
PROCESSING-IN-MEMORY ENABLED
GRAPHICS PROCESSORS FOR 3D RENDERING

CHENHAO XIE*, SHUAIWEN LEON SONG**, JING WANG***, WEIGONG ZHANG***, XIN FU*

* ECE DEPARTMENT, UNIVERSITY OF HOUSTON
** HPC GROUP, PACIFIC NORTHWEST NATIONAL LAB (PNNL)
*** CAPITAL NORMAL UNIVERSITY BEIJING

PRESENTED AT: HPCA 2017

1

REVIEW: ANDREW DOBIS

PIM GRAPHICS

EXECUTIVE SUMMARY
▸ Motivation: Texture filtering = 60% of memory requests in real-time

rendering applications.

▸ Problem: Real-time rendering is a highly memory bound task due to texture
filtering.

▸ Idea: Bypass memory bottleneck caused by texture filtering by:
▸ Using more memory efficient filtering pipeline.
▸ Reducing data movement in system.

▸ Contribution: Advanced-Texture Filtering In Memory (A-TFIM).
▸ Implements a portion of the texture filtering pipeline in HMC.
▸ Uses a camera-angle threshold for performance/accuracy ratio control.

▸ Key results: Evaluated on various 3D video-games.
▸ Average 1.4x rendering speedup over baseline.
▸ Average 22% less energy consumption compared to baseline.

2

PIM GRAPHICS

EXECUTIVE SUMMARY
▸ Motivation: Texture filtering = 60% of memory requests in real-time

rendering applications.

▸ Problem: Real-time rendering is a highly memory bound task due to texture
filtering.

▸ Idea: Bypass memory bottleneck caused by texture filtering by:
▸ Using more memory efficient filtering pipeline.
▸ Reducing data movement in system.

▸ Contribution: Advanced-Texture Filtering In Memory (A-TFIM).
▸ Implements a portion of the texture filtering pipeline in HMC.
▸ Uses a camera-angle threshold for performance/accuracy ratio control.

▸ Key results: Evaluated on various 3D video-games.
▸ Average 1.4x rendering speedup over baseline.
▸ Average 22% less energy consumption compared to baseline.

3

PIM GRAPHICS

EXECUTIVE SUMMARY
▸ Motivation: Texture filtering = 60% of memory requests in real-time

rendering applications.

▸ Problem: Real-time rendering is a highly memory bound task due to texture
filtering.

▸ Idea: Bypass memory bottleneck caused by texture filtering by:
▸ Using more memory efficient filtering pipeline.
▸ Reducing data movement in system.

▸ Contribution: Advanced-Texture Filtering In Memory (A-TFIM).
▸ Implements a portion of the texture filtering pipeline in HMC.
▸ Uses a camera-angle threshold for performance/accuracy ratio control.

▸ Key results: Evaluated on various 3D video-games.
▸ Average 1.4x rendering speedup over baseline.
▸ Average 22% less energy consumption compared to baseline.

4

PIM GRAPHICS

EXECUTIVE SUMMARY
▸ Motivation: Texture filtering = 60% of memory requests in real-time

rendering applications.

▸ Problem: Real-time rendering is a highly memory bound task due to texture
filtering.

▸ Idea: Bypass memory bottleneck caused by texture filtering by:
▸ Using more memory efficient filtering pipeline.
▸ Reducing data movement in system.

▸ Solution: Advanced-Texture Filtering In Memory (A-TFIM).
▸ Implements a portion of the texture filtering pipeline in HMC.
▸ Uses a camera-angle threshold for performance/accuracy ratio control.

▸ Key results: Evaluated on various 3D video-games.
▸ Average 1.4x rendering speedup over baseline.
▸ Average 22% less energy consumption compared to baseline.

5

PIM GRAPHICS

EXECUTIVE SUMMARY
▸ Motivation: Texture filtering = 60% of memory requests in real-time

rendering applications.

▸ Problem: Real-time rendering is a highly memory bound task due to texture
filtering.

▸ Idea: Bypass memory bottleneck caused by texture filtering by:
▸ Using more memory efficient filtering pipeline.
▸ Reducing data movement in system.

▸ Solution: Advanced-Texture Filtering In Memory (A-TFIM).
▸ Implements a portion of the texture filtering pipeline in HMC.
▸ Uses a camera-angle threshold for performance/accuracy ratio control.

▸ Key results: Evaluated on various 3D video-games.
▸ Average 1.4x rendering speedup over baseline.
▸ Average 22% less energy consumption compared to baseline.

6

PIM GRAPHICS

OUTLINE
▸ Background: Texture Filtering

▸ Motivation

▸ Solutions:

▸ B-PIM: Basic Processing In Memory

▸ S-TFIM: Simple Texture Filtering In Memory

▸ A-TFIM: Advanced Texture Filtering In Memory

▸ Evaluation Methodology

▸ Evaluation Results

▸ Conclusion

7

PIM GRAPHICS

OUTLINE
▸ Background: Texture Filtering

▸ Motivation

▸ Solutions:

▸ B-PIM: Basic Processing In Memory

▸ S-TFIM: Simple Texture Filtering In Memory

▸ A-TFIM: Advanced Texture Filtering In Memory

▸ Evaluation Methodology

▸ Evaluation Results

▸ Conclusion

8

PIM GRAPHICS

BACKGROUND: 3D RENDERING

9

▸ Goal: Convert a representation of a scene into an image.

▸ Used for 3D video-games and movies.

▸ Textures: Used to add pre-computed color details.
Texturing Example

[1]: https://www.gamedeveloper.com/design/book-excerpt-3d-game-textures-create-professional-game-art-using-photoshop

PIM GRAPHICS

BACKGROUND: 3D RENDERING

10

▸ Goal: Convert a representation of a scene into an image.

▸ Used for 3D video-games and movies.

