAG Travers. (dag
sparsity)

Chain of MM

D
at
ab

as
e Join Sort [106]

O(Nlog(N))
Hash join [50] O(N) Cartesian O(N2)

Sort Merge O(Nlog(N)) Radix O(N) Not Possible
Filter Gen filtered

Col [106] (sparsity)
Gen. Column In-
dices (sparsity)

Maintain
Bitvector

G
ra
ph

Page
Rank

Pull [3] (O(VE) + no
rd/wr dependency)

Push [39] (O(VE) +
No latency stalls)

Dense MM
(O(V2))

BFS Pull [5] (O(VE) +
better middle iters)

Push [39] (O(VE) +
better beg/end iters)

Dense MM
(O(V2))

Table 1: Data-Dependence Forms Across Algorithms

1 INTRODUCTION
Trends in technology scaling and application needs are causing
a broad push towards specialized accelerators. Examples pervade
many domains, including graphs [9, 28, 39, 91, 108], AI/ML [10,
43, 47, 80, 85, 98, 107], databases [48, 50, 105, 106], systems [31–
33, 110], and genomics [23, 36, 95, 96]). This trend is also true in
industry [46, 62, 69, 79, 100].

Designs which are performance-robust across domains would
be valuable for economies of scale. Furthermore, with a perishing
Moore’s Law, the approach of spending transistors on ever more
non-programmable ASICs will become less effective [35]. How-
ever, the success of the above domain-specific accelerators suggests
that existing general purpose data processing hardware (eg. GPG-
PUs [69], Intel MIC [30] & KNL [90]) are orders-of-magnitude lower
in performance and/or energy efficiency. But why? Our insight is
the following: data-dependence, in the form of data-dependent con-
trol and data-dependent memory access, fundamentally interferes
with common mechanisms relied on by such processors.

To explain, consider the following two basic hardware princi-
ples: decoupling the memory access and computation pipelines, and
vectorizing the computation across independent hardware units.
GPUs are a classic example that exploit vectorization through the
SIMT execution model, and perform decoupling by relying on many
threads. Data-dependent control introduces thread divergence (bad
for vectorization), and data dependent memory introduces non-
contiguous loads (bad for vectorization) and further requires more
threads to hide the likely higher latency (bad for decoupling). Other

924

https://doi.org/10.1145/3352460.3358276
https://doi.org/10.1145/3352460.3358276

MICRO’19, October 12-16, 2019, Columbus, OH, USA Dadu et al.

Systolic
Array

Ctrl

Wide Scratchpad

Systolic
Array

Ctrl

Compute-Enabled
Scratchpad for fast
Alias-free indirect
access

Decomposable
mem/net/compute
for flexible datatypes

Systolic array
supporting
stream-join
control

Wide Scratchpad
I-

ROB

(a) Stereotypical Dense
Accelerator Core

(b) SPU & its specialization
for data-dependence

Router Router

Figure 1: Our approach: Data-dependence Specialization

high-throughput data-processors face similar problems.
On top of this, supporting data-dependence makes computing or

accessing arbitrary datatypes (8-bit,16-bit,32-bit) more difficult. The
traditional approach of sub-word SIMD (used by eg. GPUs) does
not suffice in the presence of data-dependent control or memory,
as sub-words may have different control outcomes or memory
addresses respectively. Hence, the effective bandwidth would have
to be reduced to that achievable by the vector-lane’s word-length.

Not only is data-dependence problematic, it is also extremely
common. Table 1 outlines algorithms from several domains, which
rely on data-dependent versions for one of many reasons: Some
use a sparse representation to save computation and memory band-
width/capacity. Others rely on data-structures that represent re-
lationships like graphs or trees. Some use data-subsetting like a
database filter or simply reorder data, like Sort or Join.

While some prior accelerators have mechanisms for data-
dependence, they tend not to be programmable for different
domains (eg. cannot run a DNN on a database accelerator), and they
also tend to be inefficient on kernels which are not data-dependent
(eg. cannot run a dense-matrix multiply on a sparse-matrix
accelerator). Our goal is to develop a programmable, domain-neutral
accelerator which can efficiently execute data-dependent and
non-data-dependent algorithms at high efficiency.

Insight: Our key observation is that the data-dependence support
required across data-processing domains is not arbitrary. Two basic
forms cover a wide variety of data-dependent kernels: stream-joins
and alias-free indirection.

Stream joins are defined by in-order processing of data, where
the relative order of consumption and production of new data is de-
pendent on control decisions. Alias-free indirection is characterized
by memory access with data-dependent addresses, but where it can
be guaranteed that there are no implicit dependences through alias-
ing. These restrictions can enable efficient hardware mechanisms,
and while simple, these forms are quite general: the algorithms in
Table 1 can be expressed as one or the other (or both).
Approach: Because our goal is to be performance-robust across
algorithms, we start with an architecture known to work well
for non-data-dependent: a systolic-style1 coarse grained recon-
figurable architecture (CGRA) with streaming memory support
(extremely common, eg. [10, 19, 22, 46, 54, 98]) – see Figure 1(a).
We then develop hardware and software mechanisms for our two
data-dependence forms to enable fully-pipelined stream-join and
high-bandwidth alias-free indirection at low overhead. Finally, to

1By systolic, we mean that processing elements only perform one operation, are fully-
pipelined to execute one operation per cycle, and only communicate with neighbors.

support a variety of datatypes, we add decomposability into the
compute, network, and memory.

Our design, the Sparse Processing Unit (SPU), is shown in Fig-
ure 1(b). SPU supports fully-pipelined stream-joins with a sys-
tolic CGRA augmented with a novel dataflow-control model. SPU
supports high-bandwidth alias-free indirection (load/store/update)
with a banked scratchpad with aggressive reordering and embed-
ded compute units. To flexibly support different datatypes, the
hardware enables decomposing the reconfigurable network and
wide memory access into power-of-two finer-grain resources while
maintaining data-dependence semantics. Decomposability is more
powerful than subword-SIMD alone, as it effectively lets dataflow
of finer-grain datatypes flow independently, which is necessary for
independent control flow and indirect memory access.

For the hardware/software interface, we augment a stream-
dataflow ISA [65], which enables simple embedding of the memory
and control primitives. For the overall design, SPU cores are
connected using a traditional mesh network-on-chip (NoC) to
create a high-performance multi-core accelerator.
Chosen Workloads: We study machine learning (ML) as our pri-
mary domain, and graph processing and databases to demonstrate
generality. Chosen ML workloads cover the sparse and dense ver-
sions of the top-5 ML algorithms used by Facebook in 2018 [42]. FC
and CNN are the core kernels used in state-of-the-art speech and
image/video recognition. Arithmetic Circuits are graphical model
representations which can be used to answer inference questions
on probability distributions [87]. From graph processing we study
page rank and BFS. From databases, we study a subset of TPC-H.
Results: We evaluate our approach across three domains:
• AI/ML: SPU achieves 1.8-7× speedup over a similar GPU
(NVIDIA P4000), using 24% power. Further, retaining capability
to express dense algorithms led to up to 4.5× speedup.

• Graph: For both ordered and unordered algorithms, we achieve
14.2× performance over a 24-core SKL CPU, competitive with
the scaled-up Graphicionado [39] accelerator.

• Database: For database workloads, we achieve 10.3× over the
CPU, which is competitive with the Q100 [106] accelerator.

Our contributions are:
• Identifying two data-dependence forms which are highly-
specializable, yet are general across many algorithms.

• Hardware/software codesign for the data-dependence forms:
1. Dataflow control model enabling pipelined stream-joins. 2.
Scratchpad supporting high-bandwidth indirect access. 3. Ar-
chitecture decomposability for different data-type sizes.

• Evaluation of SPU multicore across three domains
(AI/ML,Graph,Database) using real-world datasets.

Paper Organization: First, we describe the two key data-
dependence forms and their challenges and opportunities
(Section 2). Then we describe codesigned abstractions and
hardware mechanisms for specializing for data-dependent
control (Section 3) and memory (Section 4). We then integrate
these to create the proposed SPU accelerator, and explain its
parallelism/communication mechanisms (Section 5). Finally we
describe the experimental methodology, present our evaluation,
and cover related work (Section 6, 7, 8).

925

Towards General Purpose Acceleration by Exploiting Common Data-Dependence Forms MICRO’19, October 12-16, 2019, Columbus, OH, USA

Indicative of
Stream-Join

class row:
 int idx[]
 float val[]
 int cnt

float sparse_dotp(row r1, r2)
 int i1=0, i2=0
 float total=0
 while(i1<r1.cnt && i2<r2.cnt)
 if (r1.idx[i1]==r2.idx[i2])
 total+=r1.val[i1]*r2.val[i2]
 i1++; i2++
 elif (r1.idx[i1]< r2.idx[i2])
 i1++
 else
 i2++
 ...

(a) Sparse Vec. Mult. (inner-prod) (b) Merge

float merge(int left, mid, right)
 ...
 int i1=0, i2=mid
 while(i1 < mid && i2 < right)
 if in_arr[i1] <= in_arr[i2]
 out_arr[iout]=in_arr[i1]
 i1++
 else
 out_arr[iout]=in_arr[i2]
 i2++
 iout++

float in_arr[N]
float out_arr[N]

Data
 structure

C
o
d
e

E
x
a
m
p
l
e

2, 5, 8, 12

5, 3, 4, 2

r1

r2

cnt: 4

0, 2, 4, 5, 9

2, 3, 2, 4, 1

cnt: 5

idx

idx

val

val

total=27
(5*3+3*4)

Output

Underlined
Indices Match

Output

1, 2, 5, 8, 13, 17, 20, 21out_array

2, 5, 13, 17, 1, 8, 20, 21in_array 2, 5, 13, 17, 1, 8, 20, 21in_array

Indicative of
Stream-Join

Figure 2: Example Stream-Join Algorithms

2 EXPLOITABLE DATA-DEP. FORMS
We observe that two restricted forms of data-dependence are suf-
ficient to cover many algorithms: stream-join and alias-free indi-
rection. In this section, we first define these forms and give some
intuition on their performance challenges for existing architectures,
then explain how they guide our design.
Preliminary Term – “Streams”: Both of the dependence-forms
rely on the concept of stream abstractions, so we briefly explain.
Streams are simply an ordered sequence of values, used as architec-
ture primitives in many prior designs [25, 26, 44, 65, 83, 102, 106].
Relevant to this work are memory streams, which are sequences of
loads or stores. Streams are similar to vector accesses, but have no
fixed length (for examples see Listings 1-3 on page).
Preliminary Term – “Regular Algorithm”:A regular algorithm
is one with no data-dependent control decisions or memory ad-
dresses. Further, no implicit dependences are allowed through mem-
ory streams, created by aliasing. The data-dependence forms can
be viewed as relaxations of regular algorithms.

2.1 Stream-Join
An interesting class of algorithms iterates over each input (each
stream) in order, but the total order of operations (and perhaps
whether an output is produced) is data-dependent. Two relevant
kernels are shown in Figure 2. Sparse vector multiplication (a)
iterates over two sparse rows (in CSR format) where indices are
stored in sorted order, and performs the multiplication if there is a
match. The core of the merge kernel (b) iterates over two sorted
lists, and at each step outputs the smaller item. Even though the
data-structures, datatypes and purpose are very different, their
relationship to data-dependence is the same: they both have stream
access, but the relative ordering of stream consumption is data-
dependent (they reuse data from some stream multiple times).
Stream Join Definition: A program region which is regular, ex-
cept that the re-use of stream data and production of outputs may
depend on the data.
Problem for CPUs/GPUs: Because of their data-dependent na-
ture, Stream-joins introduce branch-mispredictions for CPUs. For
GPGPUs, control dependence makes vectorization difficult due to

class row:
 int idx[]
 float val[]
 int cnt

(a) Sparse Vec/Mat. Mult. (b) Histogram

histo(float in_arr[N])
 ...
 for i=0 to N, ++i
 b = compute_bin(in_arr[i])
 out_hist[b] += 1
 ...

float in_arr[N]
int out_hist[M]

Data
 structure

C
o
d
e

E
x
a
m
p
l
e

Output

1,2,2,2,1,1out_arr

1,2,5,3,2,4,3,5,1,0in_arr

float sparse_mv(row r1, m2)
 ...
 for i1=0 to r1.cnt, ++i1
 cid = r1.idx[i1]
 for i2=ptr[cid] to ptr[cid+1]
 out_vec[m2.idx[i2]] +=
 r1.val[i1]*m2.val[i2]
 i2++

(assume compute_bin is a cast to integer)

 (outer-prod)

Indirection

1, 3

2, 3

0, 1, 5, 3, 4, 0, 3, 5, 0, 3

1, 2, 2, 3, 2, 4, 3, 5, 1, 1

Output

r1
idx

val

idx

val

ptr

3, 0, 0, 9, 5, 0

m2

Underlined
indices match

(3*1, 0, 0, 2*3+3*1, 2*2, 0)

out_vec
cnt: 2

Indirection

Figure 3: Example Alias-Free Scatter/Gather Algorithms

control divergence of SIMT lanes; also the memory pattern can
diverge between lanes, causing L1 cache bank conflicts.
OurGoal for stream-join: Create a dataflow control model which
can execute stream-join at full bandwidth and utilization.

