
Processing-in-Memory Enabled Graphics Processors for 3D Rendering

Chenhao Xie∗, Shuaiwen Leon Song †, Jing Wang‡, Weigong Zhang ‡, Xin Fu∗
∗ECE Department, University of Houston

†HPC group, Pacific Northwest National Lab (PNNL)
‡Beijing Advanced Innovation Center for Imaging Technology, College of Information Engineering, Capital Normal University

∗cxie@uh.edu, †Shuaiwen.Song@pnnl.gov, ‡jwang,5591@cnu.edu.cn, ∗xfu8@central.uh.edu

Abstract—The performance of 3D rendering of Graphics
Processing Unit that converts 3D vector stream into 2D frame
with 3D image effects significantly impacts users gaming
experience on modern computer systems. Due to its high
texture throughput requirement, main memory bandwidth
becomes a critical obstacle for improving the overall rendering
performance. 3D-stacked memory systems such as Hybrid
Memory Cube provide opportunities to significantly overcome
the memory wall by directly connecting logic controllers to
DRAM dies. Although recent works have shown promising
improvement in performance by utilizing HMC to accelerate
special-purpose applications, a critical challenge of how to
effectively leverage its high internal bandwidth and computing
capability in GPU for 3D rendering remains unresolved. Based
on the observation that texel fetches greatly impact off-chip
memory traffic, we propose two architectural designs to enable
Processing-In-Memory based GPU for efficient 3D rendering.
Additionally, we employ camera angles of pixels to control
the performance-quality tradeoff of 3D rendering. Extensive
evaluation across several real-world games demonstrates that
our design can significantly improve the performance of texture
filtering and 3D rendering by an average of 3.97X (up to 6.4X)
and 43% (up to 65%) respectively, over the baseline GPU.
Meanwhile, our design provides considerable memory traffic
and energy reduction without sacrificing rendering quality.

Keywords-GPU; Processing-In-Memory; 3D-Stacked Mem-
ory; Approximate Computing; 3D Rendering

I. INTRODUCTION

To satisfy the ever-increasing user demands on gorgeous
graphics and authentic gaming experience, today’s game
developers generally employ higher image resolutions and
more color effects to render 3D frames [33]. Although
modern graphics processing units (GPUs) support massive
multithreading that provides high throughput for 3D ren-
dering, they gain such throughput via issuing millions of
pixels per second, putting substantial pressure on the off-chip
memory. Since 3D rendering often requires highly intensive
memory access, the memory bandwidth on GPUs becomes
a severe performance and energy bottleneck [12], [35], [45].

Hybrid Memory Cube (HMC) [7], an emerging 3D-
stacked memory technology adopting high-bandwidth in-
terface, is one of the promising solutions for overcoming
the memory wall challenge. It offers high memory capacity
and bandwidth interface to the host system, and an order of
magnitude higher internal bandwidth than the current DDRx
systems. More importantly, its embedded logic layer offers
opportunities for conducting Processing-In-Memory (PIM)

Corresponding Author: Jing Wang

which may further reduce the communication overhead
between the host and memory.

Recent works [8], [17], [24], [30], [46] have shown
significant performance improvement by leveraging 3D-
stacked memory technologies to enable PIM on various
platforms. Some of them design new accelerators based
on HMC for special-purpose applications [8], [17], [30],
while others exploit the benefits of PIM on general-purpose
platforms [24], [46]. However, none of these solutions can
be directly applied to improve the 3D rendering process on
GPUs, which often consists of a comprehensive pipeline and
requires significant data transmission between different hard-
ware components. Although 3D rendering on GPU has been
extensively studied [11], [20], [22], [38], [42], a knowledge
gap still exists on how to leverage 3D-stacked memory to
further improve its performance and energy efficiency.

Focusing on improving performance and reducing off-
chip memory traffic, we observe that the memory bottle-
neck problem in 3D rendering is directly contributed by
texel fetching in texture filtering process. Through further
investigation, we identify anisotropic filtering as the most
significant limiting factor for the performance of texture
filtering. Based on these observations and a common as-
sumption that leveraging the computing capability of HMC
to process texture filtering in memory may reduce the data
traffic caused by texel fetches, we propose a simple texture
filtering in memory design, named S-TFIM, to directly move
all the texture units from the host GPU to the logic layer
of the HMC. However, the performance improvement via
S-TFIM is quite trivial, a result of a considerable amount
of live-texture information transmission between the host
GPU and the HMC. To overcome this challenge, we propose
an advanced texture filtering in memory design, named A-
TFIM, to split the texture filtering process into two parts:
performing bilinear and trilinear filtering in the host GPU
while processing the most bandwidth-hungry anisotropic
filtering in the logic layer of the HMC. To further reduce
texel fetching, we reorder the texture filtering sequence by
moving anisotropic filtering to the beginning of the filtering
pipeline, while guaranteeing the correctness of the output
texture. Finally, we employ a camera-angle threshold to
enhance data reuse on GPU texture caches and control the
performance-quality tradeoff of 3D rendering.

Contributions. We make the following contributions:
• Based on the observations from a detailed bottleneck

analysis on 3d rendering, we propose two comprehen-
sive designs, S-TFIM and A-TFIM, to leverage the

2017 IEEE International Symposium on High Performance Computer Architecture

2378-203X/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCA.2017.37

637

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

extremely high internal bandwidth and computation
capability provided by HMC for performance improve-
ment and memory traffic reduction. To the best of
our knowledge, this is the first work proposing new
architectural-level designs that enables PIM-based GPU
for efficient 3D rendering.

• We apply a camera-angle based threshold to enhance
on-chip texel data locality and control the performance-
quality tradeoff of 3D rendering.

• We evaluate our proposed designs by rendering five
real-world games with different resolutions. The results
show that over the baseline GPU our A-TFIM design
on average (1) improves the texture filtering and overall
rendering performance by 3.97X and 43% respectively,
(2) reduces the total memory traffic by 28%, and (3)
consumes 22% less energy. We also confirm that gam-
ing applications with higher resolutions benefit even
more significantly from our design.

II. BACKGROUND AND MOTIVATION

A. 3D Rendering on GPU
3D rendering is the computer graphics process that uses

3D vertex data to create 2D images with 3D effects on
a computer system. GPUs were traditionally designed as
special-purpose graphics processors for 3D rendering algo-
rithms. Fig. 1 shows the baseline GPU architecture in this
study. It employs the unified shader (US) model architecture
for vertex and fragment process, a popular design in modern
GPUs. The 3D rendering process implemented in today’s
GPUs consists of three main stages: geometry processing,
rasterization, and fragment processing. We describe the
implementation of each of these stages as follows:

(1) Geometry Processing. During this stage, input ver-
texes are fetched from memory by vertex fetcher and their
attributes are then computed in the unified shaders. The
input vertexes are further transformed and assembled into
triangles via primitive assembly stage, and these triangles
pass through next clipping stage that removes non-visible
triangles or generate sub-triangles.

(2) Rasterizeration. The Rasterizer processes the trian-
gles and generates fragments, each of which is equivalent
to a pixel in a 2D image. The fragments are grouped into
fragment tiles which are the basic work units for the last
stage of fragment processing. Note that in our baseline
architecture, the Rasterizer supports tiling-based scanning
and early Z test to improve cache and memory access
locality.

(3) Fragment Processing. During this stage, fragment
properties such as color and depths for each fragment are
computed in the unified shader, and the frame buffer is
updated with these fragment properties. Unified shaders are
able to fetch extra texture data by sending texture request
to texture unit for better image fidelity. The texture unit (the
highlighted orange blocks) attached to each unified shader
cluster samples and filters the requested texture data for a
whole fragment tile.

