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ABSTRACT
With slowing technology scaling, specialized accelerators are
increasingly attractive solutions to continue expected genera-
tional scaling of performance. However, in order to accelerate
more advanced algorithms or those from challenging domains,
supporting data-dependence becomes necessary. This manifests
as either data-dependent control (eg. join two sparse lists), or
data-dependent memory accesses (eg. hash-table access). These
forms of data-dependence inherently couple compute with memory,
and also preclude efficient vectorization – defeating the traditional
mechanisms of programmable accelerators (eg. GPUs).

Our goal is to develop an accelerator which is broadly applica-
ble across algorithms with and without data-dependence. To this
end, we first identify forms of data-dependence which are both
common and possible to exploit with specialized hardware: specif-
ically stream-join and alias-free indirection. Then, we create an
accelerator with an interface to support these, called the Sparse
Processing Unit (SPU). SPU supports alias-free indirection with
a compute-enabled scratchpad and aggressive stream reordering
and stream-join with a novel dataflow control model for a reconfig-
urable systolic compute-fabric. Finally, we add robustness across
datatypes by adding decomposability across the compute and mem-
ory pipelines. SPU achieves 16.5×, 10.3×, and 14.2× over a 24-core
SKL CPU on ML, database, and graph algorithms respectively. SPU
achieves similar performance to domain-specific accelerators. For
ML, SPU achieves 1.8-7× speedup against a similarly provisioned
GPGPU, with much less area and power.

CCS CONCEPTS
• Computer systems organization → Reconfigurable com-
puting; Data flow architectures; Heterogeneous (hybrid) systems.
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Table 1: Data-Dependence Forms Across Algorithms

1 INTRODUCTION
Trends in technology scaling and application needs are causing
a broad push towards specialized accelerators. Examples pervade
many domains, including graphs [9, 28, 39, 91, 108], AI/ML [10,
43, 47, 80, 85, 98, 107], databases [48, 50, 105, 106], systems [31–
33, 110], and genomics [23, 36, 95, 96]). This trend is also true in
industry [46, 62, 69, 79, 100].

Designs which are performance-robust across domains would
be valuable for economies of scale. Furthermore, with a perishing
Moore’s Law, the approach of spending transistors on ever more
non-programmable ASICs will become less effective [35]. How-
ever, the success of the above domain-specific accelerators suggests
that existing general purpose data processing hardware (eg. GPG-
PUs [69], Intel MIC [30] & KNL [90]) are orders-of-magnitude lower
in performance and/or energy efficiency. But why? Our insight is
the following: data-dependence, in the form of data-dependent con-
trol and data-dependent memory access, fundamentally interferes
with common mechanisms relied on by such processors.

To explain, consider the following two basic hardware princi-
ples: decoupling the memory access and computation pipelines, and
vectorizing the computation across independent hardware units.
GPUs are a classic example that exploit vectorization through the
SIMT execution model, and perform decoupling by relying on many
threads. Data-dependent control introduces thread divergence (bad
for vectorization), and data dependent memory introduces non-
contiguous loads (bad for vectorization) and further requires more
threads to hide the likely higher latency (bad for decoupling). Other
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Figure 1: Our approach: Data-dependence Specialization

high-throughput data-processors face similar problems.
On top of this, supporting data-dependence makes computing or

accessing arbitrary datatypes (8-bit,16-bit,32-bit) more difficult. The
traditional approach of sub-word SIMD (used by eg. GPUs) does
not suffice in the presence of data-dependent control or memory,
as sub-words may have different control outcomes or memory
addresses respectively. Hence, the effective bandwidth would have
to be reduced to that achievable by the vector-lane’s word-length.

Not only is data-dependence problematic, it is also extremely
common. Table 1 outlines algorithms from several domains, which
rely on data-dependent versions for one of many reasons: Some
use a sparse representation to save computation and memory band-
width/capacity. Others rely on data-structures that represent re-
lationships like graphs or trees. Some use data-subsetting like a
database filter or simply reorder data, like Sort or Join.

While some prior accelerators have mechanisms for data-
dependence, they tend not to be programmable for different
domains (eg. cannot run a DNN on a database accelerator), and they
also tend to be inefficient on kernels which are not data-dependent
(eg. cannot run a dense-matrix multiply on a sparse-matrix
accelerator). Our goal is to develop a programmable, domain-neutral
accelerator which can efficiently execute data-dependent and
non-data-dependent algorithms at high efficiency.

Insight: Our key observation is that the data-dependence support
required across data-processing domains is not arbitrary. Two basic
forms cover a wide variety of data-dependent kernels: stream-joins
and alias-free indirection.

Stream joins are defined by in-order processing of data, where
the relative order of consumption and production of new data is de-
pendent on control decisions. Alias-free indirection is characterized
by memory access with data-dependent addresses, but where it can
be guaranteed that there are no implicit dependences through alias-
ing. These restrictions can enable efficient hardware mechanisms,
and while simple, these forms are quite general: the algorithms in
Table 1 can be expressed as one or the other (or both).
Approach: Because our goal is to be performance-robust across
algorithms, we start with an architecture known to work well
for non-data-dependent: a systolic-style1 coarse grained recon-
figurable architecture (CGRA) with streaming memory support
(extremely common, eg. [10, 19, 22, 46, 54, 98]) – see Figure 1(a).
We then develop hardware and software mechanisms for our two
data-dependence forms to enable fully-pipelined stream-join and
high-bandwidth alias-free indirection at low overhead. Finally, to

1By systolic, we mean that processing elements only perform one operation, are fully-
pipelined to execute one operation per cycle, and only communicate with neighbors.

support a variety of datatypes, we add decomposability into the
compute, network, and memory.

Our design, the Sparse Processing Unit (SPU), is shown in Fig-
ure 1(b). SPU supports fully-pipelined stream-joins with a sys-
tolic CGRA augmented with a novel dataflow-control model. SPU
supports high-bandwidth alias-free indirection (load/store/update)
with a banked scratchpad with aggressive reordering and embed-
ded compute units. To flexibly support different datatypes, the
hardware enables decomposing the reconfigurable network and
wide memory access into power-of-two finer-grain resources while
maintaining data-dependence semantics. Decomposability is more
powerful than subword-SIMD alone, as it effectively lets dataflow
of finer-grain datatypes flow independently, which is necessary for
independent control flow and indirect memory access.

For the hardware/software interface, we augment a stream-
dataflow ISA [65], which enables simple embedding of the memory
and control primitives. For the overall design, SPU cores are
connected using a traditional mesh network-on-chip (NoC) to
create a high-performance multi-core accelerator.
Chosen Workloads: We study machine learning (ML) as our pri-
mary domain, and graph processing and databases to demonstrate
generality. Chosen ML workloads cover the sparse and dense ver-
sions of the top-5 ML algorithms used by Facebook in 2018 [42]. FC
and CNN are the core kernels used in state-of-the-art speech and
image/video recognition. Arithmetic Circuits are graphical model
representations which can be used to answer inference questions
on probability distributions [87]. From graph processing we study
page rank and BFS. From databases, we study a subset of TPC-H.
Results: We evaluate our approach across three domains:
• AI/ML: SPU achieves 1.8-7× speedup over a similar GPU
(NVIDIA P4000), using 24% power. Further, retaining capability
to express dense algorithms led to up to 4.5× speedup.