2.2 Alias-Free Indirection (AF-Indirect)
Many algorithms rely on indirect read, write, and update to memory,
often showing up as a[f(b[i])]. Figure 3 shows two examples: The
sparse-vector/sparse-matrix outer product (a) works by performing
all combinations of non-zero multiplications, and accumulating
in the correct location in a dense output vector. Histogram (b) is
straightforward. The similarities here are clear: both perform an
access to an indirect location. This can be viewed as two dependent
streams. Another important observation is that there are no un-
known aliases between streams – the only dependence is between
the load and store of the indirect update.
Alias-Free Indirection Definition: A program region which is
regular (including no implicit dependences), except that memory
streams may be dependent on each other.
Problem for CPUs/GPUs: On CPUs, indirect memory is possible
with scatter/gather, however the throughput is quite limited given
the limited ports to read/write vector-length number of cache lines
simultaneously. As for indirect update, Intel AVX512 recently added
support for conflict detection instructions. These do not improve
the above cache-port throughput problem, only the instruction
overhead – yet still any conflicts within the vector are handled
serially with no reordering across vectors [45]. Also, not leveraging
alias-freedom means a reliance on expensive load-store queues.

While GPUs have similar throughput issues for caches, their
scratchpads are banked for faster indirect access. However, they do
not reorder requests across subsequent vector warp accesses [103],
which is important to get high indirect throughput. Doing so in a
GPU would require dependence-checking of in-flight accesses, as
they cannot guarantee alias freedom.
Our Goal for AF-Indirect: Create a stream-based hardware/soft-
ware interface and microarchitecture enabling indirect access at
full bandwidth through aggressive reordering.
Dependence Form Relationship: Finally, note that dependence

926

MICRO’19, October 12-16, 2019, Columbus, OH, USA Dadu et al.

forms are not mutually exclusive. An example is the histogram-
based Sparse GBDT (Figure 13 on Page). Alias-free indirection is
used for updating the histogram count, while a stream-join is used
for iterating over the sparse feature values. Other examples include
deep neural networks (indirection for matrix-multiply and stream-
join to subsequently resparsify the output vector) and triangle
counting in graphs (indirection to traverse the graph and stream-
join to find intersecting neighbors).

3 STREAM-JOIN SPECIALIZATION
A conventional computational fabric which is proven to perform
well for non-data-dependent codes is a systolic-execution array [19,
22, 46, 54, 98], as they are quite simple. Note we define a systolic-
execution array as a set of processing tiles which together form
a deep pipeline, where each tile executes a single logical instruc-
tion and only communicates with its neighbors. This definition is
general enough that such designs can include a circuit-switched
network [37, 57, 66, 88, 99], so we refer to these as systolic CGRAs.

In this section, we propose a novel control model to enhance a
conventional systolic CGRA for stream-join. We also discuss sup-
porting finer-grain datatypes at low overhead and high hardware
utilization through decomposability.

3.1 Stream-join Control
Existing systolic arrays are unable to make control decisions beyond
simple predication, as they do not account for data dependences in
deciding when and how to produce or consume data.

We discuss a number of examples in Figure 4, for which show

the original code and a traditional dataflow representation. Here,
black arrows represent data dependence, and green arrows indi-
cate control. The dataflow representation is quite similar to what
is executed on an OOO core. These examples motivate the need
for a new dataflow-control model; one which can express the data-
dependence without expensive throughput-limiting control depen-
dence loops; this figure also shows these codes represented in our
stream-join dataflow model.
Merge Example: Consider the pseudo-code in Figure 4(a), which
shows a simple merge kernel (only the part where both lists have
data), for use in merge-sort for example. An item is selected and
stored based on which of two items is smaller. This dataflow can
be mapped to a systolic array, but only at low throughput.

To explain, note that there is a loop-carried dependence through
the control-dependent increment andmemory access. This prevents
perfect pipelining, and the throughput is limited to one instance
of this computation every n cycles, where n is the total latency
of these instructions. Note that the same problem exists for the
out-of-order core, and it is made even worse with the unpredictable
data-dependent branch which would increase the average latency
due to mispredictions.

However, note that from the perspective of the memory, the
control dependence is unnecessary, as all loads will be performed
anyways. Therefore, to break the dependence, we need to separate
the loads from computation (luckily, decoupled streams do this
already), then expose a mechanism for controlling the order of
data consumption. Intuitively for this example, if the model treats

 x=ReLU(in[i])
 (x!=0)
 val[cnt] = x
 idx[cnt] = i

for i=0 to N

if

++cnt

 x=ReLU(in[i])
 (x!=0)
 val[cnt] = x
 idx[cnt] = i

for i=0 to N

if

++cnt

Tr
ad

it
io

n
al

 D
at

af
lo

w
St

re
am

-j
o

in

D
at

af
lo

w
C

 c
o

d
e

(d) Re-sparsify

Cmp

+

strm
idx1

strm
idx2

Streams
embed their
own iterators

×

strm
val1

strm
val2

reuse reuse reuse

acc

c c

<, ==, >

c

output

init

reuse

(a) Merge

 (list1[i1] <= list2[i2])
 out_list[iout] = list1[i1]

 out_list[iout] = list2[i2]

 ++iout

while(i1 < L1 && i2 < L2)

++i1

++i2

if

else

strm
list1

strm
list2

reuse reuse

Select

Cmp
c

strm st
out_list

++ ++
Select

ld
list1

Select

ld
list2

Cmp10 10

Control-
Dep.

Control-
Dep.

<=

++
Select

st

out_list

>

i1 i2

iout

(b) Sparse Vec. Mult. (inner)

 (r1.idx[i1]==r2.idx[i2])
 total+=r1.val[i1]*r2.val[i2]

 (r1.idx[i1] < r2.idx[i2])
 ++i1

else
 ++i2

++i1; ++i2;

while(i1<r1.cnt && i2<r2.cnt)
if

elif

++

+

++
Select

ld
idx1

ld
val1

Select

ld
val2

ld
idx2

Cmp

×

10 10

Control-
Dep.

Control-
Dep.

><

==

output

i1 i2

Control-
Dep.

Control-
Dep.

(c) Streaming Database join

 (tbl1.key[i1]==tbl2.key[i2])
 tbl_out.key[iout] =tbl1.key[i1]
 tbl_out.data1[iout]=tbl1.data[i1]
 tbl_out.data2[iout]=tbl2.data[i2]

 (tbl1.key[i1] < tbl2.key[i2])

++i1; ++i2; ++iout

while(i1 < N1 && i2 < N2)

 ++i1
else
 ++i2

if

elif

++ ++
Select

ld
key1

ld
data1

Select

ld
data2

ld
key2

Cmp10 10

Control-
Dep.

Control-
Dep.

Control-
Dep.

Control-
Dep.

><

==

st
data1

st
data2

++
Select

0
1

Select

0
1

st
key

i2i1

iout

Cmp

strm
key1

strm
key2

Con
cat

strm
data1

strm
data2

reuse reusec c

<, ==, >

strm st
tbl_out

Con
cat

c

st
ind

ld
in

ReLU

Cmp

++

++

Select

10

!=0

st
val

0

!=0

i

strm
in

ReLU

Cmp

strm st
ind

strm st
val

+
acc

c

cnt

init

cc

Stream
Loads

i

!=0

For simplicity, loop
exit conditions not

shown.

Note:
ReLU(x): max(x,0)

Stream
Store

Control-
Dep.

Control-
Dep.

Control

Compute

Memory

Data Dep.

Control Dep.

Legend

Control

Compute

Memory

Data Dep.

Control Dep.

Legend

cnt

Figure 4: Stream-Join Control Model

927

Towards General Purpose Acceleration by Exploiting Common Data-Dependence Forms MICRO’19, October 12-16, 2019, Columbus, OH, USA

incoming values like a queue, it is possible to “pop” the values as
they are consumed. Essentially, what we require here within the
computation fabric is the ability to perform data-dependent reuse.
Sparse Inner-Product Example: Figure 4(b) is a sparse-vector
multiplication. Here, two pointers are maintained based on the com-
parison of corresponding item indices. Compared to merge, there
is a similar control dependence and overhead. A similar approach
could work here as well, decouple the streams and conditionally
reuse indices (and values). The difference is that we only apply the
multiply accumulate on matching indices, so we should discard
some of this data. Therefore, in addition to data-dependent reuse,
we also require data-dependent discard.
Database Join Example: Figure 4(c) shows an inner equijoin. It
iterates over sorted keys, and concatenates equivalent keys and cor-
responding columns. It has a surprisingly similar form and control
dependence loop to the sparse multiplication, where the computa-
tion is replaced with concatenation. A similar approach of decou-
pling streams and applying data-dependent reuse and discard will
break the control dependence loop and enable high throughput.
Re-sparsification Example: Re-sparsification (Figure 4(d)) pro-
duces a sparse row from a dense stream. The dataflow version has a
predicated increment and store, and can achieve a pipelined sched-
ule (so can the OOO core if it has predicated stores, otherwise it
would be serialized by mispredictions). This example demonstrates
that the ability to discard (ie. filter) is useful on its own. It is also
an example where predication is enough, whereas predication is
insufficient in the other examples.
Our Stream-join Proposal:We find the desired behavior can be
accomplished with a simple and novel control flow model for full-
throughput systolic execution. The basic idea is to allow each in-
struction to perform the following control operations: re-use inputs,
discard instructions or reset a register based on a dataflow input.

Figure 5 shows the execution flow of the sparse vector multiplica-
tion when expressed as a stream-join, showing the fully-pipelined
execution over several cycles. Dataflow values are represented as
circles, and for simplicity they take one cycle to flow along a de-
pendence. Sentinel values (infinity for indices and zero for values)
are used to indicate the end of a stream; these allow the other
stream to drain on stream completion. Also, the subsequent vector
multiplications can begin without draining the pipeline.

Figure 4 shows all of the examples written in this model. Data-
dependent operand re-use is useful in (a,b,c) to iterate over input
streams in correct relative order. Data-dependent discard is also
useful in (b,c,d) for ignoring data which is not needed. The data-
dependent reset is useful in (b,d) for resetting the accumulator. In
both examples, adding stream-join primitives to instruction execu-
tion either shrinks the throughput-limiting dependence chain or
eliminates it completely, enabling a fully-pipelined dataflow.

To enable flexible control interpretation, each instruction embeds
a simple configurable mapping function from the instruction output
and control input to the control operations:

f (inst_out, control_in) → reuse1, reuse2, discard, reset
Stream-join Overheads: In kernels where input data is discarded
(eg. sparse-matrix multiply and database join), the transforma-
tion to stream-joins can cause additional loads. Theoretically the

Cmp

+

×

acc

c c

c
init

INF 0 3

>

INF

12
Cmp

+

×

acc

c c

c

output

init

0 0

==

12

>== Cmp

+

×

acc

c c

c

output

init
0

12output

Cmp

+

×

acc

c c

c
init

42

0 2 5 2

Cmp

+

×

acc

c c

c
init

2 2 5 2

<

4INF

Cmp

+

×

acc

c c

c
init

4 6 2

==

INF

INF

306 3

<

6 3

output outputoutput

Cmp

+

×

acc

c c

c
init

42

0 2 5 2

Cmp

+

×

acc

c c

c
init

2 2 5 2

<

4INF

Cmp

+

×

acc

c c

c
init

4 6 2

==

INF

INF

306 3

<

6 3

output outputoutput

Cycle - 1 Cycle - 2 Cycle - 3

Cycle - 4 Cycle - 5
Cycle - 6

0

5, 6, 0

idx1

val1

0, 2, INF

5, 6, 0

idx1

val1

0, 2, INF

2, 4, INF

2, 3, 0
idx2

val2

2, 4, INF

2, 3, 0
idx2

val2

IN
P

U
T

LI
ST

S

==

Figure 5: Execution diagram for join of two sorted lists.

worst case extra overhead compared to the original is (value_size +
key_size)/(key_size). This can happen if there are extremely sparse
matches, for example in databases. For such cases, we could only
load values for matching indices; this would increase the latency
of accessing values, but this can usually be hidden. For this, SPU
provides efficient support for indirect accesses (Section 4).