B. Texture Filtering in 3D Rendering
One of most critical process in 3D rendering is texturing

filtering (within Fragment Processing), which determines

the color of 3D textures (eventually for a texture-mapped
pixel [29]). The texture filtering process is deeply pipelined.
After receiving a texture request, the address generator first
calculates the memory address for each required texel (pixel
of the texture) using triangle attributes. Texel Fetch Unit in
the texture unit will fetch the texels. If cache hits, texture unit
reads the texel data from the texture cache (L1 or L2). If not,
it fetches the texel from the off-chip memory. Once all the
texels of the requested texture are collected, the texture unit
calculates the four-component (RGBA) color of the texture
and outputs the filtered texture samples to the shader.

Generally, texture filtering computes the weighted average
value of sampled texels which best approximate the correct
color C (x, y) of a pixel [25], as shown in (1):

C (x, y) = 1/M ·
M∑

m=1

ws · ts. (1)

Where ws and ts represent the weights and vector values of
the sampled texels, respectively.

Fig. 2 shows the memory access breakdown of 3D render-
ing process for frames selected from several popular games
(see Section VI for the detailed experimental setup). Since
resolutions may affect memory access pattern, we tested
different resolutions for the selected frames. The figure
demonstrates that the texture fetching process in texture
filtering accounts for an average of 60% of the total memory
access in 3D rendering, a major contributor to the overall
bandwidth usage for 3D rendering on GPU. Therefore,
optimizing memory access of texture filtering, especially
the fetching process, may significantly decrease the memory
bandwidth requirement of 3D rendering, hence boosting the
overall performance.

C. Performance Bottleneck of Texture Filtering: Anisotropic
Filtering

The texture filtering process on modern GPUs commonly
comprises of three steps: (1) bilinear filtering, (2) trilinear
filtering and (3) anisotropic filtering [21]. Fig. 3 shows these
three steps in a game example. Note that anisotropic filtering,
a high quality texture filtering method, is applied last to
enhance the sharpness of the textures on the surface that
are at oblique viewing angles with respect to the camera.
Built upon (1) and (2), anisotropic filtering is essential to
modern gaming for eliminating aliasing in 3D rendering.
Specifically, it reduces the blur and presents more details in
a frame [2].

Anisotropic filtering requires an area of texels based on
the position of the viewing camera to filter a particular
pixel. The number of required texels in anisotropic filtering
significantly increases with the level of anisotropic [31].
For example, using Elliptical Weighted Average (EWA)
algorithm [31] to implement the anisotropic filtering, the
maximum level of anisotropic (i.e., 16x) requires 16×2×4 =
128 texels, which is 32 times of fetches required by the
bilinear filtering.

Although modern GPUs employ mipmaping1 and texture
compressing to reduce texture sampling and bandwidth,

1Mipmaps are pre-calculated sequences of texel images, each of which
is a progressively lower-resolution representation of the same image.

638

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

Texture
L2 Cache

Task Scheduler Vertex Fetcher

ROP

Memory Controller

Rasterizer

Triangle Setup
Interpolator

Hierarchical Z test

Primitive
Assembly

Clipping &
Tessellation

Cluster 0
US US
US US

Texture Unit

Stream
Cache

Register
File

Cluster 1
US US
US US

Texture Unit

Stream
Cache

Register
File

Cluster N
US US
US US

Texture Unit

Stream
Cache

Register
File

...

Switch Switch

ControllerControllerController

Controller

Controller

Controller

Controller Controller

Bank
Bank

Bank

Bank

Bank

Bank

Bank Bank

Bank
Bank

Bank

Bank

Bank

Bank

Bank Bank

Bank
Bank

Bank

Bank

Bank

Bank

Bank Bank

Bank
Bank

Bank

Bank

Bank

Bank

Bank

Vault

Bank

Receive Links

Transmit Links

TS
Vs

lllll

TS
Vs

TS
VsTS
Vs

TS
Vs

TS
Vs

DRAM Die H

DRAM Die C
DRAM Die B
DRAM Die A

. . .

CCCCCrrCC CCC

Logic Layer

TS
Vs

Texture Unit

Unified
Shaders

Address generate

Texel Fetch

Texel readTexel filter

Texture L1 Cache

Figure. 1: The basic PIM enabled GPU design (B-PIM) with a zoom-in view on the texture unit and the connected HMC.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Texture Fetches Frame Buffer Geometry Z-test Color buffer

Figure. 2: Memory bandwidth usage breakdown in 3D rendering for a set
of games.

Bilinear Filtering Trilinear Filtering Anisotropic filteringTexel
input

Reduce aliasing
between joined pixels

Smooth the
boundaries of

mipmaping levels

Rotate the sample angle
and enhance the

sharpness of textures

Bilinear
Sample

Trilinear
Sample

Texture
result

Figure. 3: Three common steps in modern texture filtering [2].

anisotropic filtering still poses significant memory band-
width requirement in texture filtering, directly affecting its
performance. Fig. 4 shows the speedup of texture filtering
and memory traffic reduction for processing five games with
anisotropic filtering disabled. The performance of texture
filtering increases by 1.1X on average (up to 4.2X), while
the texture memory traffic is reduced by an average of 34%
(up to 73%). These results clearly demonstrate that the
anisotropic filtering makes up a large fraction of off-chip
memory bandwidth, which is frequently the most significant
limiting factor for the performance of texture filtering.

III. BASIC PIM ENABLED GPU FOR 3D RENDERING

The As discussed previously, high resolution and abundant
image effects significantly increase the texture requirements
and memory access (e.g., anisotropic filtering) in 3D ren-
dering on GPU, resulting in great pressure on memory
bandwidth. Processing-In-Memory (PIM), which migrates
data processing inside memory, has become a promising

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0

1

2

3

4

5

6

N
or

m
al

ize
d

M
em

or
y

Tr
af

fic

Te
xt

ur
e

Fi
lte

rin
g

Sp
ee

du
p

Texure Filtering Speedup Normalized Memory Traffic

Figure. 4: Speedup of texturing filtering and texture memory traffic
reduction over the baseline GPU when anisotropic filtering is disabled.

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

Sp
ee

du
p

fo
r 3

D
 R

en
de

rin
g

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Sp
ee

du
p

fo
r T

ex
tu

re
 F

ilt
er

in
g

Figure. 5: Normalized speedup of 3D rendering and texture filtering using
B-PIM design over the baseline.

solution to accommodate high bandwidth requirements from
memory-intensive applications. In this study, we consider
the emerging 3D-stacked DRAM technology, i.e., Hybrid
Memory Cube (HMC), as the basic implementation of PIM.

The right section of Fig. 1 shows the basic HMC architec-
ture. In HMC, several DRAM dies are stacked on top of the
CMOS logic layer, forming a cube; the cube communicates
with the host GPU through a series of full-duplex I/O
links. The logic layer in HMC is responsible for receiving
system commands and routing memory accesses to different
controllers. The controllers communicate with independent
DRAM dies through a vertical set of interconnects called
Through-Silicon Vias (TSV), which provide a vastly short
interconnect path. Each controller and its sub-DRAM dies
are grouped into an independent vault. A vault is similar to
traditional DRAM channel since it contains a controller and
several memory banks. Multiple parallel vaults and TSVs
contribute to the high internal data throughput for HMC.