• Graph: For both ordered and unordered algorithms, we achieve
14.2× performance over a 24-core SKL CPU, competitive with
the scaled-up Graphicionado [39] accelerator.

• Database: For database workloads, we achieve 10.3× over the
CPU, which is competitive with the Q100 [106] accelerator.

Our contributions are:
• Identifying two data-dependence forms which are highly-
specializable, yet are general across many algorithms.

• Hardware/software codesign for the data-dependence forms:
1. Dataflow control model enabling pipelined stream-joins. 2.
Scratchpad supporting high-bandwidth indirect access. 3. Ar-
chitecture decomposability for different data-type sizes.

• Evaluation of SPU multicore across three domains
(AI/ML,Graph,Database) using real-world datasets.

Paper Organization: First, we describe the two key data-
dependence forms and their challenges and opportunities
(Section 2). Then we describe codesigned abstractions and
hardware mechanisms for specializing for data-dependent
control (Section 3) and memory (Section 4). We then integrate
these to create the proposed SPU accelerator, and explain its
parallelism/communication mechanisms (Section 5). Finally we
describe the experimental methodology, present our evaluation,
and cover related work (Section 6, 7, 8).
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float merge(int left, mid, right)
    ...
  int i1=0, i2=mid
  while(i1 < mid && i2 < right)
    if in_arr[i1] <= in_arr[i2]
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Figure 2: Example Stream-Join Algorithms

2 EXPLOITABLE DATA-DEP. FORMS
We observe that two restricted forms of data-dependence are suf-
ficient to cover many algorithms: stream-join and alias-free indi-
rection. In this section, we first define these forms and give some
intuition on their performance challenges for existing architectures,
then explain how they guide our design.
Preliminary Term – “Streams”: Both of the dependence-forms
rely on the concept of stream abstractions, so we briefly explain.
Streams are simply an ordered sequence of values, used as architec-
ture primitives in many prior designs [25, 26, 44, 65, 83, 102, 106].
Relevant to this work are memory streams, which are sequences of
loads or stores. Streams are similar to vector accesses, but have no
fixed length (for examples see Listings 1-3 on page ).
Preliminary Term – “Regular Algorithm”:A regular algorithm
is one with no data-dependent control decisions or memory ad-
dresses. Further, no implicit dependences are allowed through mem-
ory streams, created by aliasing. The data-dependence forms can
be viewed as relaxations of regular algorithms.

2.1 Stream-Join
An interesting class of algorithms iterates over each input (each
stream) in order, but the total order of operations (and perhaps
whether an output is produced) is data-dependent. Two relevant
kernels are shown in Figure 2. Sparse vector multiplication (a)
iterates over two sparse rows (in CSR format) where indices are
stored in sorted order, and performs the multiplication if there is a
match. The core of the merge kernel (b) iterates over two sorted
lists, and at each step outputs the smaller item. Even though the
data-structures, datatypes and purpose are very different, their
relationship to data-dependence is the same: they both have stream
access, but the relative ordering of stream consumption is data-
dependent (they reuse data from some stream multiple times).
Stream Join Definition: A program region which is regular, ex-
cept that the re-use of stream data and production of outputs may
depend on the data.
Problem for CPUs/GPUs: Because of their data-dependent na-
ture, Stream-joins introduce branch-mispredictions for CPUs. For
GPGPUs, control dependence makes vectorization difficult due to

class row:
  int idx[]
  float val[]
  int cnt

(a) Sparse Vec/Mat. Mult. (b) Histogram

histo(float in_arr[N])
  ...
  for i=0 to N, ++i
    b = compute_bin(in_arr[i])
    out_hist[b] += 1
  ...
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Figure 3: Example Alias-Free Scatter/Gather Algorithms

control divergence of SIMT lanes; also the memory pattern can
diverge between lanes, causing L1 cache bank conflicts.
OurGoal for stream-join: Create a dataflow control model which
can execute stream-join at full bandwidth and utilization.

2.2 Alias-Free Indirection (AF-Indirect)
Many algorithms rely on indirect read, write, and update to memory,
often showing up as a[f(b[i])]. Figure 3 shows two examples: The
sparse-vector/sparse-matrix outer product (a) works by performing
all combinations of non-zero multiplications, and accumulating
in the correct location in a dense output vector. Histogram (b) is
straightforward. The similarities here are clear: both perform an
access to an indirect location. This can be viewed as two dependent
streams. Another important observation is that there are no un-
known aliases between streams – the only dependence is between
the load and store of the indirect update.
Alias-Free Indirection Definition: A program region which is
regular (including no implicit dependences), except that memory
streams may be dependent on each other.
Problem for CPUs/GPUs: On CPUs, indirect memory is possible
with scatter/gather, however the throughput is quite limited given
the limited ports to read/write vector-length number of cache lines
simultaneously. As for indirect update, Intel AVX512 recently added
support for conflict detection instructions. These do not improve
the above cache-port throughput problem, only the instruction
overhead – yet still any conflicts within the vector are handled
serially with no reordering across vectors [45]. Also, not leveraging
alias-freedom means a reliance on expensive load-store queues.

While GPUs have similar throughput issues for caches, their
scratchpads are banked for faster indirect access. However, they do
not reorder requests across subsequent vector warp accesses [103],
which is important to get high indirect throughput. Doing so in a
GPU would require dependence-checking of in-flight accesses, as
they cannot guarantee alias freedom.
Our Goal for AF-Indirect: Create a stream-based hardware/soft-
ware interface and microarchitecture enabling indirect access at
full bandwidth through aggressive reordering.
Dependence Form Relationship: Finally, note that dependence
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forms are not mutually exclusive. An example is the histogram-
based Sparse GBDT (Figure 13 on Page ). Alias-free indirection is
used for updating the histogram count, while a stream-join is used
for iterating over the sparse feature values. Other examples include
deep neural networks (indirection for matrix-multiply and stream-
join to subsequently resparsify the output vector) and triangle
counting in graphs (indirection to traverse the graph and stream-
join to find intersecting neighbors).

3 STREAM-JOIN SPECIALIZATION
A conventional computational fabric which is proven to perform
well for non-data-dependent codes is a systolic-execution array [19,
22, 46, 54, 98], as they are quite simple. Note we define a systolic-
execution array as a set of processing tiles which together form
a deep pipeline, where each tile executes a single logical instruc-
tion and only communicates with its neighbors. This definition is
general enough that such designs can include a circuit-switched
network [37, 57, 66, 88, 99], so we refer to these as systolic CGRAs.

In this section, we propose a novel control model to enhance a
conventional systolic CGRA for stream-join. We also discuss sup-
porting finer-grain datatypes at low overhead and high hardware
utilization through decomposability.

3.1 Stream-join Control
Existing systolic arrays are unable to make control decisions beyond
simple predication, as they do not account for data dependences in
deciding when and how to produce or consume data.