▸ Textures: Used to add pre-computed color details.
Texturing Example

[1]: https://www.gamedeveloper.com/design/book-excerpt-3d-game-textures-create-professional-game-art-using-photoshop

PIM GRAPHICS

BACKGROUND: 3D RENDERING

11

▸ Goal: Convert a representation of a scene into an image.

▸ Used for 3D video-games and movies.

▸ Textures: Used to add pre-computed color details.
Texturing Example

[1]: https://www.gamedeveloper.com/design/book-excerpt-3d-game-textures-create-professional-game-art-using-photoshop

PIM GRAPHICS

BACKGROUND: 3D RENDERING

12

▸ Goal: Convert a representation of a scene into an image.

▸ Used for 3D video-games and movies.

▸ Textures: Used to add pre-computed color details.
Texturing Example

[1]: https://www.gamedeveloper.com/design/book-excerpt-3d-game-textures-create-professional-game-art-using-photoshop

PIM GRAPHICS

BACKGROUND: TEXTURE FILTERING

13

▸ Problem: Greatly reduced image sharpness if sample
resolution >> texture resolution.

No Filtering Anisotropic Filtering

PIM GRAPHICS

BACKGROUND: TEXTURE FILTERING

14

▸ Problem: Greatly reduced image sharpness if sample
resolution >> texture resolution.

No Filtering

[7]: https://www.game-debate.com/news/27720/what-do-texture-filtering-and-anisotropic-filtering-do-graphics-settings-explained

PIM GRAPHICS

BACKGROUND: TEXTURE FILTERING

15

▸ Problem: Greatly reduced image sharpness if sample
resolution >> texture resolution.

No Filtering

[7]: https://www.game-debate.com/news/27720/what-do-texture-filtering-and-anisotropic-filtering-do-graphics-settings-explained

▸ Solution: Texture Filtering.

PIM GRAPHICS

BACKGROUND: TEXTURE FILTERING

16

No Filtering Texture Filtering

[7]: https://www.game-debate.com/news/27720/what-do-texture-filtering-and-anisotropic-filtering-do-graphics-settings-explained

▸ Problem: Greatly reduced image sharpness if sample
resolution >> texture resolution.

▸ Solution: Texture Filtering.

PIM GRAPHICS

BACKGROUND: TEXTURE FILTERING

17

No Filtering Texture Filtering

[7]: https://www.game-debate.com/news/27720/what-do-texture-filtering-and-anisotropic-filtering-do-graphics-settings-explained

▸ Problem: Greatly reduced image sharpness if sample
resolution >> texture resolution.

▸ Solution: Texture Filtering.

PIM GRAPHICS

BACKGROUND: TEXTURE FILTERING

18

▸ Problem: Greatly reduced image sharpness if sample
resolution >> texture resolution.

▸ Solution: Texture Filtering.

No Filtering Texture Filtering

Image is blurry when camera angle is low.

PIM GRAPHICS

BACKGROUND: TEXTURE FILTERING

19

Overview of Texture Filtering Pipeline

▸ Goal: Reduce blur from under-sampling textures

PIM GRAPHICS

BACKGROUND: TEXTURE FILTERING

20

Overview of Texture Filtering Pipeline

▸ Goal: Reduce blur from under-sampling textures

PIM GRAPHICS

BACKGROUND: TEXTURE FILTERING

21

Overview of Texture Filtering Pipeline

▸ Goal: Reduce blur from under-sampling textures

PIM GRAPHICS

BACKGROUND: TEXTURE FILTERING

22

Overview of Texture Filtering Pipeline

▸ Goal: Reduce blur from under-sampling textures

PIM GRAPHICS

BACKGROUND: BILINEAR FILTERING

[3]: Introduction to Computer Graphics (Spring 2020),
EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 20

23

▸ Texture coordinates: (u,v)
pair defines a texel
coordinate.

▸ Bilinear filtering: Sample
texel and neighbouring
texels.

▸ Result: Linear
Interpolation between
all sampled texels.

Example 2x2 texture being sampled

PIM GRAPHICS

BACKGROUND: BILINEAR FILTERING

[3]: Introduction to Computer Graphics (Spring 2020),
EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 20

24

▸ Texture coordinates: (u,v)
pair defines a texel
coordinate.

▸ Bilinear filtering: Sample
texel and neighboring
texels.

▸ Result: Linear
Interpolation between
all sampled texels.

Example 2x2 texture being sampled

PIM GRAPHICS

BACKGROUND: BILINEAR FILTERING

[3]: Introduction to Computer Graphics (Spring 2020),
EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 20

25

▸ Texture coordinates: (u,v)
pair defines a texel
coordinate.

▸ Bilinear filtering: Sample
texel and neighboring
texels.

▸ Result: Linear
Interpolation between
all sampled texels.

Example 2x2 texture being sampled

PIM GRAPHICS

BACKGROUND: BILINEAR FILTERING

[3]: Introduction to Computer Graphics (Spring 2020),
EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 20

26

▸ Texture coordinates: (u,v)
pair defines a texel
coordinate.

▸ Bilinear filtering: Sample
texel and neighboring
texels.

▸ Result: Linear
Interpolation between
all sampled texels.

Example 2x2 texture being sampled

PIM GRAPHICS

BACKGROUND: BILINEAR FILTERING

[3]: Introduction to Computer Graphics (Spring 2020),
EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 20

27

▸ Texture coordinates: (u,v)
pair defines a texel
coordinate.

▸ Bilinear filtering: Sample
texel and neighboring
texels.

▸ Result: Linear
Interpolation between
all sampled texels.

Example 2x2 texture being sampled

PIM GRAPHICS

BACKGROUND: BILINEAR FILTERING

[3]: Introduction to Computer Graphics (Spring 2020),
EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 20

28

▸ Texture coordinates: (u,v)
pair defines a texel
coordinate.

▸ Bilinear filtering: Sample
texel and neighboring
texels.

▸ Result: Linear
Interpolation between
all sampled texels.