To evaluate the effectiveness of HMC on GPU 3D ren-
dering, we integrate the HMC technique in Attila simu-

639

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

Logic Layer
MTU

MTU
MTU

Address Generator

Texture
Fetch

Texture Request Queue

Switch

Host GPUs

Texture Filter

Figure. 6: Memory Texture Unit Architecture in S-TFIM.

lator [15], a cycle-accurate simulator that models modern
rasterization-based GPUs. We name this implementation as
basic PIM enabled GPU design (B-PIM), shown in Fig.1. We
then evaluate B-PIM by rendering frames from several real
games. Fig. 5 shows the normalized performance speedup
of the overall 3D rendering and the texture filtering process
by replacing the default GDDR5 memory with HMC. The
detailed descriptions for Attila and the investigated bench-
marks are shown in Section VI. The results show that B-PIM
provides on average of 27% (up to 30%) and 1.07X (up
to 1.69X) speed up for 3D rendering and texture filtering
process respectively, over the baseline case of employing
GDDR5 memory. These performance improvements are also
aligned with some of the previous studies that evaluate
the performance of other general-purpose applications when
applying HMC [36] [8]. However, the bandwidth limitation
of the off-chip links still hinders these applications from
achieving further speedup: the external bandwidth is much
lower than the internal bandwidth in HMC. For instance,
according to the HMC 2.0 specification [7], a single HMC
can provide 320 GB/s of peek external memory bandwidth
via high speed serial links, while the peak internal memory
bandwidth can reach to 512 GB/s per cube through 32
vaults/cube and 2 Gb/s of TSV signaling rate. A possible
solution to maximize the performance of 3D rendering
via HMC is to migrate the communication from external
HMC (i.e., between the host GPU and HMC) to internal
HMC, thus minimizing expensive off-chip memory accesses.
Next we will explore design options to further optimize 3D
rendering on GPU via the PIM capability in HMC.

IV. A SIMPLE TEXTURE FILTERING IN MEMORY

DESIGN (S-TFIM)

As described in Section II-B, texture fetching in tex-
turing filtering process incurs intensive memory accesses
and becomes the major contributor to the overall memory
bandwidth usage for 3D rendering on GPU. One straight-
forward option is to reduce the level of texture filtering
(i.e., lowering the image quality) which directly decreases
the texture memory access. This has been widely adopted
at algorithm level when modern 3D games started to be
executed on the lower-end GPUs. However, in recent years,
3D rendering application interfaces such as OpenGL [3] and
Direct3D [1] has achieved better realistic gaming experi-

ence and special effects, leading to the increasing demands
from users for high-quality and expensive 3D rendering.
It becomes less ideal or even intolerable to sacrifice the
frame quality for performance as both of them are equally
important to user experience. In other words, effectively
reducing the texture memory access without losing image
quality is highly desirable.

Note that the logic layer in HMC has the capability to
conduct simple logic computation, and fortunately texture
filtering involves relatively light calculation as shown in
Eq.(1). Moreover, HMC is equipped with extremely high
internal bandwidth. All these features of HMC provide
great opportunities for migrating the texture filtering process
into the HMC. Thus, we propose the design of Texture-
Filtering-In-Memory (TFIM) that leverages the HMC inter-
nal bandwidth for high-speed texture memory access while
utilizing HMC’s logic layer to handle the texture filtering
related computation. Through this design, the explicit texture
memory accesses from the host GPU to the main memory
are eliminated without sacrificing image quality.

One simple TFIM (S-TFIM) design is to directly move
all the texture units from the main GPU to the HMC logic
layer. We rename these texture units to Memory Texture
Units (MTUs) in HMC. As shown in Fig. 1, each unified
shader cluster contains one texture unit and there are tens of
texture units in the baseline GPU. To accommodate this, we
build the same amount of MTUs in the HMC to ensure that
each unified shader cluster has its private MTU. One can also
decrease the number of MTUs by making several shaders to
share the same MTU in order to reduce the area overhead
in HMC. But this design may cause resource contention for
MTU and affect the overall performance of 3D rendering.
Thus, to make sure that S-TFIM has the same computing
capacity as the baseline, we employ private MTUs in HMC
for evaluation.

Fig. 6 shows the S-TFIM design. MTUs communicate
with the host GPU via the transmission (TX) and receive
(RX) channels. Whenever there is a texture filtering request
from the unified shader, a package is sent from the host
GPU to MTU via the TX channel. This package includes the
necessary information for texture filtering, such as texture
coordinate information, texture request ID, and start cycle.
The shader ID is also contained in the package to identify the
corresponding MTU. Once arriving at the MTU, the request
package is buffered into the texture request queue; in every
cycle, a FIFO scheduler fetches one request to the MTU
pipeline for texture filtering. Unlike the texture unit design in
B-PIM (Fig. 1), a MTU in S-TFIM does not contain a texture
cache since it can directly access the entire DRAM dies as
its local memory. Upon completing the texture filtering, the
texture data is included in a response package which is then
sent back to the host GPU via the RX channel. When the
texture request queue is full, MTU sends a “stall” signal
to the corresponding shader which will then suspend the
request package till a “resume” signal arrives.

We evaluate the effectiveness of the S-TFIM scheme
and observe that the averaged performance improvement
of 3D rendering across all the investigated benchmarks
is trivial (only 1%) over the B-PIM design introduced in
Section III. More surprisingly, S-TFIM even degrades the

640

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

performance for several gaming benchmarks. After further
investigation, we find that the texture requests and response
packages contain a considerable amount of data that con-
sumes much higher memory bandwidth than the normal
memory read/write operations, inducing a longer delay on
the package transmission.Thus the cost of transmitting the
texture requests and response packages greatly offsets the
performance benefits from in-memory texture filtering, caus-
ing performance degradation. This is because the host GPU
of S-TFIM design no longer has L1 texture caches, losing
on-chip reuse of intermediate texels (i.e., texure is the final
output of texure filtering, calculated by texels. Under the
baseline design, texels can be cached on-chip during filtering
for future calculation of textures.). For instance, we observe
the memory bandwidth usage of S-TFIM design increases
by 5.37X over B-PIM when executing HL2 benchmark.
Therefore, a design that can selectively fetch texture requests
into the HMC to maximize the PIM benefits offered by
TFIM is very appealing.

V. AN ADVANCED TEXTURE FILTERING IN MEMORY

DESIGN (A-TFIM)

A. The Basic Idea

In this section, we propose the advanced texture filter-
ing in memory (A-TFIM) for 3D rendering on GPU. The
purpose of A-TFIM design is to drastically reduce memory
access from texture fetching, which cannot be effectively
addressed by B-PIM and S-TFIM. As discussed in Section
II-C, texture units need to fetch all the required texels from
memory before the filtering process. Shown in Fig.3 and
Fig.4 from Section II-C, anisotropic filtering which often
occurs after bilinear and trilinear filtering to further enhance
texture sharpness, demands a large amount of texels [21] that
makes the texture filtering processing extremely bandwidth-
intensive.

To tackle this challenge, we decide to only move
anisotropic filtering, the last step of texture filtering, to
the logic layer of HMC. This decision is supported by
our observation that the output of anisotropic filtering is
highly reused by other filters (e.g., bilinear and trilinear
filters in Fig.3) during the texturing filtering process. In other
words, texture caches shown in Fig.1 can capture such texel
locality and benefit the performance of other filtering phases
in the same frame. This is because the added sampling
area of anisotropic filtering for each texel of bilinear or
trilinear filtering shares the same set of texels if the camera
angle remains constant. On the contrary, the outputs from
bilinear and trilinear filters are intermediate sampling results
rather than texels, which are rarely reused. For example, our
observation indicates that the reuse rate of trilinear results
is less than 0.1% during the entire texture filtering. Thus,
moving bilinear and trilinear filtering into the HMC will
break the benefits of texture caches for capturing the high
texel locality and may subsequently increase memory traffic.