3.2 Stream-join Compute Fabric: DGRA
Here we explain how we augment a systolic CGRA to support
stream-join control. Its network is decomposable to support control
semantics for smaller datatypes; thus we refer to the design as the
decomposable granularity reconfigurable architecture: DGRA.
Stream-join Processing Element (PE) Implementation: The
stream-join control model enables an instruction to 1. treat its
inputs as queues that it can conditionally reuse, 2. conditionally
discard its output value, and/or 3. conditionally reset its accumula-
tor. Instructions may use their output or a control input to specify
the conditions (ie. the control info).

discard
Func. UnitACC CLT

FIFO0 FIFO1 FIFO2

From Network

reuse

reset

SEx

Stream-Join

Flow-Ctrl

Data-Flow

Figure 6: CLT integration

To implement, we add a control
lookup table (CLT) to each FU (Fig-
ure 6), which determines a mapping
between the control inputs and pos-
sible control operations. For the in-
puts of this table, we use the lower
two bits of either the instruction
output or the control input. For the
outputs, there are four possible con-
trol actions: reuse-first-input, reuse-
second-input, discard-operation, reset-accumulator. Therefore, for
a fully configurable mapping between the 2-bit input (four combina-
tions) and 4-bit outputs, we require a 16-bit table, and one extra bit
to specify whether the instruction output or control input should be
used as input. This becomes additional instruction configuration.
Supporting Decomposability: To support stream-join semantics
with arbitrary datatypes, our approach is to support the principle
of decomposability – the ability to use a coarse grain resource as
multiple finer grain resources. Therefore, the network of the DGRA
is decomposable into multiple parallel finer-grain sub-networks. It
provides limited connectivity between these sub-networks. For this
we require both a decomposable switch and PE.

928

MICRO’19, October 12-16, 2019, Columbus, OH, USA Dadu et al.

S0 S1 S2 S3

N0 E0 S0 W0 X1 N1 E1 S1 W1 X2 N2 E2 S2 W2 X3 N3 E3 S3 W3 X0

55.5
5

MUX

E

S

N E S W

S

W

N

W

W

N
E

S

CGRA
Switch

DGRA
Switch

S

E

N

64-bit

16-bit

MUX

(to/from Switches and Fus)

Figure 7: DGRA Switch

(to/from Switches)

55.5
5

NW

N
E

SE

SW

CGRA PE
SE

discard
Func. UnitACC

reuse
CLT

64-bit
32-bit
Control

CLT

ACC

NW

N
E

SE

SW

55.5
5

SE0 SE1

DGRA PE
SE

SW
0

SW
1

NW0 NW1

NE
1

NE
0

SE0 SE1

CLT

ACC

Figure 8: DGRA Processing Element

DGRA Switch: Figure 7 compares a CGRA switch to our DGRA
switch. On the left is an implementation of a coarse grain switch,
which has one Mux per-output. The DGRA switch decomposes
inputs and outputs, and separately routes each 16-bit sub-network.
Flow control is maintained separately with a credit path (not shown)
for each subnetwork. For flexible routing, we add the ability for
incoming values to change sub-networks. In the design this is done
by adding an additional input to each output Mux, which uses the
latched output of the previous Mux. This forms a ring, as shown
by the “X” inputs.
DGRA PE: The decomposable PE (Figure 8) follows the same prin-
ciples as the switch. Each coarse grain input of a FU can be de-
composed into two finer-grain inputs which are used to feed two
separate lower-granularity FUs. We replicate the CLT for each
subnetwork so that each can have their own control semantics.
Mixed-precision Scheduling: Mapping dataflow graphs onto re-
configurable architecture is known as spatial scheduling (eg. [67,
73, 74, 109]). Adding decomposability increases the complexity
due to managing more routing decisions due to subnetworks. At a
very high-level, our approach combines the principle of stochastic-
scheduling [64] and over-provisioning (eg. within Pathfinder [56]).
At each iteration, we attempt to map (or re-map) a dataflow instruc-
tion and its dependences onto several different positions on the
DGRA; the algorithm will typically choose the position with the
highest objective, but will occasionally select a random position.
To avoid getting stuck in local minima, we allow over-provisioning

f o r i =0 to n
. . . = a [i] → l o ad (a [0 : n])

Listing 1: Linear Stream
s t r u c t { i n t f1 , f 2 } a [n]
f o r i =0 to n

ind = index [i]
= a [ind] . f i e l d 1
= a [ind] . f i e l d 2
c [ind] = . . .

→

s t r 1 = l oad (index [0 : n])
i n d_ l o ad (addr= s t r 1 , o f f s e t _ l i s t = { 0 , 4 })
i n d _ s t o r e (addr= s t r 1 , v a l u e = . . . ,

o f f s e t _ l i s t = { 0 })

Listing 2: Indirect Load and Store Streams
f o r i =0 to n

ind = index [i]
v a l = va lue [i]
h i s t o [ind] += v a l

→

s t r _ i n d = l oad (index [0 : n])
s t r _ v a l = l o ad (va l u e [0 : n])
update (addr= s t r _ i n d , v a l = s t r _ v a l ,

opcode =" add " , o f f s e t _ l i s t = { 0 })
Listing 3: Indirect Update Stream

f o r i =0 to n
s i z e = s u b _ s i z e [i]
f o r j =0 to size

v a l = va lue [j]

→
s t r _ s i z e = l oad (s u b _ s i z e [0 : n])
d a t a_dep_ l o ad (va l u e [0 : l en = s t r _ s i z e])

Listing 4: Data-dependent Load Stream

compute and network resources and penalize over-provisioning in
the objective function.

4 SPECIALIZING DATA-DEP. MEMORY
The main challenge for specializing for alias-free indirection is
creating a high-bandwidth memory pipeline which aggressively re-
orders accesses. In order to explain our proposed microarchitecture,
we first discuss the set of stream abstractions that are expressed to
the hardware.

4.1 Sparse Memory Abstractions
As we explained earlier, we start with a simple non-data-dependent
contiguous stream (Listing 1 shows an example). For specifying
indirect loads or stores, we enable one streams’ addresses to be
dependent on another streams’ values. Often, array-of-structs style
data structures require several lookups offset from the base address.
We add this capability with an “offset list”, shown in the example
in Listing 2.

Indirect updates (as in histogramming) could hypothetically be
supported by using an indirect load stream as above, performing the
reduction operation, and finally using an indirect store stream to
the same series of addresses. However, this requires dynamic alias
detection or eschewing pipeline parallelism to prevent aliasing read-
/write pairs from being mis-ordered. Instead, we can leverage the
alias-free property to add a specialized interface for indirect update.
In our implementation, indirect update may perform common oper-
ations like add, sub, max, and min directly on the indirect-addressed
data item. Listing 3 shows an example.

Often, streams consist of sub-streams with data-dependent
length. For example, indirect matrix-vector multiplication requires
access to columns with varying size (Figure 3, page). We enable
streams to specify a data-dependent length, as in Listing 4.

4.2 Data-Dep Memory Microarchitecture
Armed with expressive abstractions, we develop a high-bandwidth
and flexible scratchpad controller capable of high-bandwidth indi-
rect access. Because our workloads often require a mix of linear
and indirect arrays simultaneously, for example streaming read of
indices (direct) and associated values (indirect), we begin our design

929

Towards General Purpose Acceleration by Exploiting Common Data-Dependence Forms MICRO’19, October 12-16, 2019, Columbus, OH, USA

4

Arbiter

XBAR(eg.16x32)

Indirect
Address
Gener-
ation

Linear
Access
Stream
Table

L
i
n
e
a
r

A
d
d
r
e
s
s

G
e
n
e
r
a
t
i
o
n

M
U
X

Indirect
Rd/Wr/
Atomic
Stream
Table

rd-wr bank-queues

Control Logic

Composable

Banked Scratchpad

NoC

Linear Scratchpad

C
o
n
t
r
o
l

U
n
i
t

Sel

Indirect
ROB T

o

C
o
m
p
u
t
e

F
a
b
r
i
c

From Compute Fabric

Figure 9: Scratchpad Controller

5

Bank

0

Bank

1

Bank

n-1

A
d
d
r
.

D
e
c
o
d
e

A
d
d
r
.

D
e
c
o
d
e

A
d
d
r
.

D
e
c
o
d
e

Address Value

Row Buffer Row Buffer

Enable

Opcode0 Opcode1 Opcoden-1

Composable

Row Buffer

(for reordering)To SPAD Controller

From SPAD Controller

Figure 10: Compute-enabled Banked Scratchpad

with two logical scratchpad memories, one highly banked and one
linear. In this design, both exist within the same address space.

The role of the scratchpad controller (eventual design in Figure 9)
is to generate requests for reads/writes to the linear scratchpad,
and reads/writes/updates to the indirect scratchpad. A control unit
assigns the scratchpad streams, and their state is maintained in
either linear or indirect stream tables. The controller should then
select between any concurrent stream for address generation and
send to the associated scratchpad to maximize expected bandwidth.
The linear address generator’s operation is simple – create wide
scratchpad requests using the linear access pattern.

The indirect address generator creates a vector of requests by
combining each element of the stream of addresses (coming from
the compute fabric, explained in Section 3) with each element in
the stream description’s offset list. This vector of requests is sent to
an arbitrated crossbar for distribution to banks, and a set of queues
buffer requests for each SRAM bank (Figure 10) until they can be
serviced. Reads, writes and updates are explained as follows:
Indirect Writes: Bank queues buffer both address and values. Im-
portantly, because writes are not ordered with respect to anything
besides barriers, requests originating from within the stream and
across streams can be “mixed” within the bank queues without
any additional hardware support. Mixing requests across multiple
request-vectors helps to hide bank contention, a critical feature
enabling higher throughput than traditional memories.
Indirect Updates: Indirect updates use the compute units within
the scratchpad. To explain, the bank queues buffer the address,
operation type and the operand for the update. Within the banked

0x8
0x18
0xA8
0xB8

0x58
0x68

0x118 0x98 0x218
0x28 0x228 0x328
0x38
0x48

0xD8

0x78

Scratch
 b

an
ks

0
1
2
3
4
5
6
7

0x8
0x18
0xA8
0xB8

0x58
0x68

0x118 0x98 0x218
0x28 0x228 0x328
0x38
0x48
0xD8

0x78

head

0x18 0x58 0x68 0x118 0xA8 0xB8 0xD8
0x28 0x48 0x8 0x38 0x78

Indexed by
req_id

Cycle count
1 2 3 4 5 6 1 2 3 4 5 6

Cycle count

(b) Benefit of reordering

IROB at cycle count 2

(c) SPU reordering

Crossbar

(addr, req_id, col)

0x18 0x58 0x68 0x118 0x98 0xA8 0xB8 0xD8

0x28 0x48 0x8 0x218 0x38 0x78 0x228 0x328

Vec req1

Vec req2

(a) Example request stream

Reorder within vector (typical for GPUs) Aggressive reordering through IROB

tail

Banks

Figure 11: Functioning of IROB. (bits<6..4> indicate bank number)

scratchpad, after the value is read, the associated compute unit
executes, then writes the value back to the same location in the
next cycle. We support only common integer operations within this
pipeline (add, sub, min, max). The pipeline stalls only if subsequent
updates are to the same address (max 2-cycle bubble).
Indirect Reads: In contrast to the above, the order of reads must
be preserved. For performance, we would like to maintain the abil-
ity to mix requests from subsequent accesses to hide bank con-
tention. This actually goes beyond what even modern GPUs are
capable of, as they only reorder a single vector of requests at one
time [7, 58, 103]. We believe the reason for this limitation on GPUs
is the challenge in handling potential memory dependences. To
explain, Figure 11(a) shows an example of two parallel indirect read
requests. Figure 11(b) shows the difference between how a typical
GPU approach would schedule transactions, and how an aggressive
reordering approach would work. The ability to intermingle parallel
requests can significantly increase throughput.

To accomplish this, we maintain ordering in a structure called
an indirect read reorder-buffer (IROB), which maintains incomplete
requests in a circular buffer. It is allocated an entry whenever a re-
quest is generated from the indirect address generator. For indirect
reads, the bank queues maintain the address and row & column
of the IROB. As results return from the banked scratchpad, they
use this row & column to update the IROB. IROB entries are de-
allocated in-order when a request’s data is sent to the compute unit.
Overall, our abstractions enable expression of the alias-free prop-
erty of indirect reads in hardware, which is what allows a simple
hardware structure like the IROB to aggressively reorder across
multiple requests without memory dependence checking.
Decomposability: The indirect scratchpad also requires decom-
posability to various datatypes. Multiple contiguous lanes are used
in lock-step to support larger datatypes. Consider indirect store
bandwidth for example: the 16×32 crossbar either supports 16 16-
bit stores (to 32 logical banks), 8 32-bit stores (to 16 logical banks),
or 4 64-bit stores (to 8 logical banks). We use the same approach
for accessing the SRAM banks of the indirect scratchpad.

930

MICRO’19, October 12-16, 2019, Columbus, OH, USA Dadu et al.