Example 2x2 texture being sampled

PIM GRAPHICS

BACKGROUND: BILINEAR FILTERING

[3]: Introduction to
Computer Graphics
(Spring 2020), EPFL,
Prof. Mark Pauly, Lecture
7a: Texturing, Slide 20

29

▸ Texture coordinates: (u,v)
pair defines a texel
coordinate.

▸ Bilinear filtering: Sample
texel and neighboring
texels.

▸ Result: Linear
Interpolation between
all sampled texels.

▸ Every sample requires at
least 4 memory requests.

Example 2x2 texture being sampled

Resulting Filtered Texel

PIM GRAPHICS

BACKGROUND: BILINEAR FILTERING

[3]: Introduction to
Computer Graphics
(Spring 2020), EPFL,
Prof. Mark Pauly, Lecture
7a: Texturing, Slide 20

30

▸ Texture coordinates: (u,v)
pair defines a texel
coordinate.

▸ Bilinear filtering: Sample
texel and neighboring
texels.

▸ Result: Linear
Interpolation between
all sampled texels.

▸ Every sample requires at
least 4 memory requests.

Example 2x2 texture being sampled

Resulting Filtered Texel

PIM GRAPHICS

BACKGROUND: TRILINEAR & ANISOTROPIC FILTERING
▸ Trilinear Filtering: “Multi-resolution” bilinear filtering

▸ Sample pixels from the texture scaled in multiple ways.

▸ Anisotropic Filtering: “Multi-Angle” Trilinear Filtering

▸ Ex: 16x anisotropic filtering:

31

[3]: Introduction to Computer Graphics (Spring 2020), EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 25

camera

Every
impacted
pixel is
sampled

Viewport
(image being
rendered)

Idea behind Anisotropic Filtering

PIM GRAPHICS

BACKGROUND: TRILINEAR & ANISOTROPIC FILTERING
▸ Trilinear Filtering: “Multi-resolution” bilinear filtering

▸ Anisotropic Filtering: “Multi-angle” trilinear filtering

▸ Sample pixels from the texture adapted for different camera angles.

▸ Ex: 16x anisotropic filtering:

32

[3]: Introduction to Computer Graphics (Spring 2020), EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 25

camera

Every
impacted
pixel is
sampled

Viewport
(image being
rendered)

Idea behind Anisotropic Filtering

PIM GRAPHICS

BACKGROUND: TRILINEAR & ANISOTROPIC FILTERING
▸ Trilinear Filtering: “Multi-resolution” bilinear filtering

▸ Anisotropic Filtering: “Multi-angle” trilinear filtering

▸ Sample pixels from the texture adapted for different camera angles.

▸ Ex: 16x anisotropic filtering:

33

[3]: Introduction to Computer Graphics (Spring 2020), EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 25

camera

Every
impacted
pixel is
sampled

Viewport
(image being
rendered)

Idea behind Anisotropic Filtering

[3]: Introduction to Computer Graphics (Spring 2020), EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 25

camera

Every
impacted
pixel is
sampled

Viewport
(image being
rendered)

Idea behind Anisotropic Filtering

PIM GRAPHICS

BACKGROUND: TRILINEAR & ANISOTROPIC FILTERING
▸ Trilinear Filtering: “Multi-resolution” bilinear filtering

▸ Anisotropic Filtering: “Multi-angle” trilinear filtering

▸ Sample pixels from the texture adapted for different camera angles.

▸ Ex: 16x anisotropic filtering:

34

[3]: Introduction to Computer Graphics (Spring 2020), EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 25

camera

Every
impacted
pixel is
sampled

Viewport
(image being
rendered)

Idea behind Anisotropic Filtering

[3]: Introduction to Computer Graphics (Spring 2020), EPFL, Prof. Mark Pauly, Lecture 7a: Texturing, Slide 25

camera

Every
impacted
pixel is
sampled

Viewport
(image being
rendered)

Idea behind Anisotropic Filtering

▸ Ex: 16x anisotropic filtering:

▸ 16x2x4 = 128 texels ==> 32x bilinear filtering.

PIM GRAPHICS

OUTLINE
▸ Background: Texture Filtering

▸ Motivation

▸ Solutions:

▸ B-PIM: Basic Processing In Memory

▸ S-TFIM: Simple Texture Filtering In Memory

▸ A-TFIM: Advanced Texture Filtering In Memory

▸ Evaluation Methodology

▸ Evaluation Results

▸ Conclusion

35

PIM GRAPHICS

MOTIVATION
36

Other operations

Pe
rc

en
ta

ge
 o

f t
ot

al
 m

em
or

y
re

qu
es

ts

PIM GRAPHICS

MOTIVATION

▸ 3D rendering: 60% of memory requests are texture fetches.

37

Other operations

Pe
rc

en
ta

ge
 o

f t
ot

al
 m

em
or

y
re

qu
es

ts

60%

PIM GRAPHICS

MOTIVATION

▸ 3D rendering: 60% of memory requests are texture fetches.

38

Other operations

Pe
rc

en
ta

ge
 o

f t
ot

al
 m

em
or

y
re

qu
es

ts

60%

▸ Texture filtering causes memory to be a bottleneck in 3D rendering.

▸ Texture filtering causes memory to be a bottleneck in 3D rendering.

▸ Solution: Texture Filtering In Memory

PIM GRAPHICS

MOTIVATION

▸ 3D rendering: 60% of memory requests are texture fetches.

39

Other operations

Pe
rc

en
ta

ge
 o

f t
ot

al
 m

em
or

y
re

qu
es

ts

60%

PIM GRAPHICS

OUTLINE
▸ Background: Texture Filtering

▸ Motivation

▸ Solutions:

▸ B-PIM: Basic Processing In Memory

▸ S-TFIM: Simple Texture Filtering In Memory

▸ A-TFIM: Advanced Texture Filtering In Memory

▸ Evaluation Methodology

▸ Evaluation Results

▸ Conclusion

40

PIM GRAPHICS

B-PIM: BASIC PROCESSING-IN-MEMORY
▸ Idea: Replace GPU memory with Hybrid Memory Cube.