Specifically, we disable anisotropic filtering on the host
GPU as this functionality is now implemented in the HMC.
However, if the design still follows the same filtering process
step by step shown in Fig.3, the bilinear filter (the first
phase) still requires to fetch a large number of texels as

Addresses generator

Texel fetching

GPU

Bilinear filtering

Triliner filtering

Anisotropic filtering

Texture
result

Memory access

Anistorpic filtering

Local memory access

 Child-texel fetching

(A)

Enabling 4x anisotropic
filtering, texture unit

generate 32 texel fetches

Addresses generator

Texel fetching

GPU

Bilinear filtering

Triliner filtering

Texture
result

Memory Memory(B)

Disabling anisotropic
filtering in GPUs,

texture unit generate
8 parent-texel fetches

Fetch 32 texels from
memory to GPUs

Fetch 8 texels
from memory to

GPUs

 Generate 32 child-
texels in memory, 4

for each parent texel

Trilinear
sample

Bilinear
sample

Bilinear
sample

Figure. 7: (A) Baseline texture filtering fetches 32 texels from memory
to GPU for a 4x anisotropic filtering. (B) A-TFIM only needs to fetch 8
texels for a 4x anisotropic filtering in HMC, where anisotropic filtering is
moved in HMC and ahead of Bilinear and Trilinear filtering. This process
significantly reduces memory traffic without sacrificing the correctness of
texture color and image quality.

inputs in order to satisfy the demands of anisotropic filtering
(the last phase). This default process is depicted in Fig.7(A).
Clearly, this is suboptimal. Since bilinear filtering requires a
much smaller number of input texels (discussed in Section
II-C), we propose to move the anisotropic filtering phase
implemented in the HMC before the bilinear filtering as the
first filtering step. In this way, the texure units on the host
GPU can fetch a small amount of texels from the stacked
memory while the most expensive filtering is processed in
memory. Fig.7(B) shows the new filtering process: under a
4X anisotropic filtering, the A-TFIM reduce texel fetches
by 3X comparing to the baseline shown in Fig.7(A). The
proof for the correctness of the output texture color using
this new filtering sequence is shown in the next subsection.

The basic flow of texture filtering in A-TFIM is as follows.
First, the texture units on the host GPU fetch the required
texels (i.e., the number of texels that bilinear filtering re-
quires) from the memory stack to process texture filtering.
We define these required texels with anisotropic filtering
disabled as parent texels. Once the logic layer in the HMC
receives the parent texel information package offloaded by
the host GPU, it will generate a set of child texeles based on
the texture attributes of the required parent texeles, and then
feed them as inputs through the normal anisotropic filtering
process in the HMC to approximate the requested parent
texels. Finally, these approximated parent texels will be sent
back to the texture units and cached in the texture caches as
conventional inputs for bilinear and trilinear filtering. They
can then be reused later in the upcoming filtering process. In
this way, we not only speedup the anisotropic filtering but
also reduce a significant amount of memory traffic from the

641

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

Parent texels with
Anisotropic filtering off

Children texels generated
in Logic Layer of HMC

3

0

33

1

0

Figure. 8: To filter the sunken of the stone for two pixels, a texture unit on the host GPU fetches two parent texels from them with the same address
(i.e., no anisotropic filtering). Since the two pixels have different camera angles in anisotropic filtering, their corresponding parent texels should generate
different sets of child texels in HMC.

texture fetching, without sacrificing the high frame quality.

B. Correctness of The New Filtering Sequence

To implement the idea, we need to guarantee the cor-
rectness of the filtering sequence reordering (i.e., moving
anisotropic filtering to the beginning). In other words, the
color of the output texture should remain the same after re-
ordering. Recall Eq.(1), the general texture filtering process
computes the weighted average value of the sampled texels
and generates the color of texture C(x, y). For example, we
assume a 2× anisotropic filter employing two sample texels
(C1, C2) to calculate C(x, y). Using the default sequence,
the trilinear filtering first filters the samples using 4 texels
(t11, t21, t12 and t22) from two mipmap levels as in Eq.(2):

C1 = t11 × (1.0f − w) + t12 × w

C2 = t21 × (1.0f − w) + t22 × w
(2)

where ti1, ti2 are the texels from two mipmap levels, and w
is the weight between two mipmap levels. Because C1 and
C2 are from the same pixel, they have the equal weight w.

Based on Eq.(1), anisotropic filtering occurs first by
simply calculating the average value of C1 and C2 as Eq.(3).

C(x, y) = (C1 + C2) /2

=(t11 × (1.0f − w) + t12 × w

+ t21 × (1.0f − w) + t22 × w)/2

= (1.0f − w)× (t11 + t21) /2

+ w × (t12 + t22) /2

=t1avg × (1.0f − w) + t2avg × w

(3)

Where t1avg and t2avg are anisotropic filtering outputs of
ti1 and ti2.

From this example, we find that both the final formulation
of anisotropic filtering and the texel inputs are the same
as those of trilinear filtering, resulting in the same ultimate
C(x,y). In other words, if we first calculate the average val-
ues of ti1 and ti2 in anisotropic filtering, we can obtain the
same color as using the original texture filtering sequence.
This theory applies to both bilinear and trilinear filtering,
which means we can bring the anisotropic filtering process
forward as the first filtering step. The only difference is that
anisotropic filtering is now providing intermediate texels like
t1avg and t2avg, and trilinear filtering will calculate the final
texture. This property is critical to the success of A-TFIM

design. Our simulation results also confirm the correctness
of the output texture after this reordering.

C. Accuracy Control of the Parent Texels
When the texture units on GPU receive the approximated

parent texels (i.e., the output of anisotropic filtering) from
the HMC, they cache them for future reuse. Occasionally,
some parent texels from different frames have the same
fetching address but different camera angles. For instance,
Fig.8 shows that both pixels (marked in orange and purple)
are colored as the sunken of the stone. In A-TFIM, a texture
unit fetches the two parent texels with the same address.
However, these two requested parent texels should have
different set of child texels (e.g., the orange and purple
shadow areas) for anisotropic filtering in the HMC because
they are required by two different pixels with different
camera angles. Directly reusing the same parent texel from
different pixels may cause the pixel color inaccurate. Note
that all the parent texels from the same pixel share the same
camera angle.

We propose a simple mechanism to solve this problem.
As mentioned, fetching address and camera angle determine
the set of children texels for a specific parent texel. When
the texture units successfully fetch the requested parent
texels from the HMC, they will also store the angles of
the surface pixels in the texture caches. When a texture unit
fetches a new texel and receives cache hit, it compares the
surface-angle of the current texel with the stored surface-
angle. If the difference is smaller than a angle-threshold,
the texture unit reuses the texel data from cache directly.
Otherwise, the texture unit treats the texel fetch as a miss
and re-fetch from the HMC so that the parent texel can
be recalculated to ensure accuracy. To control the accuracy-
performance tradeoff, the angle-threshold can be configured.
A lower threshold often means a higher recalculation rate
and a higher texture filtering accuracy. In Section VII-D,
we further investigate the performance and accuracy impact
from the angle-threshold.

D. Structure of A-TFIM
Fig.9 presents the high-level architectural diagram of

our A-TFIM design. The implementation of the anisotropic
filtering on the HMC side consists of four components: 1
Texel Generator to calculate the addresses of child texels, 2
Child Texel Consolidation to combine the child texel fetches,

642

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

Texture Unit

Sw
itch &

 Interconnect

Texel
G

enerator

Parent Texel
Buffer

Child Texel
Consolidation

Com
bination
U

nit

Address
G

enerator

Texel Fetch
Texel Read

Texel Filter

Texture Cache

1 2

34

GPUs HMC

O
ffloading U

nit

5Texture
Request

Texture
Result Parent-texel Result

Cache
Miss

Parent-texel
Package

Child-texel Fetch

Figure. 9: Architecture Diagram for A-TFIM.

3 Parent Texel Buffer to store the in-processing parent texel
information, and 4 Combination Unit to collect results of
the child texel fetches and approximate the values of the
requested parent texels. We will introduce each of them and
explain how they support our proposal.

The Texel Generator receives the parent-texel fetches from
the logic layer of the HMC. Then, it generates the child
texels and calculates their memory addresses. After that,
it reserves an entry in the Combination Unit to store the
calculated parent texels.

The Child Texel Consolidation merges the identical child
texel fetches to reduce memory contention. It attaches each
of the parent-texel ID to the merged child-texel fetches.
It then generates memory reads for the merged child-texel
fetches, and sends these reads to the switch to fetch the child
texel data from the HMC.