We discuss a number of examples in Figure 4, for which show

the original code and a traditional dataflow representation. Here,
black arrows represent data dependence, and green arrows indi-
cate control. The dataflow representation is quite similar to what
is executed on an OOO core. These examples motivate the need
for a new dataflow-control model; one which can express the data-
dependence without expensive throughput-limiting control depen-
dence loops; this figure also shows these codes represented in our
stream-join dataflow model.
Merge Example: Consider the pseudo-code in Figure 4(a), which
shows a simple merge kernel (only the part where both lists have
data), for use in merge-sort for example. An item is selected and
stored based on which of two items is smaller. This dataflow can
be mapped to a systolic array, but only at low throughput.

To explain, note that there is a loop-carried dependence through
the control-dependent increment andmemory access. This prevents
perfect pipelining, and the throughput is limited to one instance
of this computation every n cycles, where n is the total latency
of these instructions. Note that the same problem exists for the
out-of-order core, and it is made even worse with the unpredictable
data-dependent branch which would increase the average latency
due to mispredictions.

However, note that from the perspective of the memory, the
control dependence is unnecessary, as all loads will be performed
anyways. Therefore, to break the dependence, we need to separate
the loads from computation (luckily, decoupled streams do this
already), then expose a mechanism for controlling the order of
data consumption. Intuitively for this example, if the model treats
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incoming values like a queue, it is possible to “pop” the values as
they are consumed. Essentially, what we require here within the
computation fabric is the ability to perform data-dependent reuse.
Sparse Inner-Product Example: Figure 4(b) is a sparse-vector
multiplication. Here, two pointers are maintained based on the com-
parison of corresponding item indices. Compared to merge, there
is a similar control dependence and overhead. A similar approach
could work here as well, decouple the streams and conditionally
reuse indices (and values). The difference is that we only apply the
multiply accumulate on matching indices, so we should discard
some of this data. Therefore, in addition to data-dependent reuse,
we also require data-dependent discard.
Database Join Example: Figure 4(c) shows an inner equijoin. It
iterates over sorted keys, and concatenates equivalent keys and cor-
responding columns. It has a surprisingly similar form and control
dependence loop to the sparse multiplication, where the computa-
tion is replaced with concatenation. A similar approach of decou-
pling streams and applying data-dependent reuse and discard will
break the control dependence loop and enable high throughput.
Re-sparsification Example: Re-sparsification (Figure 4(d)) pro-
duces a sparse row from a dense stream. The dataflow version has a
predicated increment and store, and can achieve a pipelined sched-
ule (so can the OOO core if it has predicated stores, otherwise it
would be serialized by mispredictions). This example demonstrates
that the ability to discard (ie. filter) is useful on its own. It is also
an example where predication is enough, whereas predication is
insufficient in the other examples.
Our Stream-join Proposal:We find the desired behavior can be
accomplished with a simple and novel control flow model for full-
throughput systolic execution. The basic idea is to allow each in-
struction to perform the following control operations: re-use inputs,
discard instructions or reset a register based on a dataflow input.

Figure 5 shows the execution flow of the sparse vector multiplica-
tion when expressed as a stream-join, showing the fully-pipelined
execution over several cycles. Dataflow values are represented as
circles, and for simplicity they take one cycle to flow along a de-
pendence. Sentinel values (infinity for indices and zero for values)
are used to indicate the end of a stream; these allow the other
stream to drain on stream completion. Also, the subsequent vector
multiplications can begin without draining the pipeline.

Figure 4 shows all of the examples written in this model. Data-
dependent operand re-use is useful in (a,b,c) to iterate over input
streams in correct relative order. Data-dependent discard is also
useful in (b,c,d) for ignoring data which is not needed. The data-
dependent reset is useful in (b,d) for resetting the accumulator. In
both examples, adding stream-join primitives to instruction execu-
tion either shrinks the throughput-limiting dependence chain or
eliminates it completely, enabling a fully-pipelined dataflow.

To enable flexible control interpretation, each instruction embeds
a simple configurable mapping function from the instruction output
and control input to the control operations:

f (inst_out, control_in) → reuse1, reuse2, discard, reset
Stream-join Overheads: In kernels where input data is discarded
(eg. sparse-matrix multiply and database join), the transforma-
tion to stream-joins can cause additional loads. Theoretically the
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Figure 5: Execution diagram for join of two sorted lists.

worst case extra overhead compared to the original is (value_size +
key_size)/(key_size). This can happen if there are extremely sparse
matches, for example in databases. For such cases, we could only
load values for matching indices; this would increase the latency
of accessing values, but this can usually be hidden. For this, SPU
provides efficient support for indirect accesses (Section 4).

3.2 Stream-join Compute Fabric: DGRA
Here we explain how we augment a systolic CGRA to support
stream-join control. Its network is decomposable to support control
semantics for smaller datatypes; thus we refer to the design as the
decomposable granularity reconfigurable architecture: DGRA.
Stream-join Processing Element (PE) Implementation: The
stream-join control model enables an instruction to 1. treat its
inputs as queues that it can conditionally reuse, 2. conditionally
discard its output value, and/or 3. conditionally reset its accumula-
tor. Instructions may use their output or a control input to specify
the conditions (ie. the control info).

discard
Func. UnitACC CLT

FIFO0 FIFO1 FIFO2

From Network

reuse

reset

SEx

Stream-Join

Flow-Ctrl

Data-Flow

Figure 6: CLT integration

To implement, we add a control
lookup table (CLT) to each FU (Fig-
ure 6), which determines a mapping
between the control inputs and pos-
sible control operations. For the in-
puts of this table, we use the lower
two bits of either the instruction
output or the control input. For the
outputs, there are four possible con-
trol actions: reuse-first-input, reuse-
second-input, discard-operation, reset-accumulator. Therefore, for
a fully configurable mapping between the 2-bit input (four combina-
tions) and 4-bit outputs, we require a 16-bit table, and one extra bit
to specify whether the instruction output or control input should be
used as input. This becomes additional instruction configuration.
Supporting Decomposability: To support stream-join semantics
with arbitrary datatypes, our approach is to support the principle
of decomposability – the ability to use a coarse grain resource as
multiple finer grain resources. Therefore, the network of the DGRA
is decomposable into multiple parallel finer-grain sub-networks. It
provides limited connectivity between these sub-networks. For this
we require both a decomposable switch and PE.
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DGRA Switch: Figure 7 compares a CGRA switch to our DGRA
switch. On the left is an implementation of a coarse grain switch,
which has one Mux per-output. The DGRA switch decomposes
inputs and outputs, and separately routes each 16-bit sub-network.
Flow control is maintained separately with a credit path (not shown)
for each subnetwork. For flexible routing, we add the ability for
incoming values to change sub-networks. In the design this is done
by adding an additional input to each output Mux, which uses the
latched output of the previous Mux. This forms a ring, as shown
by the “X” inputs.
DGRA PE: The decomposable PE (Figure 8) follows the same prin-
ciples as the switch. Each coarse grain input of a FU can be de-
composed into two finer-grain inputs which are used to feed two
separate lower-granularity FUs. We replicate the CLT for each
subnetwork so that each can have their own control semantics.
Mixed-precision Scheduling: Mapping dataflow graphs onto re-
configurable architecture is known as spatial scheduling (eg. [67,
73, 74, 109]). Adding decomposability increases the complexity
due to managing more routing decisions due to subnetworks. At a
very high-level, our approach combines the principle of stochastic-
scheduling [64] and over-provisioning (eg. within Pathfinder [56]).
At each iteration, we attempt to map (or re-map) a dataflow instruc-
tion and its dependences onto several different positions on the
DGRA; the algorithm will typically choose the position with the
highest objective, but will occasionally select a random position.
To avoid getting stuck in local minima, we allow over-provisioning

f o r i =0 to n
. . . = a [ i ] → l o ad ( a [ 0 : n ] )