▸ Hybrid Memory Cube: High bandwidth 3D stacked DRAM technology with a logic layer
at the base.

▸ Vertical connection = Through-Silicon Vias (TSV):
▸ Internal bandwidth (connection to logic layer):
▸ 512 GB/s

▸ External bandwidth (connection to host):
▸ 320 GB/s

41

[2]: https://community.cadence.com/
cadence_blogs_8/b/fv/posts/what-s-
new-with-hybrid-memory-cube-hmc

PIM GRAPHICS

B-PIM: BASIC PROCESSING-IN-MEMORY
▸ Idea: Replace GPU memory with Hybrid Memory Cube.

▸ Hybrid Memory Cube: High bandwidth 3D stacked DRAM technology with a logic layer
at the base.

▸ Vertical connection = Through-Silicon Vias (TSV):
▸ Internal bandwidth (connection to logic layer):
▸ 512 GB/s

▸ External bandwidth (connection to host):
▸ 320 GB/s

42

[2]: https://community.cadence.com/
cadence_blogs_8/b/fv/posts/what-s-
new-with-hybrid-memory-cube-hmc

PIM GRAPHICS

B-PIM: BASIC PROCESSING-IN-MEMORY
▸ Idea: Replace GPU memory with Hybrid Memory Cube.

▸ Hybrid Memory Cube: High bandwidth 3D stacked DRAM technology with a logic layer
at the base.

▸ Vertical connection = Through-Silicon Via (TSV):
▸ Internal bandwidth (connection to logic layer):
▸ 512 GB/s

▸ External bandwidth (connection to host):
▸ 320 GB/s

43

[2]: https://community.cadence.com/
cadence_blogs_8/b/fv/posts/what-s-
new-with-hybrid-memory-cube-hmc

PIM GRAPHICS

B-PIM: BASIC PROCESSING-IN-MEMORY

44

▸ Overview: GPU is the same, performance is increased by
having HMC as memory.

PIM GRAPHICS

B-PIM: BASIC PROCESSING-IN-MEMORY

45

▸ Overview: GPU is the same, performance is increased by
having HMC as memory.

Overview of the B-PIM baseline

PIM GRAPHICS

B-PIM: BASIC PROCESSING-IN-MEMORY

46

▸ Overview: GPU is the same, performance is increased by
having HMC as memory.

Overview of the B-PIM baseline

PIM GRAPHICS

B-PIM: BASIC PROCESSING-IN-MEMORY

47

▸ Overview: GPU is the same, performance is increased by
having HMC as memory.

Overview of the B-PIM baseline Texture Unit

▸ Problem: Doesn’t exploit internal bandwidth of HMC.

PIM GRAPHICS

OUTLINE
▸ Background: Texture Filtering

▸ Motivation

▸ Solutions:

▸ B-PIM: Basic Processing In Memory

▸ S-TFIM: Simple Texture Filtering In Memory

▸ A-TFIM: Advanced Texture Filtering In Memory

▸ Evaluation Methodology

▸ Evaluation Results

▸ Conclusion

48

PIM GRAPHICS

S-TFIM: SIMPLE TEXTURE FILTERING IN MEMORY
▸ Idea: Move all texture filtering to logic layer of HMC.

▸ Unified Shader (US) requests texel => HMC provides filtered texel.

▸ MTU: Does filtering in Logic layer of HMC.

49

Overview of S-TFIM architecture

PIM GRAPHICS

S-TFIM: SIMPLE TEXTURE FILTERING IN MEMORY
▸ Idea: Move all texture filtering to logic layer of HMC.

▸ Unified Shader (US) requests texel => HMC provides filtered texel.

▸ MTU: Does filtering in Logic layer of HMC.

50

Overview of S-TFIM architecture

PIM GRAPHICS

S-TFIM: SIMPLE TEXTURE FILTERING IN MEMORY
▸ Idea: Move all texture filtering to logic layer of HMC.

▸ Unified Shader (US) requests texel => HMC provides filtered texel.

▸ Memory Texture Unit (MTU): Does filtering in Logic layer of HMC.

51

Overview of S-TFIM architecture

PIM GRAPHICS

S-TFIM: SIMPLE TEXTURE FILTERING IN MEMORY
▸ Idea: Move all texture filtering to logic layer of HMC.

▸ Unified Shader (US) requests texel => HMC provides filtered texel.

▸ Memory Texture Unit (MTU): Does filtering in Logic layer of HMC.

52

Overview of S-TFIM architecture

PIM GRAPHICS

S-TFIM: SIMPLE TEXTURE FILTERING IN MEMORY
▸ Idea: Move all texture filtering to logic layer of HMC.

▸ Unified Shader (US) requests texel => HMC provides filtered texel.

▸ Memory Texture Unit (MTU): Does filtering in Logic layer of HMC.

53

Overview of S-TFIM architecture
Overview of the B-PIM baseline Texture Unit

PIM GRAPHICS

S-TFIM: SIMPLE TEXTURE FILTERING IN MEMORY
▸ Idea: Move all texture filtering to logic layer of HMC.

▸ Unified Shader (US) requests texel => HMC provides filtered texel.

▸ Memory Texture Unit (MTU): Does filtering in Logic layer of HMC.

54

Overview of S-TFIM architecture
Overview of the B-PIM baseline Texture Unit

▸ Problem: Intermediate filtered-texel caching is no longer possible.

PIM GRAPHICS

OUTLINE
▸ Background: Texture Filtering

▸ Motivation

▸ Solutions:

▸ B-PIM: Basic Processing In Memory

▸ S-TFIM: Simple Texture Filtering In Memory

▸ A-TFIM: Advanced Texture Filtering In Memory

▸ Evaluation Methodology

▸ Evaluation Results

▸ Conclusion

55

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

56

▸ Idea: Focus on most memory hungry phase ==>
Anisotropic Filtering

▸ Two types of texels:

▸ parent texels: the requested texel.

▸ children texels: the texels neighbouring the
requested one.