Crossbar

Main Memory

Memory Stream Engine

Core1 Core8

Core9

Core57 Core64

NoC Router

Datapath
DGRA

Compute
Fabric

Input Port
Interface

Scratchpad
Controller

Linear
Scratchpad

Banked
Scratchpad

I
n
d
i
r
e
c
t

V
e
c
t
o
r

P
o
r
t
s

S
t
r
e
a
m

D
i
s
p
a
t
c
h
e
r

C
o
n
t
r
o
l

C
o
r
e

Output Port
InterfaceSPU-Core

A
r
i
b
t
e
r

t
o

N
o
C

Figure 12: SPU Overview

5 SPARSE PROCESSING UNIT
The sparse processing unit (SPU) is our overall proposed design.
Each SPU core is composed of the specialized memory and compute
fabric (DGRA), together with a control core for coordination among
streams. In this section, we overview the primary aspects of the
design, then discuss how we map our workloads to SPU’s compu-
tation, memory, and network abstractions. Finally, we discuss the
role of the compiler and possible framework integration.
SPU Organization: Figure 12 shows how SPU cores would be
integrated into a mesh network-on-chip (NoC), along with the
high-level block diagram of the core. The basic operation of each
core is that the control core will first configure the DGRA for a
particular dataflow computation, and then send stream commands
to the scratchpad controller to read data or write to the DGRA,
which itself has an input and output "port interface" to buffer data.
Memory Integration: These workloads require shared access to
a larger pool of on-chip memory. To enable this, our approach
was to rely on software support, rather than expensive general
purpose caches and coherence. In particular, SPU uses a partitioned
global address space for scratchpad. Data should be partitioned
for locality if possible. Streams may access remote memory over
the NoC. We add remote versions of the indirect read, write, and
update streams. Indirect write and update are generally one-way
communication operations, but we provide support to synchronize
on the last write/update of a stream for barrier synchronization.
Other synchronization is described next.
Communication/synchronization: SPU provides two special-
ized mechanisms for communication. First, we include multicast
capability in the network. Data can be broadcast to a subset of cores,
using the same relative offset in scratchpad. As a specialization for
loading main memory, cores issue their load requests to a central-
ized memory stream engine, and data can be multi-cast from there
to relevant cores. For synchronizing on for data-readiness, SPU
uses a dataflow-tracker-like [98] mechanism to wait on a count of
remote-scratchpad writes.
Control ISA:We leverage an open-source stream-dataflow ISA [63,
65] for the control core’s implementation of streams, and add sup-
port for indirect reads/writes/updates, stream-join dataflow model,
and typed dataflow graph. The ISA contains stream instructions
for the data transfer, including reading/writing to main memory
and scratchpad.

Map stream-join
pattern to SPU
control model

update(addr=st_hist_addr,
val=st_grad_update, opcode=”add”,
offset_list={sp_addr[tid]})

Setup local linear scratchpad streams

multicast(strm_ind1, mask=”1111")
multicast(strm_grad, mask=”1111")
Setup main-memory streams

Setup local indirect scratchpad streams

wait_local_streams()
Global reduction using dataflow tracker
if (tid==0): wait_df(C-1)
else: st(red_val[tid], dst=core0, scr=1)

Setup local linear scratchpad streams

multicast(strm_ind1, mask=”1111")
multicast(strm_grad, mask=”1111")
Setup main-memory streams

Setup local indirect scratchpad streams

wait_local_streams()
Global reduction using dataflow tracker
if (tid==0): wait_df(C-1)
else: st(red_val[tid], dst=core0, scr=1)

Setup local linear scratchpad streams

multicast(strm_ind1, mask=”1111")
multicast(strm_grad, mask=”1111")
Setup main-memory streams

Setup local indirect scratchpad streams

wait_local_streams()
Global reduction using dataflow tracker
if (tid==0): wait_df(C-1)
else: st(red_val[tid], dst=core0, scr=1)

strm_ind1 = ld(node_ind[p][0:n], scr=1)
strm_grad = ld(grad[0:n], scr=1)

strm_ind2 = ld(feat_ind[tid][0:n])
strm_hist_bin = ld(feat_val[tid][0:n])

Scratchpad Controller

feat_ind[tid][0:n]
feat_val[tid][0:n]

Control
Core

DGRA
(runs dataflow graph)

st
rm

h

is
t_

ad
d

r+
gr

ad
_u

p
d

at
e

Store
node_ind[0:n/C],

grad[0:n/C]

Linear Scratch

setup
streams

Banked Scratch

...
Store grad_hist[0..k]

while(id1 < len(node_ind[p]) &&
 id2 < len(feat_ind[fid])):
 ind1 =
 ind2 =

 hist_bin =

strm
ind1

strm
ind2

strm
hist_bin

reuse discard

node_ind[p][id1]
feat_ind[fid][id2]

if (ind1==ind2):

 ++id1; ++id2
elif (ind1<ind2):
 ++id1
else:
 ++id2

feat_val[fid][id2]

grad[ind1]

id1, id2 implicit using
stream-join control

grad_hist[hist_bin] +=

(a) C code (single core)

Execute
stream
code

(b) Stream-Join Dataflow Graph

(c) Parallel Stream Code(d) Hardware Mapping

Linear
streams

Addr.
Gen.

ALU array
Crossbar

Addr.
Gen.

ALU array
Crossbar

Cmp

+

Filter
reuse reusec c

<, ==, >

const =
 grad_hist[0]

hist_addr

Filter

strm
grad

hist_update

reuse

c

transform

Main Memory

setup
dataflow

strm
grad_hist

To/From Network

node_ind[p][0:n],

 grad[0:n]

Local
Memories

Indirect Update
Stream

Remote
Mem.&
Network

Figure 13: Example SPUProgramTransformation: GBDT (Each core
gets a subset of features to process i.e. fid=tid)

Programming Model: Programming SPU involves the following
tasks: 1. partitioning work to multiple cores and data to the scratch-
pads to preserve locality, 2. extracting the dataflow graph, and possi-
bly re-writing data-dependent control as a stream-join, 3. extracting
streaming memory accesses, and 4. inserting communication/syn-
chronization.

In terms of programming abstractions, an SPU’s program con-
sists of a dataflow graph language describing the computation
(compiled to DGRA), along with a control program which contains
the commands for streams (similar to stream-dataflow [65]). When
a control program is instantiated, it is made aware of its spatial
location, for efficient communication with its neighbors.
Example Program: To explain how to map programs to SPU ab-
stractions, we use the example of GBDT in Figure 13. We show the
key kernel of this workload, which is a histogram over sparse lists.
Figure 13(a) shows the original kernel’s C code. Figure 13(b) shows
the extracted stream-join dataflow, and (c) shows the control pro-
gram where memory accesses are represented as streams, which is
expressed as C + intrinsics. Each stream loads (or stores) data to an
input (or output) in the dataflow. Figure 13(d) shows how the SPU
program is mapped to hardware for this algorithm. In hardware,
the stream code executes on the control core, which creates streams
to be executed on the scratchpad controller. In turn, the controller
will deliver/receive data to/from the DGRA compute unit, which
executes the dataflow.

The basic parallelization strategy is that each SPU core inde-
pendently builds histograms corresponding to its allotted subset of
features. As for how memory is distributed, the dataset is stored
in main memory in sparse CSR format (feat_ind and feat_val). Ac-
cessing these requires linear memory streams. The linear scratch-
pads store the subset of instances which belong to the current
working node. As node indices are common across all features, the

931

Towards General Purpose Acceleration by Exploiting Common Data-Dependence Forms MICRO’19, October 12-16, 2019, Columbus, OH, USA

Mech./
Wkld

Indirect
memory

Stream join Work partition
across cores

Synchronization

M
ac
hi
ne

Le
ar
ni
ng

(M
L)

GBDT Create fea-
ture his-
togram

Join train inst
subset

Split features Hierarch. reduce
+ broadcast

KSVM — Matrix-mult
for error calc

Split training
instances

Hierarch. reduce
+ broadcast

AC Read + up-
date child
parameters

— Split DAG levels Pipelined commu-
nication

FC Accumulate
activations

Resparsify Split weight
matrix rows

Broadcast of i/p
activations

CONV Accumulate
activations

Resparsify Split weight
matrix rows

Nearest neighbor
comm.

D
at
ab

as
e

Merge
Sort

— Merge of 2
sorted lists

Uniform partition Hierarchical
Merge

Hash
Join

Cuckoo hash
lookup

— Smaller col repli-
cated

Barrier until each
core completes

Sort
Join

— Join sorted
lists

Equal-range
partition

Same as above

G
ra
ph

Page
Rank

Accumulate
vert. rank

— All vertices Remote ind. ’add’
update

BFS Relax vert.
distance

— Active vertices Remote ind. ’min’
update

Table 2: Mapping of Algorithms on SPU

corresponding data is broadcast across all cores. This is done in
synchronous phases: in each phase, the stream is loaded from a
predetermined core. Phases are not shown in the figure for brevity.

As for the dataflow, stream-join is used to iterate sparse feature
indices and the indices generated due to subsetting the data at each
decision tree node.

Indirection is used for histogramming: the histogram address
and update values are produced in the dataflow, which are then
consumed by the indirect update stream. In hardware, the stream
is mapped to the indirect stream table in the scratchpad controller.
Workload Mapping: Table 2 details how we map each algorithm
to the SPU architecture in terms of control, memory and communi-
cation ISA primitives, as well as the partitioning strategy.
Framework Integration:We envision that SPU can be targeted
from frameworks like TensorFlow [8], Tensor Comp. [97], TVM [21]
for machine learning, or from a DBMS or graph analytics frame-
work [3, 92]. For integration, a simple library-based approach can
be used, where programmers manually write code for a given ma-
chine learning kernel. This is the approach we take in this work.
Automated compilation approaches, eg. XLA [2] or RStream [78]
are also possible if extended for data-dependent algorithms.

6 METHODOLOGY

SPU:We implemented SPU’s DGRA in Chisel [13], and synthesized
using Synopsys DC with a 28nm UMC technology library. We use
Cacti [60] for SRAMs and other components. When comparing to
GPU power, we omit memory and DMA controllers. We built an
SPU simulator in gem5 [14, 84, 94], using a RISCV ISA [11] for the
control core.
Architecture Comparison Points: Table 3 shows the characteris-
tics of the architectures we compare against, including their on-chip
memory sizes, FU composition, and memory bandwidth. As for
SPU, we provisioned the size of the DGRA to match the combined
throughput of the scratchpads. We provisioned the total amount

Characteristics GPU [27] SPU-inorder SPU

Processor GP104 in-order SPU-core
Cache+Scratch 4064KB 2560KB 2560KB
Cores 1792 512 64 SPU cores
FP32 Unit 3584 2048 2432
FP64 Unit 112 512 160
Max Bw 243GB/s 256GB/s 256GB/s

Table 3: Architecture characteristics of GPU, SPU-inorder and SPU

Workloads CPU GPU

GBDT LightGBM [49] LightGBM [49]
Kernel-SVM LibSVM [18] hand-written [12]
AC hand-written [87] hand-written [87]
FC Intel MKL SPBLAS [1] cuSPARSE [61]
Conv layer Intel MKL-DNN [4] cuDNN [24]
Graph Alg. Graphmat [92] -
TPCH MonetDB [15] -

Table 4: Baseline workload implementations

Dataset Size Density Dataset Size Density

GBDT Cifar10-bn 50k,3k 1 Yahoo-bn 723k,136 0.05
#inst,#feat. Higgs-bn 10M,28 0.28 Ltrc-bn 34k,700 0.008
KSVM Higgs 10M,28 0.92 Connect 67k,700 0.33
#inst,#feat. Yahoo 723k,136 0.59 Ltrc 34k,700 0.24
CONV Vgg-3 802k,73k 0.47,0.4 Vgg-4 1.6M,147k 0.4,0.35
#act,#wgt Alex-2 46k,307k 0.68,0.17 Res-1 150k,9.4k 0.99,0.1
FC Res-fc 512,512k 0.26,0.84 Vgg-13 4K,16.8M 0.14,0.3
#act,#wgt Alex-6 9K,37.7M 0.29,0.09 Vgg-12 25k,103M 0.42,0.06
AC Pigs 622k NA Munin 3.1M NA
#nodes Andes 727k NA Mildew 3.7M NA
Graph Flickr 820K,9.8M 0.000015 NY-road 260K,730K 0.00005
#node,#edge Fb-artist 50K,1.63M 0.0064 LiveJournal 4.8M,68.9M 0.000003

Table 5: Datasets

of memory on-chip for the working-sets of ML workloads, as they
were our primary focus; this has some impact on workloads which
have large working-sets and are expensive to tile.

As for comparison to real hardware, the GPU is the most rel-
evant. We choose the NVIDIA P4000, as it has a slightly larger
total throughput and similar memory bandwidth to SPU. We do
not include CPU-GPU data-transfer time.

We also address whether an inorder processor is sufficient by
comparing against "SPU-inorder", where the DGRA is replaced by
an array of 8 inorder cores (total of 512 cores). For reference, we
also compared against a dual socket Intel Skylake CPU (Xeon 4116),
with 24 total cores.
Workload Implementations: We implement SPU kernels for
each workload, and use a combination of libraries and hand-written
code to compare against CPU/GPU versions. We compared against
the best implementation (that we were aware of) for each workload
on real hardware (Table 4). We implement kernels using both
dense and sparse data-structures wherever possible (shown as
SPU-dense/sparse).