Listing 1: Linear Stream
s t r u c t { i n t f1 , f 2 } a [ n ]
f o r i =0 to n

ind = index [ i ]
= a [ ind ] . f i e l d 1
= a [ ind ] . f i e l d 2
c [ ind ] = . . .

→

s t r 1 = l oad ( index [ 0 : n ] )
i n d_ l o ad ( addr= s t r 1 , o f f s e t _ l i s t = { 0 , 4 } )
i n d _ s t o r e ( addr= s t r 1 , v a l u e = . . . ,

o f f s e t _ l i s t = { 0 } )

Listing 2: Indirect Load and Store Streams
f o r i =0 to n

ind = index [ i ]
v a l = va lue [ i ]
h i s t o [ ind ] += v a l

→

s t r _ i n d = l oad ( index [ 0 : n ] )
s t r _ v a l = l o ad ( va l u e [ 0 : n ] )
update ( addr= s t r _ i n d , v a l = s t r _ v a l ,

opcode =" add " , o f f s e t _ l i s t = { 0 } )
Listing 3: Indirect Update Stream

f o r i =0 to n
s i z e = s u b _ s i z e [ i ]
f o r j =0 to size

v a l = va lue [ j ]

→
s t r _ s i z e = l oad ( s u b _ s i z e [ 0 : n ] )
d a t a_dep_ l o ad ( va l u e [ 0 : l en = s t r _ s i z e ] )

Listing 4: Data-dependent Load Stream

compute and network resources and penalize over-provisioning in
the objective function.

4 SPECIALIZING DATA-DEP. MEMORY
The main challenge for specializing for alias-free indirection is
creating a high-bandwidth memory pipeline which aggressively re-
orders accesses. In order to explain our proposed microarchitecture,
we first discuss the set of stream abstractions that are expressed to
the hardware.

4.1 Sparse Memory Abstractions
As we explained earlier, we start with a simple non-data-dependent
contiguous stream (Listing 1 shows an example). For specifying
indirect loads or stores, we enable one streams’ addresses to be
dependent on another streams’ values. Often, array-of-structs style
data structures require several lookups offset from the base address.
We add this capability with an “offset list”, shown in the example
in Listing 2.

Indirect updates (as in histogramming) could hypothetically be
supported by using an indirect load stream as above, performing the
reduction operation, and finally using an indirect store stream to
the same series of addresses. However, this requires dynamic alias
detection or eschewing pipeline parallelism to prevent aliasing read-
/write pairs from being mis-ordered. Instead, we can leverage the
alias-free property to add a specialized interface for indirect update.
In our implementation, indirect update may perform common oper-
ations like add, sub, max, and min directly on the indirect-addressed
data item. Listing 3 shows an example.

Often, streams consist of sub-streams with data-dependent
length. For example, indirect matrix-vector multiplication requires
access to columns with varying size (Figure 3, page ). We enable
streams to specify a data-dependent length, as in Listing 4.

4.2 Data-Dep Memory Microarchitecture
Armed with expressive abstractions, we develop a high-bandwidth
and flexible scratchpad controller capable of high-bandwidth indi-
rect access. Because our workloads often require a mix of linear
and indirect arrays simultaneously, for example streaming read of
indices (direct) and associated values (indirect), we begin our design
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with two logical scratchpad memories, one highly banked and one
linear. In this design, both exist within the same address space.

The role of the scratchpad controller (eventual design in Figure 9)
is to generate requests for reads/writes to the linear scratchpad,
and reads/writes/updates to the indirect scratchpad. A control unit
assigns the scratchpad streams, and their state is maintained in
either linear or indirect stream tables. The controller should then
select between any concurrent stream for address generation and
send to the associated scratchpad to maximize expected bandwidth.
The linear address generator’s operation is simple – create wide
scratchpad requests using the linear access pattern.

The indirect address generator creates a vector of requests by
combining each element of the stream of addresses (coming from
the compute fabric, explained in Section 3) with each element in
the stream description’s offset list. This vector of requests is sent to
an arbitrated crossbar for distribution to banks, and a set of queues
buffer requests for each SRAM bank (Figure 10) until they can be
serviced. Reads, writes and updates are explained as follows:
Indirect Writes: Bank queues buffer both address and values. Im-
portantly, because writes are not ordered with respect to anything
besides barriers, requests originating from within the stream and
across streams can be “mixed” within the bank queues without
any additional hardware support. Mixing requests across multiple
request-vectors helps to hide bank contention, a critical feature
enabling higher throughput than traditional memories.
Indirect Updates: Indirect updates use the compute units within
the scratchpad. To explain, the bank queues buffer the address,
operation type and the operand for the update. Within the banked
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Figure 11: Functioning of IROB. (bits<6..4> indicate bank number)

scratchpad, after the value is read, the associated compute unit
executes, then writes the value back to the same location in the
next cycle. We support only common integer operations within this
pipeline (add, sub, min, max). The pipeline stalls only if subsequent
updates are to the same address (max 2-cycle bubble).
Indirect Reads: In contrast to the above, the order of reads must
be preserved. For performance, we would like to maintain the abil-
ity to mix requests from subsequent accesses to hide bank con-
tention. This actually goes beyond what even modern GPUs are
capable of, as they only reorder a single vector of requests at one
time [7, 58, 103]. We believe the reason for this limitation on GPUs
is the challenge in handling potential memory dependences. To
explain, Figure 11(a) shows an example of two parallel indirect read
requests. Figure 11(b) shows the difference between how a typical
GPU approach would schedule transactions, and how an aggressive
reordering approach would work. The ability to intermingle parallel
requests can significantly increase throughput.

