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PIM GRAPHICS

EXECUTIVE SUMMARY
▸ Motivation: Texture filtering = 60% of memory requests in real-time 

rendering applications.


▸ Problem: Real-time rendering is a highly memory bound task due to texture 
filtering.


▸ Idea: Bypass memory bottleneck caused by texture filtering by:

▸ Using more memory efficient filtering pipeline.

▸ Reducing data movement in system.


▸ Contribution: Advanced-Texture Filtering In Memory (A-TFIM).

▸ Implements a portion of the texture filtering pipeline in HMC.

▸ Uses a camera-angle threshold for performance/accuracy ratio control.


▸ Key results: Evaluated on various 3D video-games.

▸ Average 1.4x rendering speedup over baseline.

▸ Average 22% less energy consumption compared to baseline.
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PIM GRAPHICS

OUTLINE
▸ Background: Texture Filtering


▸ Motivation


▸ Solutions: 


▸ B-PIM: Basic Processing In Memory


▸ S-TFIM: Simple Texture Filtering In Memory


▸ A-TFIM: Advanced Texture Filtering In Memory


▸ Evaluation Methodology


▸ Evaluation Results


▸ Conclusion
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PIM GRAPHICS

BACKGROUND: 3D RENDERING

9

▸ Goal: Convert a representation of a scene into an image.


▸ Used for 3D video-games and movies. 


▸ Textures: Used to add pre-computed color details.
Texturing Example

[1]: https://www.gamedeveloper.com/design/book-excerpt-3d-game-textures-create-professional-game-art-using-photoshop



PIM GRAPHICS

BACKGROUND: 3D RENDERING

10

▸ Goal: Convert a representation of a scene into an image.


▸ Used for 3D video-games and movies. 


▸ Textures: Used to add pre-computed color details.
Texturing Example

[1]: https://www.gamedeveloper.com/design/book-excerpt-3d-game-textures-create-professional-game-art-using-photoshop



PIM GRAPHICS

BACKGROUND: 3D RENDERING

11

▸ Goal: Convert a representation of a scene into an image.


▸ Used for 3D video-games and movies. 


▸ Textures: Used to add pre-computed color details.
Texturing Example

[1]: https://www.gamedeveloper.com/design/book-excerpt-3d-game-textures-create-professional-game-art-using-photoshop



PIM GRAPHICS

BACKGROUND: 3D RENDERING

12

▸ Goal: Convert a representation of a scene into an image.


▸ Used for 3D video-games and movies. 


▸ Textures: Used to add pre-computed color details.
Texturing Example

[1]: https://www.gamedeveloper.com/design/book-excerpt-3d-game-textures-create-professional-game-art-using-photoshop



PIM GRAPHICS

BACKGROUND: TEXTURE FILTERING

13

▸ Problem: Greatly reduced image sharpness if sample 
resolution >> texture resolution.

No Filtering Anisotropic Filtering
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▸ Problem: Greatly reduced image sharpness if sample 
resolution >> texture resolution.

▸ Solution: Texture Filtering.

No Filtering Texture Filtering

Image is blurry when camera angle is low.
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Overview of Texture Filtering Pipeline

▸ Goal: Reduce blur from under-sampling textures
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PIM GRAPHICS

BACKGROUND: BILINEAR FILTERING

[3]: Introduction to Computer Graphics (Spring 2020), 
EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 20
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▸ Texture coordinates: (u,v) 
pair defines a texel 
coordinate.


▸ Bilinear filtering: Sample 
texel and neighbouring 
texels.


▸ Result: Linear 
Interpolation between 
all sampled texels.

Example 2x2 texture being sampled
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PIM GRAPHICS

BACKGROUND: TRILINEAR & ANISOTROPIC FILTERING
▸ Trilinear Filtering: “Multi-resolution” bilinear filtering


▸ Sample pixels from the texture scaled in multiple ways.


▸ Anisotropic Filtering: “Multi-Angle” Trilinear Filtering 


▸ Ex: 16x anisotropic filtering:

31

[3]: Introduction to Computer Graphics (Spring 2020), EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 25

camera

Every 
impacted 
pixel is 
sampled

Viewport 
(image being 
rendered)

Idea behind Anisotropic Filtering
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camera

Every 
impacted 
pixel is 
sampled

Viewport 
(image being 
rendered)

Idea behind Anisotropic Filtering

▸ Ex: 16x anisotropic filtering:


▸  16x2x4 = 128 texels ==> 32x bilinear filtering.
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▸ Background: Texture Filtering
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▸ Solutions: 
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▸ Texture filtering causes memory to be a bottleneck in 3D rendering.


▸ Solution: Texture Filtering In Memory

PIM GRAPHICS

MOTIVATION

▸ 3D rendering: 60% of memory requests are texture fetches.