Our choice of modest on-chip memory affects the implemen-
tations of graph processing and database workloads. For process-
ing larger graphs, we follow a similar technique as proposed in
Graphicionado [39] to split the graph into "slices" that fit in on-
chip memory. Edges with a corresponding vertex in another slice
are instead connected to a copy of that vertex; duplicates are kept
consistent. An architecture with a larger on-chip memory (such
as Graphicionado [39], which has 32MB on-chip memory) means

932

MICRO’19, October 12-16, 2019, Columbus, OH, USA Dadu et al.

cif-b
1.0

hig-b
0.28

yahoo-b
0.05

ltrc-b
0.008

GM
1

101

No
rm

al
ize

d
Sp

ee
du

p

GBDT

pigs andes muninmildew GM

AC

higgs
0.85

yahoo
0.59

connect
0.33

ltrc
0.24

GM

KSVM

CPU GPU-dense GPU-sparse SPU-inorder SPU-dense SPU-sparse

Figure 14: Performance on GBDT, KSVM, AC. (Computation density under benchmark name)

PR BFS GM

Graph Alg.

N-SH SH GM

Databases

FC CONV KSVM AC GBDT GM
1

101

102

No
rm

al
ize

d
Sp

ee
du

p

Machine Learning
CPU GPU SPU-inorder SPU ASIC

Figure 15: Overall Performance

less duplicates, and less overhead. The tradeoff is also relevant for
database workloads. Hash-joins require the hash-table to fit on-chip
to perform well.
Benchmarks: We used the datasets specified in Table 5. The un-
compressed DNN model is obtained from Pytorch model zoo and
the compression is done as described in [41] using distiller [6].
Domain-Specific Accelerator Modeling: We model all domain-
specific accelerators using optimistic models appropriate to the
domain, always considering memory and throughput limitations
of actual data.
(1) SCNN [72]: We use a compute-bound model of SCNN accord-

ing to the dataset density, assuming no pipeline overhead be-
sides memory conflicts.

(2) EIE [40]:Mechanistic model of EIE at maximum throughput.
We compare against the scaled version of EIE with 256 cores.

(3) Graphicionado [39]:Wemodeled a cycle-level approximation
of its pipeline stages. We also compare against a version of this
accelerator with the same peak-memory bandwidth as SPU by
scaling Graphicionado to 32-cores and 32x32 crossbar.

(4) Q100 [106]: For fair comparison to Q100, we restrict SPU to 4
cores (approximately the same area as Q100). We hand-coded
query plans for Q100, specified as a directed acyclic graph in
which each node indicates a database operation (join, sort, etc.)
supported by the Q100 hardware, and edges indicate producer-
consumer dependencies. Our model of Q100 is an optimistic
execution of this query plan under memory and compute band-
width constraints, which we verified against baseline execution
time and speedups given by Q100’s authors. This query plan
is used as a reference for the SPU version, so SPU and Q100
implement the same algorithm as much as possible.

VGG-3
0.34

Alex-2
0.14

VGG-4
0.1

Res-1
0.05

GM

CONV

Res-1
0.22

Alex-6
0.16

VGG-13
0.09

VGG-12
0.04

GM

1

101

102

No
rm

al
ize

d
Sp

ee
du

p

FC
CPU
GPU-dense

GPU-sparse
SPU-inorder

SPU-dense
SPU-sparse

EIE-256/SCNN

Figure 16: Performance on DNN. (Compute density under bench name)

7 EVALUATION
Our evaluation broadly addresses the question of whether data-
dependencies exposed to an ISA (and exploited in hardware) can
help achieve general-purpose acceleration. Here are the key take-
aways, in part based on the overall performance results in Figure 15.
(1) SPU achieves high speedup over CPUs (for ML:16.5×,

Graph:14.2× and DB:10.3×), and GPUs (ML:3.87×).
(2) Performance is competitive with domain-accelerators.
(3) Relying on inorder cores only for supporting data-dependence

is insufficient.
(4) Architectural generality provides the flexibility to choose algo-

rithmic variants depending on the algorithm and dataset.

7.1 Performance on Machine Learning
Here we discuss the per-workload performance results on ML work-
loads, the breakdown for GBDT/KSVM/AC is in Figure 14 and for
DNN is in Figure 16. During our analysis, we refer to Figure 17,
which describes the utilization of compute, scratchpad, network,
and memory within SPU.
GBDT: Both GPUs and SPUs use a histogram-based approach, but
SPU’s aggressive reordering of indirect updates in the compute-
enabled scratchpad far outperforms the limited reordering which
GPUs can perform within a vector request. Further, SPU makes ef-
ficient use of multicast for communication of gradients. SPU-dense
outperforms GPU dense, because histogramming is still required
even with dense datasets. On a highly dense dataset like cifar, SPU-
dense outperforms SPU sparse because of the extra bandwidth
consumed by sparse data structures, which is an example of the
benefit of having a flexible architecture.
KSVM: SPU’s network enables efficient broadcast and reduction.

933

Towards General Purpose Acceleration by Exploiting Common Data-Dependence Forms MICRO’19, October 12-16, 2019, Columbus, OH, USA

FC CONV GBDT KSVM AC PR BFS0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
so

ur
ce

 U
til

iza
tio

n comp_util spad_bw_util net_bw_util mem_bw_util

Figure 17: SPU Bottleneck on Machine Learning/GraphWorkloads.

Since the dense version of KSVM is quite regular and the datasets
are not sufficiently sparse, SPU-dense is generally better than its
sparse version.
Arithmetic Circuits: AC heavily uses indirect memory in the
DAG traversal and data-dependent control (actions depend on node
type) that we support efficiently. SPU’s network enables efficient
communication for model parallelism, which would otherwise need
to go through global memory on a GPU.
Sparse Fully Connected Layers: Figure 16 shows the per-
workload performance for DNN. Using the alias-free indirection
approach, we achieve high hardware utilization of the compute-
enabled scratchpad. SPU outperforms GPU-sparse because it can
also exploit dynamic sparsity of activations using stream-join.

Domain-accelerator Comparison: Compared to the EIE accelerator,
SPU devotes more area to computation bandwidth and for providing
high-throughput access to banked scratchpad, thus attaining similar
performance at around half the area. Since the primary design goal
of EIE is energy, it stores all weights in SRAM to save DRAM access
energy; SPU trades-off lower area for higher energy.
Sparse Convolution: The best GPU algorithm was a dense
winograd-based CNN. SPU is able to save computations by
exploiting sparsity through the outer-product convolution using
indirect memory, and dynamic resparsification.

Domain-accelerator Comparison: The performance of SPU on av-
erage is 0.76× that of SCNN. This is due to bandwidth sharing of the
compute-enabled-memory scratchpad between computation and
re-sparsification, whereas SCNN uses a separate non-configurable
datapath. The performance difference increases for layers where
re-sparsification is more intense. While comparing area is difficult,
a simple scaling of SCNN’s area suggests only 1.5× higher area for
SPU (Section 7.5), a small price for significant generality.
SPU’s Performance Bottleneck: Figure 17 shows the utilization
for primary bottlenecks in SPU. Bank conflicts are the bottleneck for
DNN workloads, and the effect is reduced for the fully-connected
layer. GBDT is bottlenecked by scratchpad and memory bandwidth.
Since AC uses model parallelism, it is bottlenecked by the network.

7.2 Performance on Graph and Databases
Here we discuss the per-workload performance results on graph
(Figure 18) and database (Figure 19) domains.
GraphWorkloads: SPU specializes the alias-free indirect updates
to the destination vertices which would otherwise both be stalled
due to load-store dependencies, and limited by inefficient bandwidth
utilization due to accessing whole cache line for single accesses.

Flickr
9.8M

Fb-artist
1.64M

NY-road
0.73M

GM

BFS

Flickr
9.8M

Fb-artist
1.64M

LJ
69M

GM

1

101

102

No
rm

al
ize

d
Sp

ee
du

p

PR
CPU SPU Graphicionado Graphicionado-32

Figure 18: Performance on PR, BFS. (Edges under benchmark name)

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
10

q
15

q
16

q
17

G
M

1

101

102

N
or

m
al

iz
ed

S
p

ee
du

p

CPU

SPU Dense

SPU Sparse (Join Only)

SPU Sparse (Join + Ind.)

Q100

Figure 19: TPCH Performance comparison

For SPU, the network experiences high traffic because of remote
indirect updates (Figure 17).

Domain-accelerator Comparison: While the designs are quite dif-
ferent, SPU’s performance is similar to Graphicionado (8-cores) as
it is exploiting similar parallelism strategies: both have a way to
efficiently execute indirect memory access on a globally-addressed
scratchpad. Even for the scaled-up version of Graphicionado (32-
cores), it only exceeds SPU slightly for road graph due to the net-
work contention on SPU’s mesh. LiveJournal graph is an example
where the graph fits in on-chip memory of Graphicionado but
needs to be broken in 10 slices to be able to run on SPU. Here,
SPU is 57% slower than the scaled-up Graphicionado due to both
network contention and extra memory accesses for vertices which
are duplicated while slicing.
TPCH Queries: Our primary goal in evaluating TPCH was to
demonstrate generality. Figure 19 shows the per-query speedups
of a 4-core SPU versus Q100, with three versions. SPU-dense al-
lows only data-dependent discards (no joins or indirect memory
on CGRA). Here, Joins and Sorts are performed on the control core.
SPU-sparse (Join only) adds support for using the compute fabric
for accelerating Sort (using merge-sort) and Join. When indirect-
memory support is added, we additionally support hash-join if
the smaller column fits within the scratchpad. With indirection
enabled, we use a sort algorithm which applies radix-sort locally
within local scratchpads, then use a merge-sort to aggregate across
cores. Compared to CPU, SPU is significantly faster (10×), which is
sensible given the significant data-dependence in queries, which
serializes CPU execution.

Domain-accelerator Comparison: In queries which are non-sort
heavy (Q1,Q2,Q6), the dense version of SPU performs adequately,
and similar to the accelerator. On sort-heavy queries, stream-join
within DGRA significantly reduces computation overhead, allowing
SPU to catch up to Q100. Indirect access support helps to slightly
improve sort’s performance. Hash joins are significantly faster, but

934

MICRO’19, October 12-16, 2019, Columbus, OH, USA Dadu et al.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Density

10-1

100

101

102

103

No
rm

al
ize

d
sp

ee
du

p

CPU-dense
CPU-sparse
GPU-dense

GPU-sparse
SPU-dense

SPU-sparse-SJ
SPU-sparse-AF-Ind

Figure 20: Performance Sensitivity (Matrix Multiply, dim: 9216×4096)

do not contribute much to speedup due to limited applicability
(because of limited scratchpad size).

7.3 Sensitivity to Dataset Density
We demonstrate that it is useful to have both non-data-dependent
and data-dependent support by studying performance sensitivity
of a FC layer (Alex-6). Specifically we vary the dataset density with
synthetic data, assuming uniform distribution of non-zero values.
Figure 20 shows the performance comparison of different architec-
tures executing matrix-vector multiply using dense and sparse data
structures. At densities lower than 0.5, sparse versions perform
better as they avoid superfluous computation and memory access.
However, for densities greater than 0.5, extra memory accesses due
to using sparse data-structures reduces the benefit.

As for the different sparse implementations for SPU, alias-free
indirection outperforms stream-join at low densities, because it can
avoid unnecessary index loads. Their performance converges at
higher densities when this overhead is relatively less important.
We observe that for the problems which can be expressed using
indirection or stream-join, it is often the case that indirection works
better. We believe this is the reason why recent accelerators which
exploit sparsity use alias-free indirection [39, 40, 72]. However,
there are kernels which might have an algorithmic advantage when
expressed as a stream-join (examples in Table 1, Page). Indirection
can also be inferior if there is not enough on-chip memory to hold
the working-set, especially if the data is difficult to tile effectively.

7.4 Benefit of Decomposability
The speedup from decomposability is given below in Table 6.

Alg. GBDT Conv. FC KSVM AC BFS PR
Speedup 2.27 2.67 2.67 2 3 2 1

Table 6: Perf. Speedup With Adding Decomposability

To explain, GBDT uses 16-bit datatypes and gets 2.27× speedup,
because although we can increase the compute throughput by 4,
memory bandwidth becomes a bottleneck. Conv, and FC use 16-bit
datatypes, but only see a 2.6× improvement: although the mul-
tiplications could be done using subword-SIMD alone, decoding
run-length encoding of indices involves control serializing computa-
tion, which needs decomposability. AC involves various bitwidths

Area (mm2) Power (mW)

Control Core 0.041 10.1
SRAM (banked+linear) 0.196 21.2
Data Vector ports 0.012 1.4
Scratchpad Controller 0.094 18.1

Network 0.107 130.2
DGRA FUs (4x5) 0.124 115.9

Total DGRA 0.230 246.1

1 SPU Total 0.573 297.0

Table 7: Area and Power breakdown for SPU (28nm)

64 bits
Trad.

32bits
Trad.

16bits
Trad.

8bits
Trad.

64 bits
Meta-R

32bits
Meta-R

16bits
Meta-R

8bits
Meta-R

30k

60k

90k

120k

Ar
ea

 (u
m
2
)

0

40

80

120

160

Po
we

r C
on

su
m

pt
io

n
(m

W
)Area (¹m2)

Power (mW)

Figure 21: DGRA Area and Power Sensitivity

(ranging from 1-bit boolean to 32-bit fixed point) coupled with
control flow. As DGRA allows bitwidths as small as 8-bit, we can
merge instructions with smaller bitwidths even if their control
flow is different, to achieve 3× throughput. As BFS and KSVM use
32-bit datatypes, they can be fully combined using DGRA, for 2×
improvement.