To accomplish this, we maintain ordering in a structure called
an indirect read reorder-buffer (IROB), which maintains incomplete
requests in a circular buffer. It is allocated an entry whenever a re-
quest is generated from the indirect address generator. For indirect
reads, the bank queues maintain the address and row & column
of the IROB. As results return from the banked scratchpad, they
use this row & column to update the IROB. IROB entries are de-
allocated in-order when a request’s data is sent to the compute unit.
Overall, our abstractions enable expression of the alias-free prop-
erty of indirect reads in hardware, which is what allows a simple
hardware structure like the IROB to aggressively reorder across
multiple requests without memory dependence checking.
Decomposability: The indirect scratchpad also requires decom-
posability to various datatypes. Multiple contiguous lanes are used
in lock-step to support larger datatypes. Consider indirect store
bandwidth for example: the 16×32 crossbar either supports 16 16-
bit stores (to 32 logical banks), 8 32-bit stores (to 16 logical banks),
or 4 64-bit stores (to 8 logical banks). We use the same approach
for accessing the SRAM banks of the indirect scratchpad.
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Figure 12: SPU Overview

5 SPARSE PROCESSING UNIT
The sparse processing unit (SPU) is our overall proposed design.
Each SPU core is composed of the specialized memory and compute
fabric (DGRA), together with a control core for coordination among
streams. In this section, we overview the primary aspects of the
design, then discuss how we map our workloads to SPU’s compu-
tation, memory, and network abstractions. Finally, we discuss the
role of the compiler and possible framework integration.
SPU Organization: Figure 12 shows how SPU cores would be
integrated into a mesh network-on-chip (NoC), along with the
high-level block diagram of the core. The basic operation of each
core is that the control core will first configure the DGRA for a
particular dataflow computation, and then send stream commands
to the scratchpad controller to read data or write to the DGRA,
which itself has an input and output "port interface" to buffer data.
Memory Integration: These workloads require shared access to
a larger pool of on-chip memory. To enable this, our approach
was to rely on software support, rather than expensive general
purpose caches and coherence. In particular, SPU uses a partitioned
global address space for scratchpad. Data should be partitioned
for locality if possible. Streams may access remote memory over
the NoC. We add remote versions of the indirect read, write, and
update streams. Indirect write and update are generally one-way
communication operations, but we provide support to synchronize
on the last write/update of a stream for barrier synchronization.
Other synchronization is described next.
Communication/synchronization: SPU provides two special-
ized mechanisms for communication. First, we include multicast
capability in the network. Data can be broadcast to a subset of cores,
using the same relative offset in scratchpad. As a specialization for
loading main memory, cores issue their load requests to a central-
ized memory stream engine, and data can be multi-cast from there
to relevant cores. For synchronizing on for data-readiness, SPU
uses a dataflow-tracker-like [98] mechanism to wait on a count of
remote-scratchpad writes.
Control ISA:We leverage an open-source stream-dataflow ISA [63,
65] for the control core’s implementation of streams, and add sup-
port for indirect reads/writes/updates, stream-join dataflow model,
and typed dataflow graph. The ISA contains stream instructions
for the data transfer, including reading/writing to main memory
and scratchpad.

Map stream-join 
pattern to SPU 
control model

update(addr=st_hist_addr, 
val=st_grad_update, opcode=”add”, 
offset_list={sp_addr[tid]})

# Setup local linear scratchpad streams
     
         
multicast(strm_ind1, mask=”1111")
multicast(strm_grad, mask=”1111")
# Setup main-memory streams

# Setup local indirect scratchpad streams

wait_local_streams()
# Global reduction using dataflow tracker
if (tid==0): wait_df(C-1)
else: st(red_val[tid], dst=core0, scr=1)

# Setup local linear scratchpad streams
     
         
multicast(strm_ind1, mask=”1111")
multicast(strm_grad, mask=”1111")
# Setup main-memory streams

# Setup local indirect scratchpad streams

wait_local_streams()
# Global reduction using dataflow tracker
if (tid==0): wait_df(C-1)
else: st(red_val[tid], dst=core0, scr=1)

# Setup local linear scratchpad streams
     
         
multicast(strm_ind1, mask=”1111")
multicast(strm_grad, mask=”1111")
# Setup main-memory streams

# Setup local indirect scratchpad streams

wait_local_streams()
# Global reduction using dataflow tracker
if (tid==0): wait_df(C-1)
else: st(red_val[tid], dst=core0, scr=1)

strm_ind1 = ld(node_ind[p][0:n], scr=1)
strm_grad = ld(grad[0:n], scr=1)

strm_ind2     = ld(feat_ind[tid][0:n])
strm_hist_bin = ld(feat_val[tid][0:n])
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Figure 13: Example SPUProgramTransformation: GBDT (Each core
gets a subset of features to process i.e. fid=tid)

Programming Model: Programming SPU involves the following
tasks: 1. partitioning work to multiple cores and data to the scratch-
pads to preserve locality, 2. extracting the dataflow graph, and possi-
bly re-writing data-dependent control as a stream-join, 3. extracting
streaming memory accesses, and 4. inserting communication/syn-
chronization.

In terms of programming abstractions, an SPU’s program con-
sists of a dataflow graph language describing the computation
(compiled to DGRA), along with a control program which contains
the commands for streams (similar to stream-dataflow [65]). When
a control program is instantiated, it is made aware of its spatial
location, for efficient communication with its neighbors.
Example Program: To explain how to map programs to SPU ab-
stractions, we use the example of GBDT in Figure 13. We show the
key kernel of this workload, which is a histogram over sparse lists.
Figure 13(a) shows the original kernel’s C code. Figure 13(b) shows
the extracted stream-join dataflow, and (c) shows the control pro-
gram where memory accesses are represented as streams, which is
expressed as C + intrinsics. Each stream loads (or stores) data to an
input (or output) in the dataflow. Figure 13(d) shows how the SPU
program is mapped to hardware for this algorithm. In hardware,
the stream code executes on the control core, which creates streams
to be executed on the scratchpad controller. In turn, the controller
will deliver/receive data to/from the DGRA compute unit, which
executes the dataflow.

The basic parallelization strategy is that each SPU core inde-
pendently builds histograms corresponding to its allotted subset of
features. As for how memory is distributed, the dataset is stored
in main memory in sparse CSR format (feat_ind and feat_val). Ac-
cessing these requires linear memory streams. The linear scratch-
pads store the subset of instances which belong to the current
working node. As node indices are common across all features, the
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Table 2: Mapping of Algorithms on SPU

corresponding data is broadcast across all cores. This is done in
synchronous phases: in each phase, the stream is loaded from a
predetermined core. Phases are not shown in the figure for brevity.

As for the dataflow, stream-join is used to iterate sparse feature
indices and the indices generated due to subsetting the data at each
decision tree node.

Indirection is used for histogramming: the histogram address
and update values are produced in the dataflow, which are then
consumed by the indirect update stream. In hardware, the stream
is mapped to the indirect stream table in the scratchpad controller.
Workload Mapping: Table 2 details how we map each algorithm
to the SPU architecture in terms of control, memory and communi-
cation ISA primitives, as well as the partitioning strategy.
Framework Integration:We envision that SPU can be targeted
from frameworks like TensorFlow [8], Tensor Comp. [97], TVM [21]
for machine learning, or from a DBMS or graph analytics frame-
work [3, 92]. For integration, a simple library-based approach can
be used, where programmers manually write code for a given ma-
chine learning kernel. This is the approach we take in this work.
Automated compilation approaches, eg. XLA [2] or RStream [78]
are also possible if extended for data-dependent algorithms.