The Parent Texel Buffer is responsible for holding the
in-processing parent texel information. Its entries can be
accessed by the Combination Unit to update the calculated
values of the parent texels. In our design, we set the buffer
size to be 256 which is equal to the size of the memory
request queue to avoid data loss.

The Combination Unit receives the fetched child texels
from the switch and then updates the values of the parent
texels. For a child texel that belongs to multiple parent texels
(Section V-C), Combination Unit accesses the entries of
Parent Texel Buffer to make sure all the parent texels are
updated. After the parent texels are filtered completely, the
Combination Unit outputs them to the switch as a normal
texel fetch result back to the GPU texture units.

There are 16 texel address ALUs in the Texel Generator
and 16 filtering ALUs in the Combination Unit to support
parallel filtering of multiple parent texels in a 16x anisotropic
filter. The system is pipelined to support high throughput
texel stream. In addition, to reduce the size of the fetching
package, the Offloading Unit (5) employs a hash table to
pair each of the parent texels with its offset to the first
parent texel’s address. In the logic layer of the HMC, we
add a decomposing stage at the beginning of the Texel
Generator to access the hash table and regenerate the parent
texels’ addresses. When the anisotropic filtering process
is completed, a composing stage is added at the end of
the Combination Unit to group the requested parent texels
together to ensure the output package has the same format
as a normal bilinear fetch. Since the aligned texels from the

same fetch request share the same camera angle, we store
one camera angle in each texture cache line to reduce the
storage overhead. A detailed design overhead analysis will
be provided in Section VII-E.

E. Walkthrough of the Texture Filtering in A-TFIM
As shown in Fig.7(B), The texture filtering process of A-

TFIM can be split into two parts, Parent-Texel Filtering in
the texture units on the host GPU and Child-Texel Filtering
in the logic layer of the HMC. After receiving texture
request, a texture unit first calculates the memory addresses
of the requested parent texels as if anisotropic filtering is
disabled. Next, it fetches parent texels from the texture
caches. Upon a hit, it further compares the camera angle of a
parent texel with the cached camera angle. If the difference
is greater than the angle-threshold, it treats the fetch as a
miss. Otherwise, it directly fetches the texel data from cache.
Upon a miss, the Offloading Unit packs the parent-texel info
and sent it to the HMC through the transmit links.

When the switch detects the arrival of a parent-texel
fetching package from the link, it passes the package to
the Texel Generator. The Texel Generator calculates the
coordinates of child texels using the packed parent texel
information and pixel coordinates. Then it calculates their
addresses and generates child texel fetches. The parent texel
ID info is added to the child texels to identify their associated
parent texels. After generating all the child texels for the
requested parent texels, the Texel Generator stores the parent
texels’ info in the Parent Texel Buffer and sends these
child texel fetches to the Combination Unit, which then
merges the child texel fetches and marks the child texels
that are required by multiple parent texels. After the switch
receives child-texel reads, it routs the memory accesses to
the corresponding vaults and waiting for response. Finally, it
receives the fetched child texels from the switch and detects
their associated parent texel IDs. After all the child texels
are fetched, the requested parent texels are calculated and
sent back to the host GPU for further filtering.

The texture units of the host GPU treats the responded
parent texels from the HMC as normal fetch results to
feed into the bilinear filter. Meanwhile, they also cache the
camera angles of these parent texels. After all the required
parent texels are fetched, the texture units process bilinear
and trilinear filtering and output the texture results to the
shaders. Note that under the scenario of multiple HMCs
connected to one GPU [7], a parent texel fetch package
from a texture unit will be mapped to a single HMC because
the requested parent texels and their generated child texels
access to different mipmap levels of the same texture.

VI. EVALUATION METHODOLOGY

Simulation Environment. We evaluate the impact of our
proposed designs on 3D rendering by modifying ATTILA-
sim [15], a cycle-accurate rasterization-based GPU simulator
which covers a wide spectrum of hardware features in
modern GPUs. The model of ATTILA-sim is designed
upon boxes (a module of functional pipeline) and signals
(simulating the interconnect of different components). It is
also highly configurable with the emerging 3D-rendering
technologies employed by the modern GPUs. We integrate

643

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

TABLE. I: SIMULATOR CONFIGURATION

Host GPU
Number of cluster 16
Unified shader per cluster 16
Unified shader configuration simd4-scale ALUs

4 shader elements
16x16 tile size

GPU frequency 1GHz
Number of GPU Texture Units 16 for baseline

0 for S-TFIM
16 for A-TFIM

Texture unit configuration 4 address ALUs
8 filtering ALUs

Texture L1 cache 16KB, 16-way
Texture L2 cache 128KB, 16-way

Memory
Off-chip bandwidth 128GB/s for GDDR5

320 GB/s total for HMC
Memory frequency 1.25 GHz for GDDR5

1.25 GHz for HMC
HMC configuration 32 vaults, 8 banks/vault

1 cycle TSV latency [13]
S-TFIM

Number of MTU 16
MTU configuration 4 address ALUs

8 filtering ALUs
A-TFIM

Texel Generator 16 address ALUs
Combination Unit 16 filtering ALUs

ATTILA-sim with a HMC block, which is modeled based
on multiple released sources including HMC-sim [26] (mod-
eling a low-latency memory stack and its logic layers), the
performance evaluation of HMC by Rosenfeld et al. [36],
the latency evaluation of HMC by Chen et al. [13], and
a commercial HMC specification [7]. The off-chip links
between the host GPU and the HMC are modeled as full-
duplex signal channels. The transmit latency and bandwidth
of channels are adjusted to simulate high-speed serial links.
We model the size of an offloading package as 4X the size
of a normal memory read request package, and the size of
a response package of TFIM is equal to the size of a read
response package from HMC. We also model the access
latencies of the added structures in the HMC based on those
in the baseline texture units [23]. Table I shows the major
system simulation parameters for different designs in this
paper. Our baseline configuration is similar to the AMD
TeraScale2 architecture [23], a state-of-the-art rasterization-
based GPU architecture. For fairness, each design has the
same number of texture units per cluster.

Energy Consumption Estimation. To evaluate energy
consumption, we employ McPAT [27] to model power for
the unified shaders, caches and on-chip interconnect on
GPU. We slightly modify McPAT to model texture, Z-test
and color caches (Z-test and color caches are hidden in ROP
in Fig. 1), and to support simd4-scalar ALU. We evaluate the
dynamic power of the texture units (both GPU texture units
and S-TFIM’s MTUs) and the computing units in A-TFIM
by scaling the shader ALU power based on the number of
floating-point ALUs and texture busy cycles. Additionally,
we estimate their leakage power by adding 10% extra power
in total, similar to the strategy used in [28]. Furthermore, we
apply similar approaches proposed by K. Hsieh et al. [24]

TABLE. II: GAMING BENCHMARKS

Names resolution library 3D engine
Doom3 1280x1024 OpenGL Id Tech 4

640x480
320x240

Fear 1280x1024 D3D Jupiter EX
640x480
320x240

Half-life 2 1280x1024 D3D Source Engine
640x480

Riddick 640x480 OpenGL In-House Engine
Wolfenstein 640x480 D3D Id Tech 4

to evaluate the energy consumption of the HMC through
links, TVS and DRAM power. We assume the links consume
5pJ/bit [6] while DRAM consumes 4pJ/bit. The power for
the baseline GDDR5 memory is estimated by the Micron
power model [4].

Evaluated Applications. We evaluate five well-known 3D
games covering different rendering libraries and 3D engines.
We directly employ the graphic traces from ATTILA [15]
which represent the OpenGL and D3D commands from
the CPU. These traces are captured by the ATTILA-trace
generator. Additionally, we render three games (Doom3,
Fear, Half-life 2) with different resolutions. Table I sum-
marizes the evaluated applications. In our experiments, all
the workloads run to completion on the simulator.

