
Prodigy: Improving the Memory Latency of Data-Indirect 
Irregular Workloads Using Hardware-Software Co-Design

Nishil Talati*, Kyle May*†, Armand Behroozi*, Yichen Yang*, Kuba Kaszyk‡, Christos Vasiladiotis, Tarunesh 
Verma*, Lu Li‡, Brandon Nguyen*, Jiwen Sun‡, John Magnus Morton‡, Agreen Ahmadi*, Todd Austin*, Michael 

F P O'Boyle‡, Scott Mahlke*, Trevor Mudge*, Ronald Dreslinski*

*University of Michigan †University of Wisconsin, Madison ‡University of Edinburgh

HPCA 2021, Seoul, South Korea

Presented by Paul Scheffler



Executive Summary
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Problem
• Data-indirect irregular workloads are bottlenecked by the memory system
• Common prefetchers fail to accelerate indirect memory accesses
• Specialized prefetchers not general, performant, or timely enough

Goal • A general, effective, low-cost prefetcher for data-indirect workloads

Key Idea
• Most irregular access patterns are composed of two specific patterns:

single-valued and ranged indirection

Mechanism
• SW: encode indirect access patterns into Data Indirection Graph (DIG)
• HW: prefetcher traverses DIG at runtime

Results
• 2.6× speedup, 1.6× energy savings over no prefetch at negligible cost
• Notable speedup, savings over existing prefetchers
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PA P E R SU M M A R Y CRITIQUE & DISCUSSION



Background & Motivation
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Data-Indirect Irregular Workloads

• Sparse irregular algorithms ubiquitous

• ML, Scientific computing, graph analytics, … 

• Usually involve indirect memory accesses

• Inefficient on CPUs 

• No temporal or spatial locality or correlation

➢ Caching, common prefetchers ineffective

• Specialized prefetchers fall short

• Linked structures: limited to single pointers

• Irregular loads: only specific patterns and layouts

• Software prefetch: static, untimely
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A Compressed Data Format: CSR

• Idea: store only nonzeros of a sparse matrix

• A_rowptrs: indices delimiting rows

• A_colptrs: columns of nonzeros

• A_vals: nonzeros

➢ Row contents accessed by ranged indirection

• Various problems encoded as sparse matrices

• Common: represent graphs as 
CSR adjacency matrices

• No edge weights: value array redundant
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An Irregular Algorithm: Breadth-First Search (BFS)

• Traverse graph in order of distance to start node

• Base of other graph algorithms

• Data: CSR graph + two helper arrays:

• workQueue: found nodes to process next

• visited: bitmap of seen nodes to avoid recursion
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for node in workQueue:

for i in range(offsets[node:node+1]):

neigh = edges[i]

if not visited[neigh]:

workQueue.push(neigh)

visited[neigh] = 1

➢ 3 levels of indirection
CSR graph
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Bottlenecks in Current Systems
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• Data-dependent loads: random patterns with low locality

➢ Caches, common prefetchers ineffective

• Load-dependent branches: direction hard to predict

➢ Expensive rollbacks

➢ Poor performance and efficiency

• >50% stalled on DRAM

• Significant branch stalls

➢ Need an effective, general prefetcher
for data-indirect access patterns
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Programming Model
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Indirection Primitives

• Idea: two specific access patterns cover wide range of irregular workloads:
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Single-valued indirection: 
one index → one value

• e.g. neighbors → visited map

for i in 0 .. a_size:

tmp += b[a[i]]

Ranged indirection: 
two index bounds → range of values

• e.g. node→ neighbors

0
1
4
4
 

30
4  
32
  
3  
4

 
 for i in 0 .. a_size:

for j in a[i] .. a[i+1]:

tmp += b[j]

➢ Combine and chain to describe complex access patterns

• BFS: 1 ranged + 2 single-valued indirections



Data Indirection Graph (DIG)

• Encodes data structures and indirections between them

• Nodes: data structure (array) metadata 

• Edges: indirections between nodes

• Three edge types

• w0: single-valued indirection

• w1: ranged indirection

• w2: trigger edge; initiates prefetch sequence

• Trigger edges store sequence initialization parameters

• Captured before runtime by programmer or compiler

• Included in binary
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DIG Construction by Programmer

• Programmer adds API calls writing graph components to prefetcher memory:
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DIG Inference by Compiler

• Inserts same API calls at IR level

➢ Can be combined with manual annotation

• Single-read LLVM pass infers:

1. Nodes from allocator calls

2. Single-value edges from dependent 
loads found by backtracking

3. Ranged edges from loads in loops 
with adjacent bounds

4. Trigger edges on nodes with 
no inbound edges

• Negligible overhead on compile time

• Data dependencies resolved by prefetcher
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int tmp;
int *a = malloc(a_size);
int *b = malloc(b_size);
int *c = malloc(c_size);

for (i=0; i<a_elems; ++i)
for (j=a[i]; j<a[i+1]; ++j)
tmp += c[b[j]];

a b

c
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Hardware Design
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DIG Storage

• Prefetcher stores DIG in dedicated SRAM

• Three tables written by API calls

• Node table

• Edge table

• Edge index table

• Edge index table keeps source nodes of edges

• Used find outgoing edges for nodes

• Uses virtual addresses: set at compile time
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Prefetch Status Handling Registers (PFHR)

• Need to track multiple outstanding prefetches

• Prefetch sequences can span 4+ structures

• Blocking may waste opportunities

• Track prefetches in PFHR File

• Like MSHRs in non-blocking caches

• Allocated on prefetch sequence trigger

• Updated or freed on prefetch cache fills
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Prefetch: Sequence Initialization

• Launched on core load on trigger node

• Window of sequences launched at once

• Trigger edge encodes initialization parameters

• [j,k]: Lookahead distance and bound

• Direction: ascending or descending addresses

• Heuristic: decrease j as prefetch depth increases

• Feedback loop: drop sequence when core 
requests trigger element

➢ Timely: prefetch always ahead of core

➢ Efficient: maximizes latency hiding
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Core L1D

Prodigy

Memory
System

init

Prefetch: Sequence Advance

• On cache refill: check, update PFHRs

➢ If response to prefetch: read DIG

1. Look up source node of prefetch 

2. Find outgoing edge(s) through index table

3. Compute ne t prefetch address (if any)

4. Allocate new PFHR and request

• Sequence ends once source node traversed

• New sequences initiated when core demands 
data in trigger nodes
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System Integration

• One private instance per core

• Prefetches into L1D cache

• Reuses D-TLB for address translation

• Snoops cache bus to observe refills

• No additional ports on cache

• Supports contiguous partitioning of 
trigger node data among cores (e.g. OMP)

• Some open problems 

• Coherency contentions at partition edges

• Costly context switches in multiple threads

• No prefetch throttling yet
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Results
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Evaluation Setup and Workloads

• Simulation configuration

• Sniper x   sim: 8  o  cores  built-in energy model

• 3 K/ 56K/ M caches, CACTI access times

• DRAM:     cyc. access, controller queuing

• Optimum for evaluated problems:  6 P HRs

• Algorithms: from benchmark suits

• GAP S: graph algorithms like BFS, PR, …

• HPCG: SpMV, Symm. Gauss-Seidel soother

• NAS: conj. gradient, integer sort

• Data: real-world graphs + suit generators
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Prefetch Potential and Usefulness

• No prefetch: measure LLC misses DIG covers

• Upper bound on DRAM stall reduction

➢ avg 96%  IG coverage

• Notable variability in accuracy: 33 –   % 

➢ avg 63% of prefetches demanded

• Hits predominantly in L1D

• Most misses attributed to timeliness

➢ Avg. 85% of prefetchable LLC misses
converted into hits

➢ Ranged indirection essential: 
avg 55% of prefetches
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Performance vs No Prefetch Baseline

• Baseline: DRAM stalls dominate: 84%

• DRAM stalls down by avg 80%

• Slight increase in cache stalls: more traffic

• Branch stalls down by avg 65%

• Most notable in workloads with 
branch-dependent loads

➢ Speedup of 2.6× overall

• Format-robust: speedups on CSR+CSC 
workloads similar to CSR-only tasks
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Performance vs Existing Prefetchers

➢ Indirection SW PF on PageRank:  . 8× vs  × speedup

➢ Common HW PF (GHB-based G/DC):  .6× speedup

• Specialized HW PFs: could not reproduce results 
→ compare best reported and measured

➢Ainsworth & Jones:  . × or  .5×

• Less timely, less general: only BFS-like patterns

➢DROPLET:  . × or  .6×

• Only single-valued indirection, limited triggering

➢ IMP:  .5× or  .3×

• Only 2 levels of single-valued indirection
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Energy and Overhead

• Energy reduced in all categories: avg 1.6×

• Faster → less static energy 

• Less instructions, accesses, mispredictions

• HW Overhead: mainly storage (DIG, PFHRs)