6 METHODOLOGY

SPU:We implemented SPU’s DGRA in Chisel [13], and synthesized
using Synopsys DC with a 28nm UMC technology library. We use
Cacti [60] for SRAMs and other components. When comparing to
GPU power, we omit memory and DMA controllers. We built an
SPU simulator in gem5 [14, 84, 94], using a RISCV ISA [11] for the
control core.
Architecture Comparison Points: Table 3 shows the characteris-
tics of the architectures we compare against, including their on-chip
memory sizes, FU composition, and memory bandwidth. As for
SPU, we provisioned the size of the DGRA to match the combined
throughput of the scratchpads. We provisioned the total amount

Characteristics GPU [27] SPU-inorder SPU

Processor GP104 in-order SPU-core
Cache+Scratch 4064KB 2560KB 2560KB
Cores 1792 512 64 SPU cores
FP32 Unit 3584 2048 2432
FP64 Unit 112 512 160
Max Bw 243GB/s 256GB/s 256GB/s

Table 3: Architecture characteristics of GPU, SPU-inorder and SPU

Workloads CPU GPU

GBDT LightGBM [49] LightGBM [49]
Kernel-SVM LibSVM [18] hand-written [12]
AC hand-written [87] hand-written [87]
FC Intel MKL SPBLAS [1] cuSPARSE [61]
Conv layer Intel MKL-DNN [4] cuDNN [24]
Graph Alg. Graphmat [92] -
TPCH MonetDB [15] -

Table 4: Baseline workload implementations

Dataset Size Density Dataset Size Density

GBDT Cifar10-bn 50k,3k 1 Yahoo-bn 723k,136 0.05
#inst,#feat. Higgs-bn 10M,28 0.28 Ltrc-bn 34k,700 0.008
KSVM Higgs 10M,28 0.92 Connect 67k,700 0.33
#inst,#feat. Yahoo 723k,136 0.59 Ltrc 34k,700 0.24
CONV Vgg-3 802k,73k 0.47,0.4 Vgg-4 1.6M,147k 0.4,0.35
#act,#wgt Alex-2 46k,307k 0.68,0.17 Res-1 150k,9.4k 0.99,0.1
FC Res-fc 512,512k 0.26,0.84 Vgg-13 4K,16.8M 0.14,0.3
#act,#wgt Alex-6 9K,37.7M 0.29,0.09 Vgg-12 25k,103M 0.42,0.06
AC Pigs 622k NA Munin 3.1M NA
#nodes Andes 727k NA Mildew 3.7M NA
Graph Flickr 820K,9.8M 0.000015 NY-road 260K,730K 0.00005
#node,#edge Fb-artist 50K,1.63M 0.0064 LiveJournal 4.8M,68.9M 0.000003

Table 5: Datasets

of memory on-chip for the working-sets of ML workloads, as they
were our primary focus; this has some impact on workloads which
have large working-sets and are expensive to tile.

As for comparison to real hardware, the GPU is the most rel-
evant. We choose the NVIDIA P4000, as it has a slightly larger
total throughput and similar memory bandwidth to SPU. We do
not include CPU-GPU data-transfer time.

We also address whether an inorder processor is sufficient by
comparing against "SPU-inorder", where the DGRA is replaced by
an array of 8 inorder cores (total of 512 cores). For reference, we
also compared against a dual socket Intel Skylake CPU (Xeon 4116),
with 24 total cores.
Workload Implementations: We implement SPU kernels for
each workload, and use a combination of libraries and hand-written
code to compare against CPU/GPU versions. We compared against
the best implementation (that we were aware of) for each workload
on real hardware (Table 4). We implement kernels using both
dense and sparse data-structures wherever possible (shown as
SPU-dense/sparse).

Our choice of modest on-chip memory affects the implemen-
tations of graph processing and database workloads. For process-
ing larger graphs, we follow a similar technique as proposed in
Graphicionado [39] to split the graph into "slices" that fit in on-
chip memory. Edges with a corresponding vertex in another slice
are instead connected to a copy of that vertex; duplicates are kept
consistent. An architecture with a larger on-chip memory (such
as Graphicionado [39], which has 32MB on-chip memory) means
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Figure 15: Overall Performance

less duplicates, and less overhead. The tradeoff is also relevant for
database workloads. Hash-joins require the hash-table to fit on-chip
to perform well.
Benchmarks: We used the datasets specified in Table 5. The un-
compressed DNN model is obtained from Pytorch model zoo and
the compression is done as described in [41] using distiller [6].
Domain-Specific Accelerator Modeling: We model all domain-
specific accelerators using optimistic models appropriate to the
domain, always considering memory and throughput limitations
of actual data.
(1) SCNN [72]: We use a compute-bound model of SCNN accord-

ing to the dataset density, assuming no pipeline overhead be-
sides memory conflicts.

(2) EIE [40]:Mechanistic model of EIE at maximum throughput.
We compare against the scaled version of EIE with 256 cores.

(3) Graphicionado [39]:Wemodeled a cycle-level approximation
of its pipeline stages. We also compare against a version of this
accelerator with the same peak-memory bandwidth as SPU by
scaling Graphicionado to 32-cores and 32x32 crossbar.

(4) Q100 [106]: For fair comparison to Q100, we restrict SPU to 4
cores (approximately the same area as Q100). We hand-coded
query plans for Q100, specified as a directed acyclic graph in
which each node indicates a database operation (join, sort, etc.)
supported by the Q100 hardware, and edges indicate producer-
consumer dependencies. Our model of Q100 is an optimistic
execution of this query plan under memory and compute band-
width constraints, which we verified against baseline execution
time and speedups given by Q100’s authors. This query plan
is used as a reference for the SPU version, so SPU and Q100
implement the same algorithm as much as possible.
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7 EVALUATION
Our evaluation broadly addresses the question of whether data-
dependencies exposed to an ISA (and exploited in hardware) can
help achieve general-purpose acceleration. Here are the key take-
aways, in part based on the overall performance results in Figure 15.
(1) SPU achieves high speedup over CPUs (for ML:16.5×,

Graph:14.2× and DB:10.3×), and GPUs (ML:3.87×).
(2) Performance is competitive with domain-accelerators.
(3) Relying on inorder cores only for supporting data-dependence

is insufficient.
(4) Architectural generality provides the flexibility to choose algo-

rithmic variants depending on the algorithm and dataset.