VII. RESULTS AND ANALYSIS

To evaluate the effectiveness of our proposed A-TFIM
design, we compare it with three other design scenarios: (i)
Baseline — baseline GPU with GDDR5 as main memory,
(ii) B-PIM — basic PIM enabled GPU design with a HMC
as off-chip memory (Section III), and (iii) S-TFIM — mov-
ing all the texture units from the host GPU to the HMC logic
layer (Section IV). We provide results and detailed analysis
of our proposed design on performance, memory traffic,
energy consumption and performance-quality tradeoff. We
close this section with design overhead analysis.

A. Impact on Performance
Fig.10 shows the normalized speedup of the texture filter-

ing process under four design options. We count the latency
for texture filtering from the time when a shader sends
out the texel fetching request to when it receives the final
texture output for completing the filtering process (i.e., going
through all three filters). All the data points are normalized
to the baseline case. For A-TFIM, we set the camera angle
threshold as 1.8 degree (0.01π), which is a relatively high
accuracy criteria. We have two main observations from
this figure. First, our proposed A-TFIM design significantly
outperforms all the other three designs. For instance, A-
TFIM increases the texture filtering speed by 3.97X (up
to 6.4X) over the baseline. A-TFIM not only leverages the
high internal bandwidth provided by the HMC to accelerate
the memory-intensive anisotropic filtering but also reduces
significant memory traffic through reorganizing the filtering
sequence. Second, A-TFIM provides more filtering speedup
for gaming applications with higher resolutions. This is
because these games usually demand higher anisotropic level
and texel details, which is the ideal optimization target for
A-TFIM design.

644

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

0
1
2
3
4
5
6
7
8
9

Te
xt

ur
e

Sp
ee

du
p

Baseline B-PIM S-TFIM A-TFIM-001pi

Figure. 10: Normalized speedup of texture filtering under different designs.

0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

 S
pe

ed
up Baseline B-PIM S-TFIM A-TFIM-001pi

Figure. 11: Normalized speedup of 3D rendering under different designs.

Fig.11 demonstrates how different designs impact the
overall 3D rendering performance. A-TFIM still outperforms
all the other designs in terms of overall 3D rendering
performance and achieves an average of 43% (up to 65%)
speedup over the baseline. Compared to A-TFIM, both B-
PIM and S-TFIM suffer from some design deficiencies and
exhibit similar performance. B-PIM is unable to leverage the
high internal bandwidth and computing capability offered
by the HMC, while S-TFIM is bottlenecked by the memory
traffic due to the lack of on-chip texel caching ability for
reuse. For example, among all the applications, S-TFIM
only provides higher performance than B-PIM for doom3-
320x240 because of its small number of texture requests.

B. Impact on Memory Traffic

The total amount of off-chip texture memory traffic is
another important criteria for evaluating the effectiveness of
A-TFIM. Fig.12 shows the impact of A-TFIM on the off-
chip texture memory traffic, which is measured by the total
transmit bytes of the texture requests between the host GPU
and the memory system (either GDDR5 or HMC) during
texture filtering. We only show the texture memory traffic
here because our proposed design has insignificant impact
on other system components.

There are two major takeaways from this figure. First, A-
TFIM with a less strict camera-angle threshold (i.e., 9 degree
(0.05π)) is the more effective in reducing the overall texture
memory traffic, by an average of 28% (up to 64%) over
the baseline. However, when the camera-angle threshold be-
comes more strict (i.e., 1.8 degree (0.01π)), A-TFIM slightly
increases the texture memory traffic over the baseline, even
though disabling anisotropic filtering on GPU in A-TFIM
has reduced the total amount of required texel fetches. There
are two main reasons behind this: (1) The parent texel

5.16 4.41 2.95 6.37 4.47 2.99 3.01 2.26 2.07 4.18 3.79

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

ize
d

M
em

or
y

Tr
af

fic

Baseline B-PIM S-TFIM A-TFIM-001pi A-TFIM-005pi

Figure. 12: Texture memory traffic induced by different designs.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

ize
d

En
er

gy

Baseline B-PIM S-TFIM A-TFIM-001pi

Figure. 13: Normalized energy consumption under different designs.

packages offloaded by the texture units in A-TFIM may
increase the texture memory traffic for some applications.
(2) A more significant factor is the recalculation of the
parent texels for higher rendering accuracy (Section V-C),
which increases texture cache miss rate. We can control the
recalculation rate by configuring the camera-angle threshold
to balance the performance-accuracy tradeoff. We further
discuss this in Section VII-D. Although A-TFIM slightly
increases the total texture memory traffic under a higher
accuracy criteria, we believe the design is still very effective
considering the high performance benefit shown in Fig.10.
Second, S-TFIM design, which directly moves all the texture
filtering to the HMC, increases the texture memory traffic
by an average of 2.79X over the baseline. This proves that
a more comprehensive strategy like A-TFIM is needed to
truly enable efficient PIM for 3D rendering on GPU.

C. Energy Consumption

Fig.13 shows the normalized energy consumption of the
entire GPU (including any newly added components) under
different designs. We make the following observations. First,
A-TFIM (with 1.8 degree camera angle) provides the best
energy efficiency among all the designs. On average, it
consumes 22% less energy compared to the baseline and 8%
compared to B-PIM. With further investigation, the energy
savings from A-TFIM mainly come from the significant
performance improvement, even though A-TFIM requires a
higher average power than the others. Second, the compari-
son between the baseline and B-PIM indicates that HMC is
more energy efficient than GDDR5. The reason is that HMC
decreases the length of the electrical connections between
memory controllers and DRAM devices [36]. Third, S-TFIM

645

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

1.2

1.3

1.4

1.5

1.6

1.7

N
or

m
al

ize
d

pe
rf

or
m

an
ce

 S
pe

ed
up

 A-TFIM-0005pi A-TFIM-001pi A-TFIM-005pi A-TFIM-01pi A-TFIM-no

Figure. 14: Normalized performance speedup of A-TFIM under different
camera-angle thresholds.

20

30

40

50

60

70

80

90

100

PS
N

R

A-TFIM-0005pi A-TFIM-001pi A-TFIM-005pi A-TFIM-01pi A-TFIM-no

Figure. 15: Image quality (PSNR) of A-TFIM under different camera-angle
thresholds.

consumes more energy than B-PIM. This is mainly due to
the extra texture memory traffic shown in Fig.12.

D. Performance-Quality Tradeoff
As discussed in Section V-C, we can control the 3D

rendering quality by configuring the camera-angle threshold.
To quantify the rendering quality difference, we compare the
rendered frame from A-TFIM to the output of the baseline,
and detect the quality loss by calculating the Peak Signal-
to-Noise Ratio (PSNR) of the rendering frames [37]. PSNR
is the most commonly used metric to measure the quality
of image reconstruction on GPU [14], [32]. Many works
[5], [16], [34] have argued that PSNR is more sensitive
than Structure Similarity (SSIM) [41] for evaluating high-
quality images. A higher PSNR generally indicates higher
quality. Note that the PSNR of the baseline is 99 (comparing
two identical images) and when the reconstruction quality is
over 70 in PSNR, users can hardly perceive the difference
between two images.

