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Executive Summary

Background: Prefetchers predict address of future memory requests by
finding access patterns from program context / feature
Problem: Three key shortcomings of prior prefetchers:
- Using only single program feature
- Lack of system awareness / feedback
- Lack of in-silicon customizability
: Design adaptive and multi-feature prefetching framework

Contribution: Pythia, formulating prefetching as
a reinforcement learning problem
Results:
- Evaluated using wide range of workloads
- Outperforms current best prefetchers
by 3.4%, 7.7% & 17% in 1/4/bw-constrained cores
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2. Reinforcement Learning

- Different form of Machine Learning

- No training data needed in advance (online)

— e — e

T . Features of request Rewiard Prefetch from address
State Reward Action to address A A + offset

- Q-Values for each state-action pair represent expected reward
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What is State?

k-dimensional feature vector

feature = control flow component + data flow component

e.g. - PC - Cacheline Address
- Branch PC - Physical Page Number
- Last 3 PCs, ... - last 4 deltas, ...
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What is Action?

Given a demand address A select prefetch offset O
Action range: [-63,63], will be pruned for efficiency

If zero-offset selected, no prefetch is generated
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Defines the objective of Pythia encapsulating two metrics:
« Prefetch usefulness
- System feadback
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3. Pythia Design

Two major components:
- Q-Value store

- Evaluation Queue
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Prefetch sequence
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Prefetch sequence

1. Search EQ for every new demand
and assign rewards

Demand A State
Request Vector

51

SIS U

53

54

Q-Value Store
(QVStore)

Evaluation Queue (EQ) ]

0 |

Assign reward to
corresponding EQ entry

|

Prefetch Fill

Memory
Hierarchy

25.



Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

Demand A State
Request Vector
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Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

3. Search QValue efficiently for every
possible action

Find the Action with max Q-Value

Look up

Demand B State

QVStore
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Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

3. Search QValue efficiently for every
possible action

4. Issue Memory request

Find the Action with max Q-Value

Look up
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Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

3. Search QValue efficiently for every
possible action

4. Issue Memory request

5. Add request parameters to EQ

Find the Action with max Q-Value

Look up
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Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

3. Search QValue efficiently for every
possible action

4. Issue Memory request

5. Add request parameters to EQ

6. Evict EQ entries and update QVStore

Find the Action with max Q-Value

Look up
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Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

3. Search QValue efficiently for every
possible action

4. Issue Memory request

5. Add request parameters to EQ
6. Evict EQ entries and update QVStore

7. When memory loads the value set
filled bit in corresponding EQ entry

Find the Action with max Q-Value

o Look up
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-
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stores for all state-action pairs representing the expected rewards
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Organisation of QVStore

The heart of Pythia is the Q-Value store which
stores for all state-action pairs representing the expected rewards

Instead of neural net based a specialized 2D table is proposed

Problem:

- Table size k features, hashing

- Fast search pipelining
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Lots of hyperparameters

State space exploration (aka. brute forcing)

1. Create all pairs of control-flow & data-flow components
2. Prune list of actions [-63,63]

3. Select best tuning configuration (uniform grid search)

Features PC+Delta, Sequence of last-4 deltas

Prefetch Action List  {-6,-3,-1,0,1,3,4,5,10,11,12,16,22,23,30,32}

Rar=20, Rar=12, Rcr=-12, Rip=-14,

Reward Level Values I H L
Rin=—8 Ryp=—2 Ry p=—4

Hyperparameters a = 0.0065, y = 0.556, € = 0.002
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4. Performance Analysis

State of the art prefetcher competition:

- SPP

- Bingo

- MLOP

- DSPatch
- PPF

- Pythia

Path Confidence Lookahead
Spatial Data Pattern
Multi-Lookahead Offset
Dual Spatial Pattern
Perceptron-based Filtering
Reinforcement Learning

6.2 KB
46 KB
8 KB
3.6 KB
39.3 KB
25.5 KB
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Coverage & Overprediction
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Coverage & Overprediction

Pythia consistently brings the highest coverage

while having lowest overpredictions
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Workload Speedup
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Workload Speedup

Single Core System

Four Core System
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Workload Speedup

Sing

Fou

In single core systems Pythia consistently
brings the highest performance benefits

In multi core systems Pythia consistently

brings even higher performance benefits due
to better memory bandwith usage

14
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Executive Summary - Questions?

Background: Prefetchers predict address of future memory requests by
finding access patterns from program context / feature
Problem: Three key shortcomings of prior prefetchers:
- Using only single program feature
- Lack of system awareness / feedback
- Lack of in-silicon customizability
Goal: Design adaptive and multi-feature prefetching framework

Contribution: Pythia, formulating prefetching as
a reinforcement learning problem

Results:
- Evaluated using wide range of workloads
- Outperforms current best prefetchers
by 3.4%, 7.7% & 17% in 1/4/bw-constrained cores
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Strengths of the Paper
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Strengths of the Paper

- Simple idea, great execution
- Multiple levels of detail presented
- Intuitive illustrations

- Good amount of self analysis, reflection conceptually and testing

- Example usage & installation
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Weaknesses of the Paper
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Weaknesses of the Paper

- A lot of repetition in the beginning
- Typical ML problem: Only knows it works, not how!

- Brute forcing its way through and no report of struggle

- Paper only states Pythia is better than everybody
but what is the theoretical limit or future improvements?
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Discussion

Are there security vulnerabilities with Prefetching as RL?

Are Prefetchers still needed with the rise of Near/In Memory Processing?

Could this Prefetcher be used in the Industry soon?
Is the simple adaption worth the benefith and overcome the "lazyness"
of the industry?

Innovation instead of exploration?
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