• ~ 0.8 KB or 0.004% of CPU die

• 1.4 – 40× less than other solutions

• SW Overhead: negligible 

• Tiny binary size increase (API calls)

• ~1 s added compile time
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Conclusion
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Conclusion

• Prodigy is a HW/SW codesign to prefetch 
data-indirect irregular workloads

•  IG encodes data structure layout and traversal

• Composes single-valued and ranged indirection

• Added ahead-of-time by programmer or compiler

• Low-cost HW prefetcher combines static
DIG with dynamic runtime information

➢  .6× speedup over baseline

➢  .6 × energy savings

➢ Negligible HW, SW overheads 
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Strengths and Weaknesses
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Problems Identified by Authors

• Suboptimal multithreading for threads sharing core

• DIG, PFHRs must be swapped

• No prefetch throttling mechanism (yet)

• May further mitigate cache pollution

• Some algorithms need additional data in indirection 

• May cause cache thrashing in these cases

• DIG, PFHR parameters optimized for shown wor loads
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Strengths

• Well-organized and well-explained paper

• Entire HW/SW stack exemplified using one problem (BFS)

• General, yet performant and goal-oriented solution

• Extensive, well explained software integration

• End user API and LLVM passes for DIG construction

• Complete, reproducible description of both

• Mindful use of hardware resources

• Careful allocation of both memory and logic
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Weaknesses

• Limited Novelty: similar indirection, workload prefetch approaches in prior work [1-4..] 

• Hardware description vague at best → not useful beyond high-level simulation

• How does the prefetch “FSM” work?

• How is position in intermediate nodes kept track of?

• (How) can we defer traversal on multi-edge nodes? What if we run out of PFHRs?

•  valuation methodology has serious flaws

• SRAMs are not content-addressable: needs standard cell memory

• HW area estimate seems very off: “FSM” clearly dominates  00B of SRAM SCM

• Existing works should be reproducible, no evidence for result hypotheses 

• Timing in core domain critical, but not considered

➢ (Likely) poor prefetch  W: many steps to request single line
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Thoughts and Ideas
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Implement in RTL and Silicon

• Vague HW, timing info likely due to 
heavy abstraction → go deeper

• Implement at Register-transfer Level

• Cycle-accurate simulation

• 100% reproducible and implementable 
hardware description

• Implement in recent silicon technology

• 100% accurate timing and area figures

• Proven physical feasibility (P&R)

➢Use implementation results to optimize HW

➢Use high-level simulation with proven 
characteristics for performance evaluation
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A heterogeneous manycore platform 
test chip implemented in GF22FDX [1]

[1] F. Zaruba, F. Schuiki and L. Benini, "Manticore: A 4096-Core RISC-V 

Chiplet Architecture for Ultraefficient Floating-Point Computing," in IEEE Micro, 
vol. 41, no. 2, pp. 36-42, 1 March-April 2021, doi: 10.1109/MM.2020.3045564.



Couple to Core for Better Performance

• Absolute IPC still poor

• Much of no-stall likely bookkeeping

• Core duplicates all address calculation steps 
done by Prodigy, but in SW → slow

• Compiler is fully aware of Prodigy

• Prefetch sequence (DIG) known ahead-of-time

➢ Implement direct data streams into core

• Prodigy directly provides prefetched data 

• Add ISA instruction to pop / push streams

➢ Compiler coordinates core and Prodigy to 
eliminate bookkeeping / stalls and maximize IPC

➢ Increases performance while saving energy
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Generalize Indirection Function

• Some algorithms need different 
indirect address transforms

• May need additional data

• Plenty of potential to extend Prodigy “FSM”

• Won’t have much impact at this scale

➢Generalize indirection functionality

• Analyze workloads to see which might pay off

• Implement address transforms in HW

➢ Better prefetch coverage

➢ Higher performance
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      =   +  

      _ptr

for t in a[i]..a[i+1]: 

x_ptr = b + t

x = *x_ptr

x_ptr = indir(b, t, l1_data)



Discussion
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How could other components (DRAM schedulers, coalescers, 
cache eviction, …) benefit from known demand sequences?
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Can we leverage ahead-of-time analysis to prefetch other access 
patterns? What about arbitrary regular patterns?
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We can technically reprogram Prodigy at any time during runtime. 
When would this make sense? What can we gain from it?
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How can we adapt Prodigy to better integrate with multiple 
threads per core and the OS?
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How does Prodigy affect timing channel attacks? Does it 
increase or decrease attack surface and bandwidth, and why?
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