Fig.14 and Fig.15 show the normalized performance
speedup (normalized to the baseline) and quality loss under
different camera-angle thresholds. We configure the thresh-
old from no recalculation (least strict) to 0.9 degree (0.005π)
(i.e., 0.005π is applied here as the most strict angle for this
study because further decreasing it will cause significant per-
formance degradation with little perceivable image quality
improvement.). Note that the configuration with anisotropic
filter disabled (i.e., only Isotropic) has even lower PSNR
than A-TFIM-no-recalculation. These two figures reflect the
expectation that in general when the value of the camera-
angle threshold decreases (indicating a more strict criteria

1.32

1.34

1.36

1.38

1.4

1.42

1.44

1.46

1.48

1.5

10

20

30

40

50

60

70

80

A-TFIM-0005pi A-TFIM-001pi A-TFIM-005pi A-TFIM-01pi A-TFIM-no

N
or

m
al

ize
d

 p
er

fo
rm

an
ce

 s
pe

ed
up

PS
N

R

Quality Speedup

Figure. 16: Performance-Quality Trade-off.

for parent texel reuse in texture caches), the quality of
the frame increases while the 3D rendering performance
decreases. To further explore the impact of camera-angle
threshold on performance-quality tradeoff and identify the
optimal threshold for the A-TFIM design, we average the
speedup and PNSR values across all the applications and
illustrate the performance-quality tradeoff, shown in Fig.16.
It clearly shows that a smaller threshold increases the image
quality while reducing performance improvement. Also, for
our evaluated applications, there is a dramatic decrease of
image quality when we increase the threshold from 1.8
degree (0.01π) to 9 degree (0.05π). This is because our
tile-based rendering cannot detect the difference between
the textures if the camera angle threshold is greater than
9 degree. In other words, it cannot identify the parent texels
that should be recalculated. Furthermore, when the threshold
is less than 1.8 degree (0.01π), A-TFIM will constantly
recalculate parent texels which fails to reuse texel data
in texture caches and unnecessarily increases the texture
memory traffic without even increasing the image quality
much. Therefore, we set 1.8 degree (0.01π) as our default
threshold for our A-TFIM design.

E. Design Overhead Analysis
The major overhead of our A-TFIM design comes from

three components: (1) the storage required for the Parent
Texel Buffer and the Child Texel Consolidation in the logic
layer of HMC (Fig. 9), (2) the logic units to generate child
texels (Texel Generator) and approximate the value of parent
texels (Combination Unit) in HMC (Fig. 9), and (3) the extra
bits to record the camera angles of parent texels in texture
caches on GPU. We use CACTI 6.5 [43] and McPAT [27]
to estimate the area overhead of added storage and logic
structures under 28nm technology.

HMC Side. For the Parent Texel Buffer, each entry
contains the parent texel ID (8 bits), the temporary value
of parent texel (32 bits), 1 bit to indicate whether the
parent texel is filtered completely and 4 bits to count
the unfetched child texels. With 256 entires, it requires
(256 × 45)/(1024 × 8) = 1.41KB in the logic layer of
HMC. For the Child Texel Consolidation, we add a 256-
entries buffer to hold the child-parent pair ID which requires
0.5KB. To estimate the cost of the two logic units (i.e., Texel
Generator and Combination Unit), we refer to a normal
texture unit in Nvidia Tesla architecture [29]. The ALU
arrays of the Texel Generator and Combination Unit employ

646

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

floating-point vector ALUs with width 16. In summary, we
estimate the area overhead of the logic units as 6.09 mm2

and the storage buffers as 1.12 mm2. The total area overhead
of the logic layer in HMC is 3.18% of an 8Gb (∼ 226.1mm2

[39]) DRAM die area.
Host GPU. To record the camera angles with high accu-

racy as 1o (180o/27), we add an extra 7 bits to each texture
cache line. For a 16KB L1 texture cache with 64B cache line
and a 128KB L2 texture cache with 64B cache line, we need
(250× 7)/(1024× 8) = 0.21 KB per L1 texture cache and
(2, 000×7)/(1024×8)= 1.75 KB per L2 texture cache. After
adding them to the baseline configuration with 16 texture
units, the total storage overhead for the host GPU in A-TFIM
is 4.2 KB, and the total area overhead is 0.31 mm2 which
is only 0.23% of the entire GPU area (136.7mm2). Note
that an offloading unit is also added to the host GPU but it
only contains a simple control logic which incurs negligible
hardware overhead compared to the others above.

VIII. RELATED WORK

Processing-In-Memory on 3D stacking. With the ad-
vancement of 3D-stacked memory, several proposals [8],
[17], [24], [30], [46] have studied processing-in-memory
through integrating computing units in memory. Zhang et
al. [46] proposed to integrate GPGPU streaming multipro-
cessors (SMs) into 3D-stacked memory. They also intro-
duced a methodology to predict the performance and energy
consumption for their proposed architecture. However, their
approach lacks the consideration of data movement between
GPU SMs and memory. Moreover, they did not discuss
the types of computing that can be offloaded to memory.
Hsieh et al. [24] proposed a compiler method that identifies
offloading operations by calculating the bandwidth benefit
and programmer-transparent data mapping to address the
communication problem between multiple memory devices.
To implement this idea, they introduced a hardware design
to control and monitor the offloading process. Different from
theirs, our work focuses on how to effectively leverage the
high internal bandwidth of the HMC in 3D rendering without
increasing the texture memory traffic and sacrificing the
image quality. Some other works [8], [17], [30] propose to
leverage 3D-stacked memory to create separate accelerators
for certain types of applications (e.g., parallel graph applica-
tions [8]) in order to enable fast near-data processing. How-
ever, these PIM-based customized accelerators may not be
effective for 3D rendering, which is traditionally accelerated
on GPU. Instead of creating a new accelerator, our design
creates a combined effort from HMC and rasterization-
based GPU to customize a highly efficient solution for
3D rendering, benefiting from the best of both worlds.
Additionally, we only selectively enable one filtering phase
on HMC based on its unique application characteristic to
achieve significant performance benefit for texture filtering.

GPU Image Rendering. GPU image rendering has been
extensively studied since GPU was released to serve graphics
processing [11], [20], [22], [38], [42]. With the advancement
of hardware technology, the majority of these works became
less effective to address the high performance and image
quality demands from modern gaming. Among them, the
most relevant work to ours is Schilling et al.’s proposal

[38], which integrates texture computing in logic-embedded
memory. However, as we discussed in Section IV, directly
moving all the texture units to the HMC without considering
on-chip texel data reuse will significantly increase texture
memory traffic due to the large number of texture requests
from the Shaders. In recent years, several works have been
proposed to optimize 3D rendering on GPU. Gaur et al.
[19] proposed a self-learning cache management policy for
GPU’s LLC to increase the hit rate and improve overall
performance. Arnau et al. [9], [10] split a GPU SMs into
two parts where two consecutive frames are rendered in
parallel. They also proposed a memorization fragment unit to
reduce memory access. These works propose new techniques
to accelerate 3D rendering on GPU while our work lever-
ages the high internal bandwidth and in-memory computing
capability provided by the HMC to improve texture filtering
performance. To the best of our knowledge, our work is the
first architecture design enabling PIM-based GPU for 3D
rendering.

Texture Compression. One common way to reduce
texture memory traffic is through texture compression [?],
[18], [32], [40], [44]. For example, one of the widely used
texture compression methods supported by modern GPUs is
Adaptive Scalable Texture Compression (ASTC) [32], which
is a fixed-rate, lossy texture compression system. Our work
is orthogonal to these texture compression techniques.

IX. CONCLUSIONS

In this paper, we enable processing-in-memory based
GPU for efficient 3D rendering. First, we implement a basic
PIM scheme for GPUs by integrating HMC. Then, we design
a simple approach (S-TFIM) that directly moves all texture
units of the host GPU into the logic layer of the HMC,
leveraging the internal memory bandwidth of the HMC for
texture filtering but increasing unnecessary memory traffic
for data movement. To address this issue, we propose an
advanced design (A-TFIM) that reorders the texture filtering
sequence and precalculates the anisotropic filtering for each
fetched texel in the logic layer of HMC. Finally, we propose
an approximation scheme to control the performance-quality
tradeoff to accompany A-TFIM. We demonstrate that A-
TFIM provides significant performance speedup, memory
traffic reduction and energy conservation. Meanwhile, the
approximation scheme can successfully navigate the tradeoff
between image quality and performance under A-TFIM. We
hope our PIM-based scheme for 3D rendering on GPU
can shed a light on future gaming hardware design using
emerging technologies.