7.5 Area and Power

Sources of area and power: Table 7 shows the sources of area
and power for SPU at 28nm. The two major sources of area are the
scratchpad banks and DGRA, together occupying more than 2/3 of
the total; DGRA is the major contributor to power (assuming all
PEs are active).
Overhead with decomposability: Figure 21 shows the power
and area cost of implementing the stream-join control and decom-
posability (simplest design is a standard 64-bit systolic CGRA). The
stream-join control model costs about 1.7× area and power, and this
is mostly due the complexity of dynamic flow control (rather than
the control table). On top of this, decomposability costs around
1.2× area and power. Overall these are reasonable overheads given
the performance benefits.
SPU’s power and area comparison to the GPU: Estimates be-
low show SPU has 4× lower power.

Alg. GBDT Conv. FC KSVM AC
SPU (W) 21.16 20.73 21.18 21.43 16.48
GPU (W) 84.87 84.02 84.92 85.42 75.60

8 RELATEDWORK
Table 8 gives a high-level overview of how we position SPU relative
to select related work. In general, domain-specific accelerators
target up to one form of data-dependence, while SPU has efficient
support for both, and a domain-agnostic interface.

935

Towards General Purpose Acceleration by Exploiting Common Data-Dependence Forms MICRO’19, October 12-16, 2019, Columbus, OH, USA

Architecture Domain Stream-
Join

Alias-free
Ind.

Non-data-
dependent

Scnn/EIE[40, 72] Sparse-NN - Very-High -
Q100 [106] DB Very-High - -
Graphicion. [39] Graph Alg. - Very-High -
Sparse ML [59] Sparse-MM Very-High - -
PuDianNao [54] NN - - Very-High
Outersp [70] Sparse-MM - Very-High -
LSSD [66] Agnostic Low Low Very-high
Plasticine [76] Agnostic - High Very-high
SPU (ours) Agnostic Very-

High
Very-
High

Very-
High

VT [52, 53] Agnostic High High High
Dataflow [16, 93] Agnostic Medium Medium High
GPU Agnostic Low Medium High
CPU Agnostic Low Medium Medium

Table 8: Analysis of Related Works (roughly least to most general)

Domain-specific Accelerators: Pudiannao [54] is an accelerator
for multiple dense ML kernels. Several designs specialize sparse-
matrix computations, including many for FPGAs [34, 38, 111].
Nurvitadhi et al. propose a sparse-matrix accelerator specialized
for SVM [68]. Mishra et al. develop an in-core accelerator for sparse
matrices, and demonstrate generality to many ML workloads [59].

From the database accelerator domain, we draw inspiration from
Q100’s ability to perform pipelined join and filtering [106] to cre-
ate our general purpose stream-join model. DB-Mesh [17] is a
systolic-style homogeneous array for executing nested-loop joins.
WIDX [50] is database index accelerator focusing on indirect mem-
ory access. UDP [32] targets encoding and compression workloads,
which both express data-dependence.
Domain-agnostic Vector Accelerators: Vector-threads (VT)
architectures [52, 53, 82] have a flexible SIMD/MIMD execution
model, where vector lanes can be decomposed into independent
lanes to enable parallel execution for data-dependent codes.
(GANAX [107] applies some of the same principles, but is
specialized to ML). VT does not have spatial abstractions for
computation, which SPU uses to expose an extra dimension of
parallelism: pipeline parallelism. For example on VT, stream-joins
would not execute at one item per cycle due to instruction
overhead, but these computations can be pipelined on SPU. There
are other less fundamental differences like SPU’s support for
programmer-controlled scratchpads with global address space.
Domain-agnostic Spatial Architectures: LSSD is a domain-
agnostic multi-tile accelerator with CGRAs and simple control
cores [66]. However, it lacks support for data-dependent control or
memory, so is far less general.

General spatial-dataflow architectures (eg. WaveScalar [93],
TRIPS [16]) can perform stream joins, but at much lower through-
put (due to control dependence loop, see Figure 4). Triggered
instructions [71] and Intel’s CSA [104] can perform pipelined
stream-joins, but require much more complex non-systolic PEs
(>3× higher area [81]), and are also not capable of decomposability.
They are also not specialized for alias-free indirection, and require
parallel dependence checking. In concurrent work, Master of
None [55] proposes a programmable systolic-style homogeneous
reconfigurable array that can execute general database queries, as

well as pipelined stream-join through a dedicated control network.
Plasticine [76, 77] is a tiled spatial architecture, composed of

SIMD compute tiles and scratchpad tiles. Plasticine does not support
stream-join dataflow, so would not be able to efficiently execute al-
gorithms with this form of control-dependence. Plasticine also does
not have compute-enabled globally-addressed scratchpads for high-
bandwidth atomic update and flexible data sharing. Plasticine uses
a parallel pattern programming interface [51, 75], while SPU pro-
vides a general purpose dataflow ISA, based on stream-dataflow [65].
While lower-level, SPU’s ISA can more flexibly implement various
computation/communication patterns. Recent work demonstrates
efficient hash-joins for Plasticine [89]; such techniques could im-
prove the performance and applicability of hash-joins in SPU.

Finally, lower precision control divergence is not supported in
these architectures; SPU has the strongest support for arbitrary
datatypes through its decomposable CGRA and memory. Note that
while decomposability has been applied in other contexts, e.g. sup-
porting multiple datatypes on a domain-specific CGRA [46, 86],
we believe we are the first to apply decomposability to preserve
independent flow-control.
General Purpose Processor Specialization: The decoupled-
stream ISA [101] allows expression of decoupled indirect streams
for general-purpose ISAs. It also enables decoupling of memory
from control flow in stream-joins. However, it does not specialize
for the stream-join computation or high-bandwidth indirect access.

9 CONCLUSION
This work identifies two forms of data-dependence which are
highly-specializable and are useful enough to be applicable to a va-
riety of algorithms. By defining a specialized execution model and
codesigned hardware, we enabled efficient acceleration of a large
range of workloads. Overall, we observed up to order-of-magnitude
speedups and significant power reductions compared to modern
CPUs and GPUs, while remaining flexible.

More broadly, this work shows that data-dependence does not
necessitate fixed-function hardware or massive arrays of inorder
processors – many algorithms are fundamentally data-parallel and
can be specialized provided the right architecture abstractions. We
believe that an important implication of this work could be to
inspire the communities in different domains (eg. machine learning
and databases) to explore the use of less regular data-structures
and novel algorithms with codesigned hardware.

10 ACKNOWLEDGMENTS
We would like to thank Guy Van den Broeck and Arthur Choi for
their insights and help with Arithmetic Circuits workloads. We
would also like to thank David Ott and Pratap Subrahmanyam for
their thoughtful conversations on the nature of irregularity and
data-dependence. This work was supported by an NSF CAREER
award CCF-1751400, as well as gift funding from VMware.

REFERENCES
[1] [n. d.]. Intel Math Kernel library. [Online]. Available:

http://software.intel.com/en-us/intel-mkl.
[2] [n. d.]. XLA: Domain-specific compiler for linear algebra to optimizes tensorflow

computations. https://www.tensorflow.org/performance/xla
[3] 2013. Ligra: A Lightweight Graph Processing Framework for Shared Memory.

In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice

936

https://www.tensorflow.org/performance/xla

MICRO’19, October 12-16, 2019, Columbus, OH, USA Dadu et al.

of Parallel Programming (PPoPP ’13). ACM, New York, NY, USA, 135–146. https:
//doi.org/10.1145/2442516.2442530

[4] 2016. Intel(R) Math Kernel Library for Deep Neural Networks.
"https://github.com/01org/mkl-dnn".

[5] 2017. Everything You Always Wanted to Know About Multicore Graph Pro-
cessing but Were Afraid to Ask. In Proceedings of the 2017 USENIX Conference
on Usenix Annual Technical Conference (USENIX ATC ’17). USENIX Associa-
tion, Berkeley, CA, USA, 631–643. http://dl.acm.org/citation.cfm?id=3154690.
3154750

[6] 2017. Neural Network Distiller by Intel AI Lab.
"https://github.com/NervanaSystems/distiller".

[7] T. M. Aamodt, W. W. L. Fung, T. G. Rogers, and M. Martonosi. 2018. General-
Purpose Graphics Processor Architecture. Morgan & Claypool. https://ieeexplore.
ieee.org/document/8363085

[8] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A System for Large-scale Machine
Learning. In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation (OSDI’16). USENIX Association, Berkeley, CA, USA,
265–283. http://dl.acm.org/citation.cfm?id=3026877.3026899

[9] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. 2015. A scalable processing-
in-memory accelerator for parallel graph processing. In 2015 ACM/IEEE 42nd
Annual International Symposium on Computer Architecture (ISCA). 105–117.
https://doi.org/10.1145/2749469.2750386

[10] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos.
2016. Cnvlutin: Ineffectual-Neuron-Free Deep Neural Network Computing. In
2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture
(ISCA). 1–13. https://doi.org/10.1109/ISCA.2016.11

[11] Krste Asanović and David A Patterson. 2014. Instruction sets should be free:
The case for risc-v. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2014-146 (2014).

[12] Andreas Athanasopoulos, Anastasios Dimou, Vasileios Mezaris, and Ioannis
Kompatsiaris. 2011. GPU acceleration for support vector machines. In Procs. 12th
Inter. Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS
2011), Delft, Netherlands.

[13] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. 2012. Chisel: Construct-
ing Hardware in a Scala Embedded Language. In Proceedings of the 49th Annual
Design Automation Conference (DAC ’12). ACM, New York, NY, USA, 1216–1225.
https://doi.org/10.1145/2228360.2228584

[14] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. SIGARCH Comput. Archit.
News (2011).

[15] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-
Pipelining Query Execution.. In Cidr, Vol. 5. 225–237.

[16] Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin, Lizy K.
John, Calvin Lin, Charles R. Moore, James Burrill, Robert G. McDonald, William
Yoder, and the TRIPS Team. 2004. Scaling to the End of Silicon with EDGE
Architectures. Computer 37, 7 (July 2004), 44–55. https://doi.org/10.1109/MC.
2004.65

[17] Bingyi Cao, Kenneth A. Ross, Stephen A. Edwards, and Martha A. Kim. 2017.
Deadlock-free joins in DB-mesh, an asynchronous systolic array accelerator.
In Proceedings of the 13th International Workshop on Data Management on New
Hardware, DaMoN 2017, Chicago, IL, USA, May 15, 2017. 5:1–5:8. https://doi.org/
10.1145/3076113.3076118

[18] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support
vector machines. ACM transactions on intelligent systems and technology (TIST)
2, 3 (2011), 27.

[19] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji
Chen, and Olivier Temam. 2014. DianNao: A Small-footprint High-throughput
Accelerator for Ubiquitous Machine-learning. In Proceedings of the 19th In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’14). ACM, New York, NY, USA, 269–284.
https://doi.org/10.1145/2541940.2541967

[20] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. ACM, 785–794.

[21] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated end-to-end optimizing compiler for deep learning. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 578–594.

[22] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li,
Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2014. DaDianNao: A

Machine-Learning Supercomputer. In Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO-47). IEEE Computer Soci-
ety, Washington, DC, USA, 609–622. https://doi.org/10.1109/MICRO.2014.58

[23] Yu-Ting Chen, Jason Cong, Jie Lei, and PengWei. 2015. A novel high-throughput
acceleration engine for read alignment. In 2015 IEEE 23rd Annual International
Symposium on Field-Programmable Custom Computing Machines. IEEE, 199–202.

[24] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

[25] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, Kent Moat, Jim Norris,
Michael Schuette, and Ali Saidi. 2003. The Reconfigurable Streaming Vector
Processor (RSVP). In Proceedings of the 36th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO 36). IEEE Computer Society, Washington,
DC, USA, 141–. http://dl.acm.org/citation.cfm?id=956417.956540

[26] Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou. 2014. A
fully pipelined and dynamically composable architecture of CGRA. In Field-
Programmable Custom Computing Machines (FCCM), 2014 IEEE 22nd Annual
International Symposium on. IEEE, 9–16.

[27] NVIDIA Corp. [n. d.]. GeForce GTX 1080 Whitepaper.
[28] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and H. Yang.

2019. GraphH: A Processing-in-Memory Architecture for Large-Scale Graph
Processing. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 38, 4 (April 2019), 640–653. https://doi.org/10.1109/TCAD.2018.
2821565

[29] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, and O.
Temam. 2015. ShiDianNao: Shifting vision processing closer to the sensor. In
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA). 92–104. https://doi.org/10.1145/2749469.2750389

[30] A. Duran and M. Klemm. 2012. The Intel Many Integrated Core Architec-
ture. In High Performance Computing and Simulation (HPCS), 2012 International
Conference on.