39

Other operations

Pe
rc

en
ta

ge
 o

f t
ot

al
 m

em
or

y 
re

qu
es

ts

60%



PIM GRAPHICS

OUTLINE
▸ Background: Texture Filtering


▸ Motivation


▸ Solutions: 


▸ B-PIM: Basic Processing In Memory


▸ S-TFIM: Simple Texture Filtering In Memory


▸ A-TFIM: Advanced Texture Filtering In Memory


▸ Evaluation Methodology


▸ Evaluation Results


▸ Conclusion

40



PIM GRAPHICS

B-PIM: BASIC PROCESSING-IN-MEMORY
▸ Idea: Replace GPU memory with Hybrid Memory Cube.


▸ Hybrid Memory Cube: High bandwidth 3D stacked DRAM technology with a logic layer 
at the base. 


▸ Vertical connection = Through-Silicon Vias (TSV):

▸ Internal bandwidth (connection to logic layer):

▸  512 GB/s


▸ External bandwidth (connection to host): 

▸ 320 GB/s

41

[2]: https://community.cadence.com/
cadence_blogs_8/b/fv/posts/what-s-
new-with-hybrid-memory-cube-hmc
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▸ Overview: GPU is the same, performance is increased by 
having HMC as memory.
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▸ Overview: GPU is the same, performance is increased by 
having HMC as memory.

Overview of the B-PIM baseline Texture Unit

▸ Problem: Doesn’t exploit internal bandwidth of HMC.
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PIM GRAPHICS

S-TFIM: SIMPLE TEXTURE FILTERING IN MEMORY
▸ Idea: Move all texture filtering to logic layer of HMC.


▸ Unified Shader (US) requests texel => HMC provides filtered texel.


▸ MTU: Does filtering in Logic layer of HMC.
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Overview of the B-PIM baseline Texture Unit
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Overview of S-TFIM architecture
Overview of the B-PIM baseline Texture Unit

▸ Problem: Intermediate filtered-texel caching is no longer possible.
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A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
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▸ Idea: Focus on most memory hungry phase ==> 
Anisotropic Filtering


▸ Two types of texels:


▸ parent texels: the requested texel.


▸ children texels: the texels neighbouring the 
requested one.


▸ Children texels are fetched directly in memory ==> lower 
latency.
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A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.


▸ Anisotropic Filtering is done before the other phases.


▸ Greatly reduces memory traffic between host and HMC.
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▸ A-TFIM allows intermediate filtered texels to be cached like in baseline.
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▸ A-TFIM: Allows for texel caching.


▸ Reduction in memory traffic caused by forced re-computation.
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▸ A-TFIM: Allows for texel caching.


▸ Reduction in memory traffic caused by forced re-computation.

Overview of A-TFIM Architecture

Generate 
Child texel 
coordinates

Load in 
Parent texels
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▸ A-TFIM: Allows for texel caching.


▸ Reduction in memory traffic caused by forced re-computation.

Overview of A-TFIM Architecture
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▸ A-TFIM: Allows for texel caching.


▸ Reduction in memory traffic caused by forced re-computation.

Overview of A-TFIM Architecture

Children Texels
Parent Texels

Actually do the anisotropic filtering
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▸ A-TFIM: Allows for texel caching.


▸ Reduction in memory traffic caused by forced re-computation.

Overview of A-TFIM Architecture
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OUTLINE
▸ Background: Texture Filtering


▸ Motivation


▸ Solutions: 


▸ B-PIM: Basic Processing In Memory


▸ S-TFIM: Simple Texture Filtering In Memory


▸ A-TFIM: Advanced Texture Filtering In Memory


▸ Evaluation Methodology


▸ Evaluation Results


▸ Conclusion
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PIM GRAPHICS

EVALUATION METHODOLOGY
▸ Simulator: ATTILA cycle accurate rasterisation-based GPU sim. 


▸ Extended with an HMC block.


▸ Power model: McPAT for power consumption of GPU’s.


▸ How: Simulate extracted OpenGL and D3D commands.


▸ Use Cases: 3D video-games: doom3, Fear, and Half-Life 2. 


▸ Metrics: 


▸ Quality in Peak Signal-to-Noise Ratio (PSNR).


▸ Performance in Normalized Speedup.
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Results from Overall 3D Rendering Performance Evaluation
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Results from Overall 3D Rendering Performance Evaluation

▸ S-TFIM: Same performance as B-PIM.


▸ A-TFIM: 1.5x speedup over baseline GPU.
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Results from Memory Traffic Evaluation
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Results from Memory Traffic Evaluation
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Results from Memory Traffic Evaluation

▸ S-TFIM: Forced re-computation of intermediate texels due to 
lack of texel-caching in GPU ==> High memory traffic.
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Results from Energy Consumption Evaluation
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Results from Energy Consumption Evaluation
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Results from Energy Consumption Evaluation

▸ A-TFIM: Reduces energy consumption by 25% over 
baseline GPU.
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Results from Camera Angle Threshold Quality reduction Evaluation
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Results from Camera Angle Threshold Quality reduction Evaluation

▸ Lowest threshold yields virtually perfect image but lower speedup.