7.1 Performance on Machine Learning
Here we discuss the per-workload performance results on ML work-
loads, the breakdown for GBDT/KSVM/AC is in Figure 14 and for
DNN is in Figure 16. During our analysis, we refer to Figure 17,
which describes the utilization of compute, scratchpad, network,
and memory within SPU.
GBDT: Both GPUs and SPUs use a histogram-based approach, but
SPU’s aggressive reordering of indirect updates in the compute-
enabled scratchpad far outperforms the limited reordering which
GPUs can perform within a vector request. Further, SPU makes ef-
ficient use of multicast for communication of gradients. SPU-dense
outperforms GPU dense, because histogramming is still required
even with dense datasets. On a highly dense dataset like cifar, SPU-
dense outperforms SPU sparse because of the extra bandwidth
consumed by sparse data structures, which is an example of the
benefit of having a flexible architecture.
KSVM: SPU’s network enables efficient broadcast and reduction.
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Since the dense version of KSVM is quite regular and the datasets
are not sufficiently sparse, SPU-dense is generally better than its
sparse version.
Arithmetic Circuits: AC heavily uses indirect memory in the
DAG traversal and data-dependent control (actions depend on node
type) that we support efficiently. SPU’s network enables efficient
communication for model parallelism, which would otherwise need
to go through global memory on a GPU.
Sparse Fully Connected Layers: Figure 16 shows the per-
workload performance for DNN. Using the alias-free indirection
approach, we achieve high hardware utilization of the compute-
enabled scratchpad. SPU outperforms GPU-sparse because it can
also exploit dynamic sparsity of activations using stream-join.

Domain-accelerator Comparison: Compared to the EIE accelerator,
SPU devotes more area to computation bandwidth and for providing
high-throughput access to banked scratchpad, thus attaining similar
performance at around half the area. Since the primary design goal
of EIE is energy, it stores all weights in SRAM to save DRAM access
energy; SPU trades-off lower area for higher energy.
Sparse Convolution: The best GPU algorithm was a dense
winograd-based CNN. SPU is able to save computations by
exploiting sparsity through the outer-product convolution using
indirect memory, and dynamic resparsification.

Domain-accelerator Comparison: The performance of SPU on av-
erage is 0.76× that of SCNN. This is due to bandwidth sharing of the
compute-enabled-memory scratchpad between computation and
re-sparsification, whereas SCNN uses a separate non-configurable
datapath. The performance difference increases for layers where
re-sparsification is more intense. While comparing area is difficult,
a simple scaling of SCNN’s area suggests only 1.5× higher area for
SPU (Section 7.5), a small price for significant generality.
SPU’s Performance Bottleneck: Figure 17 shows the utilization
for primary bottlenecks in SPU. Bank conflicts are the bottleneck for
DNN workloads, and the effect is reduced for the fully-connected
layer. GBDT is bottlenecked by scratchpad and memory bandwidth.
Since AC uses model parallelism, it is bottlenecked by the network.

7.2 Performance on Graph and Databases
Here we discuss the per-workload performance results on graph
(Figure 18) and database (Figure 19) domains.
GraphWorkloads: SPU specializes the alias-free indirect updates
to the destination vertices which would otherwise both be stalled
due to load-store dependencies, and limited by inefficient bandwidth
utilization due to accessing whole cache line for single accesses.
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For SPU, the network experiences high traffic because of remote
indirect updates (Figure 17).

Domain-accelerator Comparison: While the designs are quite dif-
ferent, SPU’s performance is similar to Graphicionado (8-cores) as
it is exploiting similar parallelism strategies: both have a way to
efficiently execute indirect memory access on a globally-addressed
scratchpad. Even for the scaled-up version of Graphicionado (32-
cores), it only exceeds SPU slightly for road graph due to the net-
work contention on SPU’s mesh. LiveJournal graph is an example
where the graph fits in on-chip memory of Graphicionado but
needs to be broken in 10 slices to be able to run on SPU. Here,
SPU is 57% slower than the scaled-up Graphicionado due to both
network contention and extra memory accesses for vertices which
are duplicated while slicing.
TPCH Queries: Our primary goal in evaluating TPCH was to
demonstrate generality. Figure 19 shows the per-query speedups
of a 4-core SPU versus Q100, with three versions. SPU-dense al-
lows only data-dependent discards (no joins or indirect memory
on CGRA). Here, Joins and Sorts are performed on the control core.
SPU-sparse (Join only) adds support for using the compute fabric
for accelerating Sort (using merge-sort) and Join. When indirect-
memory support is added, we additionally support hash-join if
the smaller column fits within the scratchpad. With indirection
enabled, we use a sort algorithm which applies radix-sort locally
within local scratchpads, then use a merge-sort to aggregate across
cores. Compared to CPU, SPU is significantly faster (10×), which is
sensible given the significant data-dependence in queries, which
serializes CPU execution.

Domain-accelerator Comparison: In queries which are non-sort
heavy (Q1,Q2,Q6), the dense version of SPU performs adequately,
and similar to the accelerator. On sort-heavy queries, stream-join
within DGRA significantly reduces computation overhead, allowing
SPU to catch up to Q100. Indirect access support helps to slightly
improve sort’s performance. Hash joins are significantly faster, but
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Figure 20: Performance Sensitivity (Matrix Multiply, dim: 9216×4096)

do not contribute much to speedup due to limited applicability
(because of limited scratchpad size).

7.3 Sensitivity to Dataset Density
We demonstrate that it is useful to have both non-data-dependent
and data-dependent support by studying performance sensitivity
of a FC layer (Alex-6). Specifically we vary the dataset density with
synthetic data, assuming uniform distribution of non-zero values.
Figure 20 shows the performance comparison of different architec-
tures executing matrix-vector multiply using dense and sparse data
structures. At densities lower than 0.5, sparse versions perform
better as they avoid superfluous computation and memory access.
However, for densities greater than 0.5, extra memory accesses due
to using sparse data-structures reduces the benefit.

As for the different sparse implementations for SPU, alias-free
indirection outperforms stream-join at low densities, because it can
avoid unnecessary index loads. Their performance converges at
higher densities when this overhead is relatively less important.
We observe that for the problems which can be expressed using
indirection or stream-join, it is often the case that indirection works
better. We believe this is the reason why recent accelerators which
exploit sparsity use alias-free indirection [39, 40, 72]. However,
there are kernels which might have an algorithmic advantage when
expressed as a stream-join (examples in Table 1, Page ). Indirection
can also be inferior if there is not enough on-chip memory to hold
the working-set, especially if the data is difficult to tile effectively.

7.4 Benefit of Decomposability
The speedup from decomposability is given below in Table 6.

Alg. GBDT Conv. FC KSVM AC BFS PR
Speedup 2.27 2.67 2.67 2 3 2 1

Table 6: Perf. Speedup With Adding Decomposability

To explain, GBDT uses 16-bit datatypes and gets 2.27× speedup,
because although we can increase the compute throughput by 4,
memory bandwidth becomes a bottleneck. Conv, and FC use 16-bit
datatypes, but only see a 2.6× improvement: although the mul-
tiplications could be done using subword-SIMD alone, decoding
run-length encoding of indices involves control serializing computa-
tion, which needs decomposability. AC involves various bitwidths

Area (mm2) Power (mW)

Control Core 0.041 10.1
SRAM (banked+linear) 0.196 21.2
Data Vector ports 0.012 1.4
Scratchpad Controller 0.094 18.1

Network 0.107 130.2
DGRA FUs (4x5) 0.124 115.9

Total DGRA 0.230 246.1

1 SPU Total 0.573 297.0

Table 7: Area and Power breakdown for SPU (28nm)

64 bits
Trad.

32bits
Trad.