[31] Yuanwei Fang, Tung T. Hoang, Michela Becchi, and Andrew A. Chien. 2015. Fast
Support for Unstructured Data Processing: The Unified Automata Processor. In
Proceedings of the 48th International Symposium onMicroarchitecture (MICRO-48).
ACM, New York, NY, USA, 533–545. https://doi.org/10.1145/2830772.2830809

[32] Yuanwei Fang, Chen Zou, Aaron Elmore, and Andrew Chien. 2016. UDP: A
Programmable Accelerator for Extract-Transform-Load Workloads and More.
In 2017 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO).

[33] J. Fowers, J. Y. Kim, D. Burger, and S. Hauck. 2015. A Scalable High-Bandwidth
Architecture for Lossless Compression on FPGAs. In 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing Machines.
52–59. https://doi.org/10.1109/FCCM.2015.46

[34] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S Chung, and Greg Stitt.
2014. A high memory bandwidth fpga accelerator for sparse matrix-vector
multiplication. In Field-Programmable Custom Computing Machines (FCCM),
2014 IEEE 22nd Annual International Symposium on. IEEE, 36–43.

[35] Adi Fuchs and David Wentzlaff. 2019. The accelerator wall: Limits of chip spe-
cialization. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 1–14.

[36] Daichi Fujiki, Aran Subramaniyan, Tianjun Zhang, Yu Zeng, Reetuparna Das,
David Blaauw, and Satish Narayanasamy. 2018. GenAx: A genome sequenc-
ing accelerator. In Proceedings of the 45th Annual International Symposium on
Computer Architecture. IEEE Press, 69–82.

[37] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Na-
dathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. 2012. DySER:
Unifying Functionality and Parallelism Specialization for Energy-Efficient Com-
puting. IEEE Micro 32, 5 (Sept. 2012), 38–51. https://doi.org/10.1109/MM.2012.51

[38] Paul Grigoraş, Pavel Burovskiy, Wayne Luk, and Spencer Sherwin. 2016. Op-
timising Sparse Matrix Vector multiplication for large scale FEM problems on
FPGA. In Field Programmable Logic and Applications (FPL), 2016 26th Interna-
tional Conference on. IEEE, 1–9.

[39] T. J. Ham, L.Wu, N. Sundaram, N. Satish, andM.Martonosi. 2016. Graphicionado:
A high-performance and energy-efficient accelerator for graph analytics. In 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
1–13. https://doi.org/10.1109/MICRO.2016.7783759

[40] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed
Deep Neural Network. In Proceedings of the 43rd International Symposium on
Computer Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 243–254.
https://doi.org/10.1109/ISCA.2016.30

[41] Song Han, Jeff Pool, John Tran, and William J. Dally. 2015. Learning Both
Weights and Connections for Efficient Neural Networks. In Proceedings of the
28th International Conference on Neural Information Processing Systems - Volume
1 (NIPS’15). MIT Press, Cambridge, MA, USA, 1135–1143. http://dl.acm.org/
citation.cfm?id=2969239.2969366

[42] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril,
Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro,

937

https://doi.org/10.1145/2442516.2442530
https://doi.org/10.1145/2442516.2442530
http://dl.acm.org/citation.cfm?id=3154690.3154750
http://dl.acm.org/citation.cfm?id=3154690.3154750
https://ieeexplore.ieee.org/document/8363085
https://ieeexplore.ieee.org/document/8363085
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://doi.org/10.1145/2749469.2750386
https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1109/MC.2004.65
https://doi.org/10.1109/MC.2004.65
https://doi.org/10.1145/3076113.3076118
https://doi.org/10.1145/3076113.3076118
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/MICRO.2014.58
http://dl.acm.org/citation.cfm?id=956417.956540
https://doi.org/10.1109/TCAD.2018.2821565
https://doi.org/10.1109/TCAD.2018.2821565
https://doi.org/10.1145/2749469.2750389
https://doi.org/10.1145/2830772.2830809
https://doi.org/10.1109/FCCM.2015.46
https://doi.org/10.1109/MM.2012.51
https://doi.org/10.1109/MICRO.2016.7783759
https://doi.org/10.1109/ISCA.2016.30
http://dl.acm.org/citation.cfm?id=2969239.2969366
http://dl.acm.org/citation.cfm?id=2969239.2969366

Towards General Purpose Acceleration by Exploiting Common Data-Dependence Forms MICRO’19, October 12-16, 2019, Columbus, OH, USA

et al. 2018. Applied Machine Learning at Facebook: A Datacenter Infrastruc-
ture Perspective. In High Performance Computer Architecture (HPCA), 2018 IEEE
International Symposium on. IEEE, 620–629.

[43] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and
Christopher W. Fletcher. 2018. UCNN: Exploiting Computational Reuse in Deep
Neural Networks via Weight Repetition. In Proceedings of the 45th Annual Inter-
national Symposium on Computer Architecture (ISCA ’18). IEEE Press, Piscataway,
NJ, USA, 674–687. https://doi.org/10.1109/ISCA.2018.00062

[44] T. Hussain, O. Palomar, O. Unsal, A. Cristal, E. AyguadÃľ, and M. Valero. 2014.
Advanced Pattern based Memory Controller for FPGA based HPC applications.
In 2014 International Conference on High Performance Computing Simulation
(HPCS). 287–294. https://doi.org/10.1109/HPCSim.2014.6903697

[45] James Jeffers, James Reinders, and Avinash Sodani. 2016. Intel Xeon Phi Processor
High Performance Programming: Knights Landing Edition. Morgan Kaufmann.

[46] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-
ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Ku-
mar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan
Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Ma-
hony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov,
Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard
Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter
Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA ’17). ACM,
New York, NY, USA, 1–12. https://doi.org/10.1145/3079856.3080246

[47] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos.
2016. Stripes: Bit-serial deep neural network computing. In 2016 49th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12.
https://doi.org/10.1109/MICRO.2016.7783722

[48] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron
King, Shuotao Xu, et al. 2015. Bluedbm: An appliance for big data analytics. In
2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture
(ISCA). IEEE, 1–13.

[49] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM:AHighly Efficient Gradient Boosting
Decision Tree. InAdvances in Neural Information Processing Systems 30, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.). Curran Associates, Inc., 3146–3154. http://papers.nips.cc/paper/6907-
lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf

[50] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. 2013. Meet the Walkers: Accelerating Index Tra-
versals for In-memory Databases. In MICRO.

[51] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Had-
jis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. 2018. Spatial: A Language and Compiler for Application
Accelerators. In Proceedings of the 39th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI 2018). ACM, New York, NY,
USA, 296–311. https://doi.org/10.1145/3192366.3192379

[52] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding, Brian
Pharris, Jared Casper, and Krste Asanovic. 2004. The Vector-Thread Architec-
ture. In Proceedings of the 31st Annual International Symposium on Computer
Architecture (ISCA ’04). IEEE Computer Society, Washington, DC, USA, 52–.
https://doi.org/10.1145/1028176.1006736

[53] Yunsup Lee, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart, Christo-
pher Batten, and Krste Asanović. 2011. Exploring the Tradeoffs Between Pro-
grammability and Efficiency in Data-parallel Accelerators. In Proceedings of the
38th Annual International Symposium on Computer Architecture (ISCA ’11). ACM,
New York, NY, USA, 129–140. https://doi.org/10.1145/2000064.2000080

[54] Daofu Liu, Tianshi Chen, Shaoli Liu, Jinhong Zhou, Shengyuan Zhou, Olivier
Teman, Xiaobing Feng, Xuehai Zhou, and Yunji Chen. 2015. PuDianNao: A
Polyvalent Machine Learning Accelerator. In ASPLOS.

[55] Andrea Lottarini, João P. Cerqueira, Thomas J. Repetti, Stephen A. Edwards,
Kenneth A. Ross, Mingoo Seok, and Martha A. Kim. 2019. Master of None
Acceleration: A Comparison of Accelerator Architectures for Analytical Query
Processing. In Proceedings of the 46th International Symposium on Computer
Architecture (ISCA ’19). ACM, New York, NY, USA, 762–773. https://doi.org/10.
1145/3307650.3322220

[56] L. McMurchie and C. Ebeling. 1995. PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs. In Third International ACM Sympo-
sium on Field-Programmable Gate Arrays. 111–117. https://doi.org/10.1109/
FPGA.1995.242049

[57] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauw-
ereins. 2003. ADRES: An architecture with tightly coupled VLIW processor
and coarse-grained reconfigurable matrix. In International Conference on Field
Programmable Logic and Applications. Springer, 61–70.

[58] X. Mei and X. Chu. 2017. Dissecting GPU Memory Hierarchy Through Mi-
crobenchmarking. IEEE Transactions on Parallel and Distributed Systems 28, 1
(Jan 2017), 72–86. https://doi.org/10.1109/TPDS.2016.2549523

[59] A. K. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce, and D. Marr. 2017. Fine-
grained accelerators for sparse machine learning workloads. In 2017 22nd Asia
and South Pacific Design Automation Conference (ASP-DAC). 635–640. https:
//doi.org/10.1109/ASPDAC.2017.7858395

[60] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A tool to model large caches. HP Laboratories (2009), 22–31.

[61] M Naumov, LS Chien, P Vandermersch, and U Kapasi. 2010. Cusparse library.
In GPU Technology Conference.

[62] Chris Nicol. 2017. A Coarse Grain Reconfigurable Array (CGRA) for Statically
Scheduled Data Flow Computing. WaveComputing WhitePaper (2017).

[63] Tony Nowatzki. 2017. Stream-dataflow public release. URL:
https://github.com/PolyArch/stream-dataflow (2017).

[64] Tony Nowatzki, Newsha Ardalani, Karthikeyan Sankaralingam, and Jian Weng.
2018. Hybrid Optimization/Heuristic Instruction Scheduling for Programmable
Accelerator Codesign. In Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques (PACT ’18). ACM, New York,
NY, USA, Article 36, 15 pages. https://doi.org/10.1145/3243176.3243212

[65] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-Dataflow Acceleration. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA ’17). ACM, New York,
NY, USA, 416–429. https://doi.org/10.1145/3079856.3080255

[66] Tony Nowatzki, Vinay Gangadhar, Karthikeyan Sankaralingam, and Greg
Wright. 2016. Pushing the limits of accelerator efficiency while retaining pro-
grammability. In 2016 IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). 27–39. https://doi.org/10.1109/HPCA.2016.7446051

[67] Tony Nowatzki, Michael Sartin-Tarm, Lorenzo De Carli, Karthikeyan Sankar-
alingam, Cristian Estan, and Behnam Robatmili. 2013. A General Constraint-
centric Scheduling Framework for Spatial Architectures. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’13). ACM, New York, NY, USA, 495–506. https://doi.org/10.
1145/2491956.2462163

[68] E. Nurvitadhi, A. Mishra, and D. Marr. 2015. A sparse matrix vector multiply
accelerator for support vector machine. In 2015 International Conference on
Compilers, Architecture and Synthesis for Embedded Systems (CASES). 109–116.
https://doi.org/10.1109/CASES.2015.7324551

[69] NVIDIA. 2017. NVIDIA TESLA V100 GPU ARCHITECTURE: THE WORLD’S
MOST ADVANCED DATA CENTER GPU. NVIDIA WhitePaper (2017). http:
//www.nvidia.com/object/volta-architecture-whitepaper.html

[70] S. Pal, J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti, H. Kim, D.
Blaauw, T. Mudge, and R. Dreslinski. 2018. OuterSPACE: AnOuter Product Based
Sparse Matrix Multiplication Accelerator. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 724–736. https://doi.org/
10.1109/HPCA.2018.00067

[71] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal
Crago, Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer
Jaleel, Randy Allmon, Rachid Rayess, Stephen Maresh, and Joel Emer. 2013.
Triggered Instructions: A Control Paradigm for Spatially-programmed Archi-
tectures. In Proceedings of the 40th Annual International Symposium on Com-
puter Architecture (ISCA ’13). ACM, New York, NY, USA, 142–153. https:
//doi.org/10.1145/2485922.2485935

[72] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An Accelerator for Compressed-sparse Con-
volutional Neural Networks. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA,
27–40. https://doi.org/10.1145/3079856.3080254

[73] Hyunchul Park, Kevin Fan, Scott A. Mahlke, Taewook Oh, Heeseok Kim, and
Hong-seok Kim. 2008. Edge-centric modulo scheduling for coarse-grained
reconfigurable architectures. In Proceedings of the 17th international conference
on Parallel architectures and compilation techniques (PACT ’08). 166–176. https:
//doi.org/10.1145/1454115.1454140

[74] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant Totla,
Sarah Chasins, and Rastislav Bodik. 2014. Chlorophyll: Synthesis-aided Compiler
for Low-power Spatial Architectures. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’14).
ACM, New York, NY, USA, 396–407. https://doi.org/10.1145/2594291.2594339

[75] Raghu Prabhakar, David Koeplinger, Kevin J. Brown, HyoukJoong Lee, Christo-
pher De Sa, Christos Kozyrakis, and Kunle Olukotun. 2016. Generating Con-
figurable Hardware from Parallel Patterns. In Proceedings of the Twenty-First
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’16). ACM, New York, NY, USA, 651–665.