▸ Ideal threshold: 0.01pi ≈ 1.8°
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Results from Camera Angle Threshold Quality reduction Evaluation

▸ Lowest threshold yields virtually perfect image but lower speedup.


▸ Ideal threshold: 0.01pi ≈ 1.8°
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PIM GRAPHICS

CONCLUSION
▸ Motivation: Texture filtering = 60% of memory requests in real-time 

rendering applications.


▸ Problem: Real-time rendering is a highly memory bound task due to texture 
filtering.


▸ Idea: Bypass memory bottleneck caused by texture filtering by:

▸ Using more memory efficient filtering pipeline.

▸ Reducing data movement in system.


▸ Solution: Advanced-Texture Filtering In Memory (A-TFIM).

▸ Implements a portion of the texture filtering pipeline in HMC.

▸ Uses a camera-angle threshold for performance/accuracy ratio control.


▸ Key results: Evaluated on various 3D video-games.

▸ Average 1.4x rendering speedup over baseline.

▸ Average 22% less energy consumption compared to baseline.
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PIM GRAPHICS

STRENGTHS
▸ Proposed solution is novel and the only one in its field (to 

the best of my knowledge no one else has really 
attempted accelerating 3D rendering with PIM).


▸ Results obtained are impressive in terms of energy 
efficiency, which would be great for mobile rendering.


▸ The proposed pipeline reordering with low precision loss 
shows requires domain-expertise from the authors to 
figure out, showing the authors' investment in the field. 
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PIM GRAPHICS

WEAKNESSES
▸ Reminder: The goal of this project is to improve 3D video-

game performance.


▸ Many different works have tackled this, getting better 
results with simpler implementations (look at texture 
compression for example). 


▸ The system was only tested on games from 20+years ago, 
rendering demands have greatly changed since then, how 
does this perform on modern applications?


▸ Maybe texture filtering isn’t what should be focused on for 
modern rendering applications…
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PIM GRAPHICS

TAKEAWAY
▸ Accelerating Graphics is a problem that is difficult to 

approach since it requires domain-specific expertise in 
both Computer Graphics and Computer Architecture.


▸ This work proves that PIM architecture can be used to 
construct better accelerators for 3D rendering.


▸ Currently feels like a “proof of concept” and needs to be 
adapted for modern workloads.
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DISCUSSION: CAN GRAPHICS BENEFIT FROM PIM?
▸ Modern systems have been evolving and taking many 

different forms.


▸ Rendering is now done on all types of systems: embedded 
VR, Cloud gaming, mobile rendering, …


▸ Question: Can these new systems benefit from using 
PIM architectures?
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DISCUSSION: PIM ARCHITECTURES
▸ Most applications have their own memory and compute 

bound parts.


▸ Most of the work in PIM architectures is in isolating these 
parts from the entire application.


▸ Question: How do we detect the ideal sub-
computations to offload to a PIM system? Could there 
be a way to automate this process?
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DISCUSSION: PIM ARCHITECTURES
▸ Most applications have their own memory and compute 

bound parts.


▸ Most of the work in PIM architectures is in isolating these 
parts from the entire application.


▸ Question: How to decide when/what to offload to PIM 
systems? Can this be automated? Is a cache miss 
always the best decision metric?
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DISCUSSION: IS THERE A BETTER APPROACH?
▸ Texture filtering can be accelerated with other methods 

such as smart prefetching or texture compression.


▸ Modern rendering applications struggle more with 
unpredictable memory latencies from geometry fetches 
rather than textures.


▸ Question: What would have been a better approach to 
accelerating modern 3D rendering applications using a 
PIM architecture?
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DISCUSSION: IS THERE A BETTER APPROACH?
▸ Texture filtering can be accelerated with other methods 

such as smart prefetching or texture compression.


▸ Modern rendering applications struggle more with 
unpredictable memory latencies from geometry fetches 
rather than textures.


▸ Question: Can we leverage PIM architectures for 
handling unpredictable memory latencies?
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LET’S DISCUSS
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PRIOR WORK: TEXRAM, A SMART MEMORY FOR TEXTURING
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Texram chip:


Separate chip with its own 
memory capable of generating 
Mipmaps and performing 
Bilinear and Trilinear filtering.


Reference:


Andreas Schilling, Gunter 
Knittel, and Wolfgang Strasser - 
IEEE Computer Graphics and 
Applications 1996
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FOLLOW-UP WORK: PIM-VR
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▸ Idea: Reduce head movement response delay in Virtual Reality systems 
by accelerating Asynchronous Time Warp (ATW) using a PIM architecture.


▸ Reference: (Same authors as this work) “PIM-VR: Erasing Motion 
Anomalies In Highly-Interactive Virtual Reality World With Customized 
Memory Cube” - HPCA 2019