16bits
Trad.

8bits
Trad.

64 bits
Meta-R

32bits
Meta-R

16bits
Meta-R

8bits
Meta-R

30k

60k

90k

120k

Ar
ea

 (u
m
2
)

0

40

80

120

160

Po
we

r C
on

su
m

pt
io

n 
(m

W
)Area (¹m2)

Power (mW)

Figure 21: DGRA Area and Power Sensitivity

(ranging from 1-bit boolean to 32-bit fixed point) coupled with
control flow. As DGRA allows bitwidths as small as 8-bit, we can
merge instructions with smaller bitwidths even if their control
flow is different, to achieve 3× throughput. As BFS and KSVM use
32-bit datatypes, they can be fully combined using DGRA, for 2×
improvement.

7.5 Area and Power

Sources of area and power: Table 7 shows the sources of area
and power for SPU at 28nm. The two major sources of area are the
scratchpad banks and DGRA, together occupying more than 2/3 of
the total; DGRA is the major contributor to power (assuming all
PEs are active).
Overhead with decomposability: Figure 21 shows the power
and area cost of implementing the stream-join control and decom-
posability (simplest design is a standard 64-bit systolic CGRA). The
stream-join control model costs about 1.7× area and power, and this
is mostly due the complexity of dynamic flow control (rather than
the control table). On top of this, decomposability costs around
1.2× area and power. Overall these are reasonable overheads given
the performance benefits.
SPU’s power and area comparison to the GPU: Estimates be-
low show SPU has 4× lower power.

Alg. GBDT Conv. FC KSVM AC
SPU (W) 21.16 20.73 21.18 21.43 16.48
GPU (W) 84.87 84.02 84.92 85.42 75.60

8 RELATEDWORK
Table 8 gives a high-level overview of how we position SPU relative
to select related work. In general, domain-specific accelerators
target up to one form of data-dependence, while SPU has efficient
support for both, and a domain-agnostic interface.
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Architecture Domain Stream-
Join

Alias-free
Ind.

Non-data-
dependent

Scnn/EIE[40, 72] Sparse-NN - Very-High -
Q100 [106] DB Very-High - -
Graphicion. [39] Graph Alg. - Very-High -
Sparse ML [59] Sparse-MM Very-High - -
PuDianNao [54] NN - - Very-High
Outersp [70] Sparse-MM - Very-High -
LSSD [66] Agnostic Low Low Very-high
Plasticine [76] Agnostic - High Very-high
SPU (ours) Agnostic Very-

High
Very-
High

Very-
High

VT [52, 53] Agnostic High High High
Dataflow [16, 93] Agnostic Medium Medium High
GPU Agnostic Low Medium High
CPU Agnostic Low Medium Medium

Table 8: Analysis of Related Works (roughly least to most general)

Domain-specific Accelerators: Pudiannao [54] is an accelerator
for multiple dense ML kernels. Several designs specialize sparse-
matrix computations, including many for FPGAs [34, 38, 111].
Nurvitadhi et al. propose a sparse-matrix accelerator specialized
for SVM [68]. Mishra et al. develop an in-core accelerator for sparse
matrices, and demonstrate generality to many ML workloads [59].

From the database accelerator domain, we draw inspiration from
Q100’s ability to perform pipelined join and filtering [106] to cre-
ate our general purpose stream-join model. DB-Mesh [17] is a
systolic-style homogeneous array for executing nested-loop joins.
WIDX [50] is database index accelerator focusing on indirect mem-
ory access. UDP [32] targets encoding and compression workloads,
which both express data-dependence.
Domain-agnostic Vector Accelerators: Vector-threads (VT)
architectures [52, 53, 82] have a flexible SIMD/MIMD execution
model, where vector lanes can be decomposed into independent
lanes to enable parallel execution for data-dependent codes.
(GANAX [107] applies some of the same principles, but is
specialized to ML). VT does not have spatial abstractions for
computation, which SPU uses to expose an extra dimension of
parallelism: pipeline parallelism. For example on VT, stream-joins
would not execute at one item per cycle due to instruction
overhead, but these computations can be pipelined on SPU. There
are other less fundamental differences like SPU’s support for
programmer-controlled scratchpads with global address space.
Domain-agnostic Spatial Architectures: LSSD is a domain-
agnostic multi-tile accelerator with CGRAs and simple control
cores [66]. However, it lacks support for data-dependent control or
memory, so is far less general.

General spatial-dataflow architectures (eg. WaveScalar [93],
TRIPS [16]) can perform stream joins, but at much lower through-
put (due to control dependence loop, see Figure 4). Triggered
instructions [71] and Intel’s CSA [104] can perform pipelined
stream-joins, but require much more complex non-systolic PEs
(>3× higher area [81]), and are also not capable of decomposability.
They are also not specialized for alias-free indirection, and require
parallel dependence checking. In concurrent work, Master of
None [55] proposes a programmable systolic-style homogeneous
reconfigurable array that can execute general database queries, as

well as pipelined stream-join through a dedicated control network.
Plasticine [76, 77] is a tiled spatial architecture, composed of

SIMD compute tiles and scratchpad tiles. Plasticine does not support
stream-join dataflow, so would not be able to efficiently execute al-
gorithms with this form of control-dependence. Plasticine also does
not have compute-enabled globally-addressed scratchpads for high-
bandwidth atomic update and flexible data sharing. Plasticine uses
a parallel pattern programming interface [51, 75], while SPU pro-
vides a general purpose dataflow ISA, based on stream-dataflow [65].
While lower-level, SPU’s ISA can more flexibly implement various
computation/communication patterns. Recent work demonstrates
efficient hash-joins for Plasticine [89]; such techniques could im-
prove the performance and applicability of hash-joins in SPU.

Finally, lower precision control divergence is not supported in
these architectures; SPU has the strongest support for arbitrary
datatypes through its decomposable CGRA and memory. Note that
while decomposability has been applied in other contexts, e.g. sup-
porting multiple datatypes on a domain-specific CGRA [46, 86],
we believe we are the first to apply decomposability to preserve
independent flow-control.
General Purpose Processor Specialization: The decoupled-
stream ISA [101] allows expression of decoupled indirect streams
for general-purpose ISAs. It also enables decoupling of memory
from control flow in stream-joins. However, it does not specialize
for the stream-join computation or high-bandwidth indirect access.

9 CONCLUSION
This work identifies two forms of data-dependence which are
highly-specializable and are useful enough to be applicable to a va-
riety of algorithms. By defining a specialized execution model and
codesigned hardware, we enabled efficient acceleration of a large
range of workloads. Overall, we observed up to order-of-magnitude
speedups and significant power reductions compared to modern
CPUs and GPUs, while remaining flexible.

More broadly, this work shows that data-dependence does not
necessitate fixed-function hardware or massive arrays of inorder
processors – many algorithms are fundamentally data-parallel and
can be specialized provided the right architecture abstractions. We
believe that an important implication of this work could be to
inspire the communities in different domains (eg. machine learning
and databases) to explore the use of less regular data-structures
and novel algorithms with codesigned hardware.
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