▸ Children texels are fetched directly in memory ==> lower
latency.

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

57

▸ Idea: Focus on most memory hungry phase ==>
Anisotropic Filtering

▸ Two types of texels:

▸ parent texels: the requested texel.

▸ children texels: the texels neighbouring the
requested one.

▸ Children texels are fetched directly in memory ==> lower
latency.

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

58

▸ Idea: Focus on most memory hungry phase ==>
Anisotropic Filtering

▸ Two types of texels:

▸ parent texels: the requested texel.

▸ children texels: the texels neighbouring the
requested one.

▸ Children texels are fetched directly in memory ==> lower
latency.

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

59

▸ Idea: Focus on most memory hungry phase ==>
Anisotropic Filtering

▸ Two types of texels:

▸ parent texels: the requested texel.

▸ children texels: the texels neighboring the requested
one.

▸ Children texels are fetched directly in memory ==> lower
latency.

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

60

▸ Idea: Focus on most memory hungry phase ==>
Anisotropic Filtering

▸ Two types of texels:

▸ parent texels: the requested texel.

▸ children texels: the texels neighboring the requested
one.

▸ Children texels are fetched directly in memory ==> lower
latency.

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

61

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

62

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

63

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

64

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

65

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

66

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

67

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

68

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

69

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

70

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

71

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY
▸ Idea: Only move most memory hungry phase to memory.

▸ Anisotropic Filtering is done before the other phases.

▸ Greatly reduces memory traffic between host and HMC.

72

$GGUHVV�*HQHUDWRU

*HQHUDWHV����7H[HO�UHTXHVWV��
GXH�WR��[�$QLVRWURSLF�)LOWHULQJ

7H[HO�)HWFKLQJ

0HPRU\�$FFHVV

%LOLQHDU�)LOWHULQJ 7ULOLQHDU�)LOWHULQJ $QLVRWURSLF�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

%DVHOLQH�*38

$GGUHVV�*HQHUDWRU

2QO\���SDUHQW�WH[HO�IHWFKHV

7H[HO�)HWFKLQJ

&KLOG�WH[HO�)HWFKLQJ /RFDO�0HPRU\�DFFHVV

*HQHUDWHV���FKLOG�WH[HOV�IRU�HDFK�SDUHQW

$QLVRWURSLF�)LOWHULQJ

%LOLQHDU�)LOWHULQJ)LOWHUHG�WH[HO

*38

0HPRU\

$�7),0

7ULOLQHDU�)LOWHULQJ

Pipeline comparison between the baseline and A-TFIM

▸ A-TFIM allows intermediate filtered texels to be cached like in baseline.

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

73

▸ A-TFIM: Allows for texel caching.

▸ Reduction in memory traffic caused by forced re-computation.

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

74

▸ A-TFIM: Allows for texel caching.

▸ Reduction in memory traffic caused by forced re-computation.

Overview of A-TFIM Architecture

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

75

▸ A-TFIM: Allows for texel caching.

▸ Reduction in memory traffic caused by forced re-computation.

Overview of A-TFIM Architecture

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

76

▸ A-TFIM: Allows for texel caching.

▸ Reduction in memory traffic caused by forced re-computation.

Overview of A-TFIM Architecture

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

77

▸ A-TFIM: Allows for texel caching.

▸ Reduction in memory traffic caused by forced re-computation.

Overview of A-TFIM Architecture

Generate
Child texel
coordinates

Load in
Parent texels

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

78

▸ A-TFIM: Allows for texel caching.

▸ Reduction in memory traffic caused by forced re-computation.

Overview of A-TFIM Architecture

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

79

▸ A-TFIM: Allows for texel caching.

▸ Reduction in memory traffic caused by forced re-computation.

Overview of A-TFIM Architecture

Children Texels
Parent Texels

Actually do the anisotropic filtering

PIM GRAPHICS

A-TFIM: ADVANCED TEXTURE FILTERING IN MEMORY

80

▸ A-TFIM: Allows for texel caching.

▸ Reduction in memory traffic caused by forced re-computation.

Overview of A-TFIM Architecture

PIM GRAPHICS

OUTLINE
▸ Background: Texture Filtering

▸ Motivation

▸ Solutions:

▸ B-PIM: Basic Processing In Memory

▸ S-TFIM: Simple Texture Filtering In Memory

▸ A-TFIM: Advanced Texture Filtering In Memory

▸ Evaluation Methodology

▸ Evaluation Results

▸ Conclusion

81

PIM GRAPHICS

EVALUATION METHODOLOGY
▸ Simulator: ATTILA cycle accurate rasterisation-based GPU sim.

▸ Extended with an HMC block.

▸ Power model: McPAT for power consumption of GPU’s.

▸ How: Simulate extracted OpenGL and D3D commands.

▸ Use Cases: 3D video-games: doom3, Fear, and Half-Life 2.

▸ Metrics:

▸ Quality in Peak Signal-to-Noise Ratio (PSNR).

▸ Performance in Normalized Speedup.

82

PIM GRAPHICS

EVALUATION METHODOLOGY
▸ Simulator: ATTILA cycle accurate rasterization-based GPU sim.

▸ Extended with an HMC block.

▸ Power model: McPAT for power consumption of GPU’s.

▸ How: Simulate extracted OpenGL and D3D commands.

▸ Use Cases: 3D video-games: doom3, Fear, and Half-Life 2.

▸ Metrics:

▸ Quality in Peak Signal-to-Noise Ratio (PSNR).

▸ Performance in Normalized Speedup.

83

PIM GRAPHICS

EVALUATION METHODOLOGY
▸ Simulator: ATTILA cycle accurate rasterization-based GPU sim.

▸ Extended with an HMC block.

▸ Power model: McPAT for power consumption of GPU’s.

▸ How: Simulate extracted OpenGL and D3D commands.

▸ Use Cases: 3D video-games: doom3, Fear, and Half-Life 2.

▸ Metrics:

▸ Quality in Peak Signal-to-Noise Ratio (PSNR).