X. ACKNOWLEDGMENTS

This research is partially supported by the U.S. DOE
Office of Science, Office of Advanced Scientific Comput-
ing Research, under award 66150: “CENATE - Center for
Advanced Architecture Evaluation”. The Pacific Northwest
National Laboratory is operated by Battelle for the U.S. De-
partment of Energy under contract DE-AC05-76RL01830.
This research is partially supported by NSF grants CCF-
1619243, CCF-1537085(CAREER), CCF-1537062, NSFC
grant No.61402302, and NSFC No.61472260.

647

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] “Direct3d,” https://msdn.microsoft.com/en-us/library/
windows/desktop/bb219837(v=vs.85).aspx, accessed: 2016-
6-14.

[2] “Nvdia geforce: Antialiasing and anisotropic filtering,”
http://www.geforce.com/whats-new/guides/aa-af-guide#1,
accessed: 2016-6-18.

[3] “Opengl,” https://www.opengl.org/about/, accessed: 2016-6-
13.

[4] “Tn-41-01: Calculating memory system power
for ddr3,” https://www.micron.com/resource-details/
3465e69a-3616-4a69-b24d-ae459b295aae, accessed: 2016-
6-24.

[5] “Video quality characterization techniques,” http://hirntier.
blogspot.com/2010/01/video-quality-characterization.html.

[6] “Initial hybrid memory cube short-reach interconnect specifi-
cation issued to consortium adopters,” 2012, denali Memory
Report.

[7] “Hybrid memory cube specification 2.0,” in Techo. Rep., Nov.
2014.

[8] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A
scalable processing-in-memory accelerator for parallel graph
processing,” in ISCA, June 2015.

[9] J. M. Arnau, J. M. Parcerisa, and P. Xekalakis, “Eliminating
redundant fragment shader executions on a mobile gpu via
hardware memoization,” in ISCA, June 2014.

[10] J.-M. Arnau, J.-M. Parcerisa, and P. Xekalakis, “Parallel
frame rendering: Trading responsiveness for energy on a
mobile gpu,” in PACT, 2013.

[11] A. C. Barkans, “High quality rendering using the talisman
architecture,” in HWWS, 1997.

[12] A. R. Brodtkorb, T. R. Hagen, and M. L. SæTra, “Graphics
processing unit (gpu) programming strategies and trends in
gpu computing,” in J. Parallel Distrib. Comput., Jan. 2013.

[13] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman,
and N. P. Jouppi, “Cacti-3dd: Architecture-level modeling for
3d die-stacked dram main memory,” in DATE, 2012.

[14] Y.-J. Chen, C.-H. Hsu, C.-Y. Hung, C.-M. Chang, S.-Y.
Chuang, L.-G. Chen, and S.-Y. Chien, “A 130.3 mw 16-
core mobile gpu with power-aware pixel approximation tech-
niques,” in JSSC, 2015.

[15] V. M. del Barrio, C. Gonzalez, J. Roca, A. Fernandez, and
E. E, “Attila: a cycle-level execution-driven simulator for
modern gpu architectures,” in ISPASS, March 2006.

[16] R. Dosselmann and X. D. Yang, “A comprehensive assess-
ment of the structural similarity index,” in SIVP, 2011.

[17] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S.
Kim, “Nda: Near-dram acceleration architecture leveraging
commodity dram devices and standard memory modules,” in
HPCA, Feb 2015.

[18] S. Fenney, “Texture compression using low-frequency signal
modulation,” in HWWS, 2003.

[19] J. Gaur, R. Srinivasan, S. Subramoney, and M. Chaudhuri,
“Efficient management of last-level caches in graphics pro-
cessors for 3d scene rendering workloads,” in MICRO, 2013.

[20] Z. S. Hakura and A. Gupta, “The design and analysis of a
cache architecture for texture mapping,” in ISCA, 1997.

[21] E. Hart, “3d textures and pixel shaders,” in Direct3D ShaderX,
2002, p. 428.

[22] J. Hasselgren and T. Akenine-Möller, “An efficient multi-view
rasterization architecture,” in EGSR, 2006.

[23] M. Houston, “Anatomy of amd terascale graphics engine,” in
SIGGRAPH, 2008.

[24] K. Hsieh, E. Ebrahimi, G. Kim, N. Chatterjee, M. OConnor,
N. Vijaykumar, O. Mutlu, and S. W. Keckler, “Transpar-

ent offloading and mapping (tom): Enabling programmer-
transparent near-data processing in gpu systems,” in ISCA,
2016.

[25] G. Knittel, A. Schilling, A. Kugler, and W. Straer, “Hardware
for Superior Texture Performance,” in EGGH, 1995.

[26] J. D. Leidel and Y. Chen, “Hmc-sim: A simulation framework
for hybrid memory cube devices,” in IPDPSW, May 2014.

[27] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: An integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in MICRO, 2009.

[28] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yala-
manchili, and W. Sung, “Power modeling for gpu architec-
tures using mcpat,” in TODAES, Jun 2014.

[29] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym,
“Nvidia tesla: A unified graphics and computing architecture,”
in MICRO, March 2008.

[30] G. H. Loh, N. Jayasena, M. Oskin, M. Nutter, D. Roberts,
M. Meswani, D. P. Zhang, and M. Ignatowski, “A processing-
in-memory taxonomy and a case for studying fixed-function
pim,” in WoNDP, 2013.

[31] P. Mavridis and G. Papaioannou, “High quality elliptical
texture filtering on gpu,” in SIGGRAPH, 2011.

[32] J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and
T. Olson, “Adaptive scalable texture compression,” in
SIGGRAPH/EGGH-HPG, 2012.

[33] A. Rege, “An introduction to modern gpu architecture,” in En
ligne], 2008.

[34] A. R. Reibman and D. Poole, “Characterizing packet-loss
impairments in compressed video.” in ICIP.

[35] P. Rogers and C. FELLOW, “Amd heterogeneous uniform
memory access,” in AMD Whitepaper, 2013.

[36] P. Rosenfeld and et al., “Peering over the memory wall:
Design space and performance analysis of the hybrid memory
cube,” Technical Report UMD-SCA, 2012.

[37] A. N. S, “Program for image / picture quality measures
calculation,” https://www.mathworks.com/matlabcentral/
fileexchange/25005-image-quality-measures, 2012.

[38] A. Schilling, G. Knittel, and W. Strasser, “Texram: a smart
memory for texturing,” in IEEE Computer Graphics and
Applications, May 1996.

[39] M. Shevgoor, J.-S. Kim, N. Chatterjee, R. Balasubramonian,
A. Davis, and A. N. Udipi, “Quantifying the relationship
between the power delivery network and architectural policies
in a 3d-stacked memory device,” in MICRO, 2013.

[40] J. Ström and T. Akenine-Möller, “ipackman: High-quality,
low-complexity texture compression for mobile phones,” in
HWWS, 2005.

[41] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: from error visibility to structural
similarity,” in IEEE transactions on image processing, 2004.

[42] L.-Y. Wei, “Tile-based texture mapping on graphics hard-
ware,” in SIGGRAPH, 2004.

[43] S. J. E. Wilton and N. P. Jouppi, “Cacti: an enhanced cache
access and cycle time model,” in JSSC, May 1996.

[44] Y. Xiao, C.-S. Leung, P.-M. Lam, and T.-Y. Ho, “Self-
organizing map-based color palette for high-dynamic range
texture compression,” in Neural Computing and Applications,
2012.

[45] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha,
“Memguard: Memory bandwidth reservation system for effi-
cient performance isolation in multi-core platforms,” in RTAS,
April 2013.

[46] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse,
L. Xu, and M. Ignatowski, “Top-pim: Throughput-oriented
programmable processing in memory,” in HPDC, 2014.

648

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on March 21,2022 at 11:08:33 UTC from IEEE Xplore. Restrictions apply.