938

https://doi.org/10.1109/ISCA.2018.00062
https://doi.org/10.1109/HPCSim.2014.6903697
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/MICRO.2016.7783722
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
https://doi.org/10.1145/3192366.3192379
https://doi.org/10.1145/1028176.1006736
https://doi.org/10.1145/2000064.2000080
https://doi.org/10.1145/3307650.3322220
https://doi.org/10.1145/3307650.3322220
https://doi.org/10.1109/FPGA.1995.242049
https://doi.org/10.1109/FPGA.1995.242049
https://doi.org/10.1109/TPDS.2016.2549523
https://doi.org/10.1109/ASPDAC.2017.7858395
https://doi.org/10.1109/ASPDAC.2017.7858395
https://doi.org/10.1145/3243176.3243212
https://doi.org/10.1145/3079856.3080255
https://doi.org/10.1109/HPCA.2016.7446051
https://doi.org/10.1145/2491956.2462163
https://doi.org/10.1145/2491956.2462163
https://doi.org/10.1109/CASES.2015.7324551
http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1145/2485922.2485935
https://doi.org/10.1145/2485922.2485935
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/1454115.1454140
https://doi.org/10.1145/1454115.1454140
https://doi.org/10.1145/2594291.2594339

MICRO’19, October 12-16, 2019, Columbus, OH, USA Dadu et al.

https://doi.org/10.1145/2872362.2872415
[76] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,

Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.
Plasticine: A Reconfigurable Architecture For Parallel Paterns. In Proceedings of
the 44th Annual International Symposium on Computer Architecture (ISCA ’17).
ACM, New York, NY, USA, 389–402. https://doi.org/10.1145/3079856.3080256

[77] R. Prabhakar, Y. Zhang, D. Koeplinger, M. Feldman, T. Zhao, S. Hadjis, A. Pedram,
C. Kozyrakis, and K. Olukotun. 2018. Plasticine: A Reconfigurable Accelerator
for Parallel Patterns. IEEE Micro 38, 3 (May 2018), 20–31. https://doi.org/10.
1109/MM.2018.032271058

[78] Benoıt Pradelle, BenoıtMeister, Muthu Baskaran, Jonathan Springer, and Richard
Lethin. [n. d.]. Polyhedral Optimization of TensorFlow Computation Graphs.

[79] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen Heil, Amir Hormati,
Joo-Young Kim, Sitaram Lanka, James Larus, Eric Peterson, Simon Pope, Aaron
Smith, Jason Thong, Phillip Yi Xiao, and Doug Burger. 2014. A Reconfigurable
Fabric for Accelerating Large-scale Datacenter Services. In Proceeding of the 41st
Annual International Symposium on Computer Architecuture (ISCA ’14). IEEE
Press, Piscataway, NJ, USA, 13–24. https://doi.org/10.1109/MM.2015.42

[80] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. HernÃąndez-
Lobato, G. Y. Wei, and D. Brooks. 2016. Minerva: Enabling Low-Power, Highly-
Accurate Deep Neural Network Accelerators. In 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). 267–278. https:
//doi.org/10.1109/ISCA.2016.32

[81] Thomas J. Repetti, João P. Cerqueira, Martha A. Kim, and Mingoo Seok. 2017.
Pipelining a Triggered Processing Element. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO-50 ’17). ACM,
New York, NY, USA, 96–108. https://doi.org/10.1145/3123939.3124551

[82] S. Rivoire, R. Schultz, T. Okuda, and C. Kozyrakis. 2006. Vector Lane Threading.
In 2006 International Conference on Parallel Processing (ICPP’06). 55–64. https:
//doi.org/10.1109/ICPP.2006.74

[83] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany, Abelardo López-
Lagunas, Peter R. Mattson, and John D. Owens. 1998. A Bandwidth-efficient
Architecture for Media Processing. In Proceedings of the 31st Annual ACM/IEEE
International Symposium on Microarchitecture (MICRO 31). IEEE Computer So-
ciety Press, Los Alamitos, CA, USA, 3–13. http://dl.acm.org/citation.cfm?id=
290940.290946

[84] Alec Roelke and Mircea R. Stan. 2017. RISC5: Implementing the RISC-V ISA in
gem5. (2017).

[85] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar. 2016. ISAAC: A Convolutional Neural Network
Accelerator with In-Situ Analog Arithmetic in Crossbars. In 2016 ACM/IEEE
43rd Annual International Symposium on Computer Architecture (ISCA). 14–26.
https://doi.org/10.1109/ISCA.2016.12

[86] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas
Chandra, and Hadi Esmaeilzadeh. 2018. Bit Fusion: Bit-Level Dynamically Com-
posable Architecture for Accelerating Deep Neural Network. In 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA). IEEE.

[87] Yujia Shen, Arthur Choi, and Adnan Darwiche. 2016. Tractable Operations for
Arithmetic Circuits of Probabilistic Models. In Advances in Neural Information
Processing Systems 29 (NIPS).

[88] Hartej Singh, Ming-Hau Lee, Guangming Lu, Nader Bagherzadeh, Fadi J. Kur-
dahi, and Eliseu M. Chaves Filho. 2000. MorphoSys: An Integrated Reconfig-
urable System for Data-Parallel and Computation-Intensive Applications. IEEE
Trans. Comput. 49, 5 (May 2000), 465–481. https://doi.org/10.1109/12.859540

[89] Rekha Singhal, Yaqi Zhang, Jeffrey D Ullman, Raghu Prabhakar, and Kunle
Olukotun. 2019. Efficient Multiway Hash Join on Reconfigurable Hardware.
Technology Conference on Performance Evaluation & Benchmarking (TPCTC)
(2019).

[90] Avinash Sodani. 2015. Knights landing (knl): 2nd generation intel® xeon phi
processor. In 2015 IEEE Hot Chips 27 Symposium (HCS). IEEE, 1–24.

[91] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. 2018. GraphR:
Accelerating graph processing using ReRAM. In 2018 IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA). IEEE, 531–543.

[92] Narayanan Sundaram, Nadathur Satish, MdMostofa Ali Patwary, Subramanya R
Dulloor, Michael J Anderson, Satya Gautam Vadlamudi, Dipankar Das, and
Pradeep Dubey. 2015. Graphmat: High performance graph analytics made
productive. Proceedings of the VLDB Endowment 8, 11 (2015), 1214–1225.

[93] Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. 2003.

WaveScalar. In Proceedings of the 36th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO 36). IEEE Computer Society, Washington, DC,
USA, 291–. https://doi.org/10.1109/MICRO.2003.1253203

[94] Tuan Ta, Lin Cheng, and Christopher Batten. 2018. Simulating Multi-Core
RISC-V Systems in gem5. (2018).

[95] Yatish Turakhia, Gill Bejerano, and William J Dally. 2018. Darwin: A genomics
co-processor provides up to 15,000 x acceleration on long read assembly. In
Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 199–213.

[96] Yatish Turakhia, Sneha D Goenka, Gill Bejerano, and William J Dally. 2019.
Darwin-WGA: A co-processor provides increased sensitivity in whole genome
alignments with high speedup. In 2019 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 359–372.

[97] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito,William SMoses, Sven Verdoolaege, AndrewAdams, and Albert
Cohen. 2018. Tensor Comprehensions: Framework-Agnostic High-Performance
Machine Learning Abstractions. arXiv preprint arXiv:1802.04730 (2018).

[98] Swagath Venkataramani, Ashish Ranjan, Subarno Banerjee, Dipankar Das,
Sasikanth Avancha, Ashok Jagannathan, Ajaya Durg, Dheemanth Nagaraj,
Bharat Kaul, Pradeep Dubey, and Anand Raghunathan. 2017. ScaleDeep: A
Scalable Compute Architecture for Learning and Evaluating Deep Networks.
In Proceedings of the 44th Annual International Symposium on Computer Archi-
tecture (ISCA ’17). ACM, New York, NY, USA, 13–26. https://doi.org/10.1145/
3079856.3080244

[99] Dani Voitsechov and Yoav Etsion. 2014. Single-graph Multiple Flows: Energy
Efficient DesignAlternative for GPGPUs. In Proceeding of the 41st Annual Interna-
tional Symposium on Computer Architecuture (ISCA ’14). IEEE Press, Piscataway,
NJ, USA, 205–216. https://doi.org/10.1109/ISCA.2014.6853234

[100] Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh Sadredini,
Tommy Tracy, JackWadden, Mircea Stan, and Kevin Skadron. 2016. An overview
of micron’s automata processor. In 2016 international conference on hardware/-
software codesign and system synthesis (CODES+ ISSS). IEEE, 1–3.

[101] Zhengrong Wang and Tony Nowatzki. 2019. Stream-based Memory Access
Specialization for General Purpose Processors. In Proceedings of the 46th Inter-
national Symposium on Computer Architecture (ISCA ’19). ACM, New York, NY,
USA, 736–749. https://doi.org/10.1145/3307650.3322229

[102] Gabriel Weisz and James C Hoe. 2015. CoRAM++: Supporting data-structure-
specific memory interfaces for FPGA computing. In 25th International Conference
on Field Programmable Logic and Applications (FPL). 1–8. https://doi.org/10.
1109/FPL.2015.7294017

[103] NVIDIA Whitepaper. 2019. Cuda C Best Practices Guide.
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf.

[104] WikiChip. 2019. Configurable Spatial Accelerator.
https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator.

[105] Lisa Wu, Raymond J. Barker, Martha A. Kim, and Kenneth A. Ross. 2013. Navi-
gating Big Data with High-throughput, Energy-efficient Data Partitioning. In
ISCA.

[106] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A.
Ross. 2014. Q100: The Architecture and Design of a Database Processing Unit.
In Proceedings of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’14). ACM, New York,
NY, USA, 255–268. https://doi.org/10.1145/2541940.2541961

[107] Amir Yazdanbakhsh, Kambiz Samadi, Nam Sung Kim, and Hadi Esmaeilzadeh.
2018. Ganax: A unified mimd-simd acceleration for generative adversarial net-
works. In Proceedings of the 45th Annual International Symposium on Computer
Architecture. IEEE Press, 650–661.

[108] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang
Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing communi-
cation for PIM-based graph processing with efficient data partition. In 2018 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
IEEE, 544–557.

[109] Yaqi Zhang, Alexander Rucker, Matthew Vilim, Raghu Prabhakar, William
Hwang, and Kunle Olukotun. 2019. Scalable interconnects for reconfigurable
spatial architectures. In Proceedings of the 46th International Symposium on
Computer Architecture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019. 615–628.
https://doi.org/10.1145/3307650.3322249

[110] Y. Zhu and V. J. Reddi. 2014. WebCore: Architectural support for mobile Web
browsing. In 2014 ACM/IEEE 41st International Symposium on Computer Archi-
tecture (ISCA). 541–552. https://doi.org/10.1109/ISCA.2014.6853239

[111] Ling Zhuo and Viktor K Prasanna. 2005. Sparse matrix-vector multiplication on
FPGAs. In Proceedings of the 2005 ACM/SIGDA 13th international symposium on
Field-programmable gate arrays. ACM, 63–74.

939

https://doi.org/10.1145/2872362.2872415
https://doi.org/10.1145/3079856.3080256
https://doi.org/10.1109/MM.2018.032271058
https://doi.org/10.1109/MM.2018.032271058
https://doi.org/10.1109/MM.2015.42
https://doi.org/10.1109/ISCA.2016.32
https://doi.org/10.1109/ISCA.2016.32
https://doi.org/10.1145/3123939.3124551
https://doi.org/10.1109/ICPP.2006.74
https://doi.org/10.1109/ICPP.2006.74
http://dl.acm.org/citation.cfm?id=290940.290946
http://dl.acm.org/citation.cfm?id=290940.290946
https://doi.org/10.1109/ISCA.2016.12
https://doi.org/10.1109/12.859540
https://doi.org/10.1109/MICRO.2003.1253203
https://doi.org/10.1145/3079856.3080244
https://doi.org/10.1145/3079856.3080244
https://doi.org/10.1109/ISCA.2014.6853234
https://doi.org/10.1145/3307650.3322229
https://doi.org/10.1109/FPL.2015.7294017
https://doi.org/10.1109/FPL.2015.7294017
https://doi.org/10.1145/2541940.2541961
https://doi.org/10.1145/3307650.3322249
https://doi.org/10.1109/ISCA.2014.6853239

	Abstract
	1 Introduction
	2 Exploitable Data-Dep. Forms
	2.1 Stream-Join
	2.2 Alias-Free Indirection (AF-Indirect)

	3 Stream-Join Specialization
	3.1 Stream-join Control
	3.2 Stream-join Compute Fabric: DGRA

	4 Specializing Data-dep. Memory
	4.1 Sparse Memory Abstractions
	4.2 Data-Dep Memory Microarchitecture

	5 Sparse Processing Unit
	6 Methodology
	7 Evaluation
	7.1 Performance on Machine Learning
	7.2 Performance on Graph and Databases
	7.3 Sensitivity to Dataset Density
	7.4 Benefit of Decomposability
	7.5 Area and Power

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	References