▸ Performance in Normalized Speedup.

84

PIM GRAPHICS

EVALUATION METHODOLOGY
▸ Simulator: ATTILA cycle accurate rasterization-based GPU sim.

▸ Extended with an HMC block.

▸ Power model: McPAT for power consumption of GPU’s.

▸ How: Simulate extracted OpenGL and D3D commands.

▸ Use Cases: 3D video-games: doom3, Fear, and Half-Life 2.

▸ Metrics:

▸ Quality in Peak Signal-to-Noise Ratio (PSNR).

▸ Performance in Normalized Speedup.

85

PIM GRAPHICS

EVALUATION METHODOLOGY
▸ Simulator: ATTILA cycle accurate rasterization-based GPU sim.

▸ Extended with an HMC block.

▸ Power model: McPAT for power consumption of GPU’s.

▸ How: Simulate extracted OpenGL and D3D commands.

▸ Use Cases: 3D video-games: doom3, Fear, and Half-Life 2.

▸ Metrics:

▸ Quality in Peak Signal-to-Noise Ratio (PSNR).

▸ Performance in Normalized Speedup.

86

PIM GRAPHICS

EVALUATION METHODOLOGY
▸ Simulator: ATTILA cycle accurate rasterization-based GPU sim.

▸ Extended with an HMC block.

▸ Power model: McPAT for power consumption of GPU’s.

▸ How: Simulate extracted OpenGL and D3D commands.

▸ Use Cases: 3D video-games: doom3, Fear, and Half-Life 2.

▸ Metrics:

▸ Quality in Peak Signal-to-Noise Ratio (PSNR).

▸ Performance in Normalized Speedup.

87

PIM GRAPHICS

EVALUATION METHODOLOGY
▸ Simulator: ATTILA cycle accurate rasterization-based GPU sim.

▸ Extended with an HMC block.

▸ Power model: McPAT for power consumption of GPU’s.

▸ How: Simulate extracted OpenGL and D3D commands.

▸ Use Cases: 3D video-games: doom3, Fear, and Half-Life 2.

▸ Metrics:

▸ Quality in Peak Signal-to-Noise Ratio (PSNR).

▸ Performance in Normalized Speedup.

88

PIM GRAPHICS

EVALUATION METHODOLOGY
▸ Simulator: ATTILA cycle accurate rasterization-based GPU sim.

▸ Extended with an HMC block.

▸ Power model: McPAT for power consumption of GPU’s.

▸ How: Simulate extracted OpenGL and D3D commands.

▸ Use Cases: 3D video-games: doom3, Fear, and Half-Life 2.

▸ Metrics:

▸ Quality in Peak Signal-to-Noise Ratio (PSNR).

▸ Performance in Normalized Speedup.

89

PIM GRAPHICS

OUTLINE
▸ Background: Texture Filtering

▸ Motivation

▸ Solutions:

▸ B-PIM: Basic Processing In Memory

▸ S-TFIM: Simple Texture Filtering In Memory

▸ A-TFIM: Advanced Texture Filtering In Memory

▸ Evaluation Methodology

▸ Evaluation Results

▸ Conclusion

90

PIM GRAPHICS

RESULTS: 3D RENDERING PERFORMANCE

91

Results from Overall 3D Rendering Performance Evaluation

PIM GRAPHICS

RESULTS: 3D RENDERING PERFORMANCE

92

Results from Overall 3D Rendering Performance Evaluation

PIM GRAPHICS

RESULTS: 3D RENDERING PERFORMANCE

93

Results from Overall 3D Rendering Performance Evaluation

▸ S-TFIM: Same performance as B-PIM.

▸ A-TFIM: 1.5x speedup over baseline GPU.

PIM GRAPHICS

RESULTS: MEMORY TRAFFIC

94

Results from Memory Traffic Evaluation

PIM GRAPHICS

RESULTS: MEMORY TRAFFIC

95

Results from Memory Traffic Evaluation

PIM GRAPHICS

RESULTS: MEMORY TRAFFIC

96

Results from Memory Traffic Evaluation

▸ S-TFIM: Forced re-computation of intermediate texels due to
lack of texel-caching in GPU ==> High memory traffic.

PIM GRAPHICS

RESULTS: ENERGY CONSUMPTION

97

Results from Energy Consumption Evaluation

PIM GRAPHICS

RESULTS: ENERGY CONSUMPTION

98

Results from Energy Consumption Evaluation

PIM GRAPHICS

RESULTS: ENERGY CONSUMPTION

99

Results from Energy Consumption Evaluation

▸ A-TFIM: Reduces energy consumption by 25% over
baseline GPU.

PIM GRAPHICS

RESULTS: QUALITY VS. SPEEDUP FOR A-TFIM ANGLES

100

Results from Camera Angle Threshold Quality reduction Evaluation

PIM GRAPHICS

RESULTS: QUALITY VS. SPEEDUP FOR A-TFIM ANGLES

101

Results from Camera Angle Threshold Quality reduction Evaluation

PIM GRAPHICS

RESULTS: QUALITY VS. SPEEDUP FOR A-TFIM ANGLES

102

Results from Camera Angle Threshold Quality reduction Evaluation

▸ Lowest threshold yields virtually perfect image but lower speedup.

▸ Ideal threshold: 0.01pi ≈ 1.8°

PIM GRAPHICS

RESULTS: QUALITY VS. SPEEDUP FOR A-TFIM ANGLES

103

Results from Camera Angle Threshold Quality reduction Evaluation

▸ Lowest threshold yields virtually perfect image but lower speedup.

▸ Ideal threshold: 0.01pi ≈ 1.8°

PIM GRAPHICS

OUTLINE
▸ Background: Texture Filtering

▸ Motivation

▸ Solutions:

▸ B-PIM: Basic Processing In Memory

▸ S-TFIM: Simple Texture Filtering In Memory

▸ A-TFIM: Advanced Texture Filtering In Memory

▸ Evaluation Methodology

▸ Evaluation Results

▸ Conclusion

104

PIM GRAPHICS

CONCLUSION
▸ Motivation: Texture filtering = 60% of memory requests in real-time

rendering applications.

▸ Problem: Real-time rendering is a highly memory bound task due to texture
filtering.

▸ Idea: Bypass memory bottleneck caused by texture filtering by:
▸ Using more memory efficient filtering pipeline.
▸ Reducing data movement in system.

▸ Solution: Advanced-Texture Filtering In Memory (A-TFIM).
▸ Implements a portion of the texture filtering pipeline in HMC.
▸ Uses a camera-angle threshold for performance/accuracy ratio control.

▸ Key results: Evaluated on various 3D video-games.
▸ Average 1.4x rendering speedup over baseline.
▸ Average 22% less energy consumption compared to baseline.

105

PIM GRAPHICS 106

QUESTIONS?

PIM GRAPHICS 107

REVIEW

PIM GRAPHICS

STRENGTHS
▸ Proposed solution is novel and the only one in its field (to

the best of my knowledge no one else has really
attempted accelerating 3D rendering with PIM).

▸ Results obtained are impressive in terms of energy
efficiency, which would be great for mobile rendering.

▸ The proposed pipeline reordering with low precision loss
shows requires domain-expertise from the authors to
figure out, showing the authors' investment in the field.

108

PIM GRAPHICS

STRENGTHS
▸ Proposed solution is novel, very little work exists in the

field of PIM-enabled Graphics.

▸ Results obtained are impressive in terms of energy
efficiency, which would be great for mobile rendering.

▸ The proposed pipeline reordering with low precision loss
requires domain-expertise from the authors to figure out,
showing the authors’ investment in the field.

109

PIM GRAPHICS

STRENGTHS
▸ Proposed solution is novel, very little work exists in the

field of PIM-enabled Graphics.

▸ Results obtained are impressive in terms of energy
efficiency, which would be great for mobile rendering.

▸ The proposed pipeline reordering with low precision loss
requires domain-expertise from the authors to figure out,
showing the authors’ investment in the field.

110

PIM GRAPHICS

STRENGTHS
▸ Proposed solution is novel, very little work exists in the

field of PIM-enabled Graphics.

▸ Results obtained are impressive in terms of energy
efficiency, which would be great for mobile rendering.

▸ The proposed pipeline reordering with low precision loss
requires domain-expertise from the authors to figure out,
showing the authors’ investment in the field.

111

PIM GRAPHICS

WEAKNESSES
▸ Reminder: The goal of this project is to improve 3D video-

game performance.

▸ Many different works have tackled this, getting better
results with simpler implementations (look at texture
compression for example).

▸ The system was only tested on games from 20+years ago,
rendering demands have greatly changed since then, how
does this perform on modern applications?

▸ Maybe texture filtering isn’t what should be focused on for
modern rendering applications…

112

PIM GRAPHICS

WEAKNESSES
▸ Reminder: The goal of this project is to improve 3D video-

game performance.

▸ Many different works have tackled this, could lead to better
results with simpler implementations (look at texture
compression for example).

▸ The system was only tested on games from 20+years ago,
rendering demands have greatly changed since then, how
does this perform on modern applications?

▸ Maybe texture filtering isn’t what should be focused on for
modern rendering applications…

113

PIM GRAPHICS

WEAKNESSES
▸ Reminder: The goal of this project is to improve 3D video-

game performance.

▸ Many different works have tackled this, could lead to better
results with simpler implementations (look at texture
compression for example).

▸ The system was only tested on games from 20+years ago,
rendering demands have greatly changed since then, how
does this perform on modern applications?

▸ Maybe texture filtering isn’t what should be focused on for
modern rendering applications…

114

PIM GRAPHICS

WEAKNESSES
▸ Reminder: The goal of this project is to improve 3D video-

game performance.

▸ Many different works have tackled this, could lead to better
results with simpler implementations (look at texture
compression for example).

▸ The system was only tested on games from 20+years ago,
rendering demands have greatly changed since then, how
does this perform on modern applications?

▸ Maybe texture filtering isn’t what should be focused on for
modern rendering applications…

115

PIM GRAPHICS

TAKEAWAY
▸ Accelerating Graphics is a problem that is difficult to

approach since it requires domain-specific expertise in
both Computer Graphics and Computer Architecture.

▸ This work proves that PIM architecture can be used to
construct better accelerators for 3D rendering.

▸ Currently feels like a “proof of concept” and needs to be
adapted for modern workloads.

116

PIM GRAPHICS

TAKEAWAY
▸ Accelerating Graphics is a problem that is difficult to

approach since it requires domain-specific expertise in
both Computer Graphics and Computer Architecture.

▸ This work proves that PIM architecture can be used to
construct better accelerators for 3D rendering.

▸ Currently feels like a “proof of concept” and needs to be
adapted for modern workloads.

117

PIM GRAPHICS

TAKEAWAY
▸ Accelerating Graphics is a problem that is difficult to

approach since it requires domain-specific expertise in
both Computer Graphics and Computer Architecture.

▸ This work proves that PIM architecture can be used to
construct better accelerators for 3D rendering.

▸ Currently feels like a “proof of concept” and needs to be
adapted for modern workloads.

118

PIM GRAPHICS

TAKEAWAY
▸ Accelerating Graphics is a problem that is difficult to

approach since it requires domain-specific expertise in
both Computer Graphics and Computer Architecture.

▸ This work proves that PIM architecture can be used to
construct better accelerators for 3D rendering.

▸ Currently feels like a “proof of concept” and needs to be
adapted for modern workloads.

119

PIM GRAPHICS

DISCUSSION: CAN GRAPHICS BENEFIT FROM PIM?
▸ Modern systems have been evolving and taking many

different forms.

▸ Rendering is now done on all types of systems: embedded
VR, Cloud gaming, mobile rendering, …

▸ Question: Can these new systems benefit from using
PIM architectures?

120

PIM GRAPHICS

DISCUSSION: CAN GRAPHICS BENEFIT FROM PIM?
▸ Modern systems have been evolving and taking many different

forms.

▸ Rendering is now done on all types of systems: embedded VR,
Cloud gaming, mobile rendering, …

▸ Follow-up work: “PIM-VR: Erasing Motion Anomalies In Highly-
Interactive Virtual Reality World with Customized Memory Cube”

▸ Question: Can these new systems benefit from using PIM
architectures?

121

PIM GRAPHICS

DISCUSSION: CAN GRAPHICS BENEFIT FROM PIM?
▸ Modern systems have been evolving and taking many different

forms.

▸ Rendering is now done on all types of systems: embedded VR,
Cloud gaming, mobile rendering, …

▸ Follow-up work: “PIM-VR: Erasing Motion Anomalies In Highly-
Interactive Virtual Reality World with Customized Memory Cube”

▸ Question: Can these new systems benefit from using PIM
architectures?

122

PIM GRAPHICS

DISCUSSION: CAN GRAPHICS BENEFIT FROM PIM?
▸ Modern systems have been evolving and taking many different

forms.

▸ Rendering is now done on all types of systems: embedded VR,
Cloud gaming, mobile rendering, …

▸ Follow-up work: “PIM-VR: Erasing Motion Anomalies In Highly-
Interactive Virtual Reality World with Customized Memory Cube”

▸ Question: Can these new systems benefit from using PIM
architectures?

123

PIM GRAPHICS

DISCUSSION: CAN GRAPHICS BENEFIT FROM PIM?
▸ Modern systems have been evolving and taking many different

forms.

▸ Rendering is now done on all types of systems: embedded VR,
Cloud gaming, mobile rendering, …

▸ Follow-up work: “PIM-VR: Erasing Motion Anomalies In Highly-
Interactive Virtual Reality World with Customized Memory Cube”

▸ Question: Can these new systems benefit from using PIM
architectures?

124

PIM GRAPHICS

DISCUSSION: PIM ARCHITECTURES
▸ Most applications have their own memory and compute

bound parts.

▸ Most of the work in PIM architectures is in isolating these
parts from the entire application.

▸ Question: How do we detect the ideal sub-
computations to offload to a PIM system? Could there
be a way to automate this process?

125

PIM GRAPHICS

DISCUSSION: PIM ARCHITECTURES
▸ Most applications have their own memory and compute

bound parts.

▸ Most of the work in PIM architectures is in isolating these
parts from the entire application.

▸ Question: How do we detect the ideal sub-
computations to offload to a PIM system? Could there
be a way to automate this process?

126

PIM GRAPHICS

DISCUSSION: PIM ARCHITECTURES
▸ Most applications have their own memory and compute

bound parts.

▸ Most of the work in PIM architectures is in isolating these
parts from the entire application.

▸ Question: How do we detect the ideal sub-
computations to offload to a PIM system? Could there
be a way to automate this process?

127

PIM GRAPHICS

DISCUSSION: PIM ARCHITECTURES
▸ Most applications have their own memory and compute

bound parts.

▸ Most of the work in PIM architectures is in isolating these
parts from the entire application.

▸ Question: How to decide when/what to offload to PIM
systems? Can this be automated? Is a cache miss
always the best decision metric?

128

PIM GRAPHICS

DISCUSSION: IS THERE A BETTER APPROACH?
▸ Texture filtering can be accelerated with other methods

such as smart prefetching or texture compression.

▸ Modern rendering applications struggle more with
unpredictable memory latencies from geometry fetches
rather than textures.

▸ Question: What would have been a better approach to
accelerating modern 3D rendering applications using a
PIM architecture?

129

PIM GRAPHICS

DISCUSSION: IS THERE A BETTER APPROACH?
▸ Texture filtering can be accelerated with other methods

such as smart prefetching or texture compression.

▸ Modern rendering applications struggle more with
unpredictable memory latencies from geometry fetches
rather than textures.

▸ Question: What would have been a better approach to
accelerating modern 3D rendering applications using a
PIM architecture?

130

PIM GRAPHICS

DISCUSSION: IS THERE A BETTER APPROACH?
▸ Texture filtering can be accelerated with other methods

such as smart prefetching or texture compression.

▸ Modern rendering applications struggle more with
unpredictable memory latencies from geometry fetches
rather than textures.

▸ Question: What would have been a better approach to
accelerating modern 3D rendering applications using a
PIM architecture?

131

PIM GRAPHICS

DISCUSSION: IS THERE A BETTER APPROACH?
▸ Texture filtering can be accelerated with other methods

such as smart prefetching or texture compression.

▸ Modern rendering applications struggle more with
unpredictable memory latencies from geometry fetches
rather than textures.

▸ Question: Can we leverage PIM architectures for
handling unpredictable memory latencies?

132

PIM GRAPHICS

ACKNOWLEDGEMENTS

133

▸ Big thanks to my mentors:

▸ Geraldo De Oliveira

▸ Mohammad Sadrosadati

▸ Haocong Luo

▸ For all of their feedback throughout the (many) iterations
of this presentation.

PIM GRAPHICS 134

LET’S DISCUSS

PIM GRAPHICS

PRIOR WORK: TEXRAM, A SMART MEMORY FOR TEXTURING

135

Texram chip:

Separate chip with its own
memory capable of generating
Mipmaps and performing
Bilinear and Trilinear filtering.

Reference:

Andreas Schilling, Gunter
Knittel, and Wolfgang Strasser -
IEEE Computer Graphics and
Applications 1996

PIM GRAPHICS

FOLLOW-UP WORK: PIM-VR

136

▸ Idea: Reduce head movement response delay in Virtual Reality systems
by accelerating Asynchronous Time Warp (ATW) using a PIM architecture.

▸ Reference: (Same authors as this work) “PIM-VR: Erasing Motion
Anomalies In Highly-Interactive Virtual Reality World With Customized
Memory Cube” - HPCA 2019

