Pythia

A Customizable
Hardware Prefetching Framework
Using Online Reinforcement Learning

Presented by
Cedric Caspar

Rahul Bera Konstantinos Kanellopoulos Anant V.Nori Taha Shahroodi
Sreenivas Subramoney Onur Mutlu

ETH Zirich Processor Architectur Research Labs, Intel Labs TU Delft

Overview

1. Prefetching

CPU

2. RL

L1 Cache

3. Pythia| 4. Results

L2 Cache

Prefetcher

5. Strengths

6. Weaknesses

7. Discussion

Executive Summary

Background: Prefetchers predict address of future memory requests by
finding access patterns from program context / feature
Problem: Three key shortcomings of prior prefetchers:
- Using only single program feature
- Lack of system awareness / feedback
- Lack of in-silicon customizability
: Design adaptive and multi-feature prefetching framework

Contribution: Pythia, formulating prefetching as
a reinforcement learning problem
Results:
- Evaluated using wide range of workloads
- Outperforms current best prefetchers
by 3.4%, 7.7% & 17% in 1/4/bw-constrained cores

2. Reinforcement Learning

2. Reinforcement Learning

- Different form of Machine Learning

2. Reinforcement Learning

- Different form of Machine Learning

- No training data needed in advance (online)

2. Reinforcement Learning

- Different form of Machine Learning

- No training data needed in advance (online)

T

State Reward Action

- Q-Values for each state-action pair represent expected reward

15.

2. Reinforcement Learning

- Different form of Machine Learning

- No training data needed in advance (online)

— e — e

T . Features of request Rewiard Prefetch from address
State Reward Action to address A A + offset

- Q-Values for each state-action pair represent expected reward

16.

What is State?

k-dimensional feature vector

feature = control flow component + data flow component

e.g. - PC - Cacheline Address
- Branch PC - Physical Page Number
- Last 3 PCs, ... - last 4 deltas, ...

What is State?

k-dimensional feature vector

feature = control flow component + data flow component

e.g. - PC - Cacheline Address
- Branch PC - Physical Page Number
- Last 3 PCs, ... - last 4 deltas, ...

What is Action?

Given a demand address A select prefetch offset O
Action range: [-63,63], will be pruned for efficiency

If zero-offset selected, no prefetch is generated

What is Reward?

Defines the objective of Pythia encapsulating two metrics:
« Prefetch usefulness
- System feadback

What is Reward?

Defines the objective of Pythia encapsulating two metrics:
« Prefetch usefulness
- System feadback

Many different kinds of rewards get awarded:

Accurate + timely (Rat) | Accurate + late (Ral) | Out of physical page (Rcl)
No-prefetch + low/high mem b/w (Rnp-L / Rnp-H)
Inaccurate + low/high mem b/w (Rin-L / Rin-H)

What is Reward?

Defines the objective of Pythia encapsulating two metrics:
« Prefetch usefulness
- System feadback

Many different kinds of rewards get awarded:

Accurate + timely (Rat) | Accurate + late (Ral) | Out of physical page (Rcl)
No-prefetch + low/high mem b/w (Rnp-L / Rnp-H)
Inaccurate + low/high mem b/w (Rin-L / Rin-H)

14 -12 -8 -4 -2 +12 +20
P 1 | 1 | |

| | I I | | |
Rin-H Rcl Rin-L Rnp-L Rnp-H Ral Rat

3. Pythia Design

Two major components:
- Q-Value store

- Evaluation Queue

Demand
Request

n State

Vector

51
e

21 G

53

54

Q-Value Store
(QVStore)

Evaluation Queue (EQ)]

|

|

Prefetch Fill

Memory
Hierarchy

23.

Prefetch sequence

Demand
Request

n State

- 51

Vector 2 |

53

54

Q-Value Store
(QVStore)

Evaluation Queue (EQ)]

| |

Prefetch Fill

Memory
Hierarchy

24.

Prefetch sequence

1. Search EQ for every new demand
and assign rewards

Demand A State
Request Vector

51

SIS U

53

54

Q-Value Store
(QVStore)

Evaluation Queue (EQ)]

0 |

Assign reward to
corresponding EQ entry

|

Prefetch Fill

Memory
Hierarchy

25.

Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

Demand A State
Request Vector

51
e

2 T L

53

54

Q-Value Store
(QVStore)

Evaluation Queue (EQ)]

0 |

Assign reward to
corresponding EQ entry

|

Prefetch Fill

Memory
Hierarchy

26.

Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

3. Search QValue efficiently for every
possible action

Find the Action with max Q-Value

Look up

Demand B State

QVStore

e

Request Vector o

- v .
Al A2 A3

51

A1 vl

53

54

Q-Value Store
(QVStore)

Evaluation Queue (EQ)]

|

Assign reward to

corresponding EQ entry

|

Prefetch Fill

Memory
Hierarchy

27.

Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

3. Search QValue efficiently for every
possible action

4. Issue Memory request

Find the Action with max Q-Value

Look up

Demand
Request

State

QVStore

e

Vector o

- v .
Al A2 A3

51

A1 vl

53

54

Q-Value Store
(QVStore)

Evaluation Queue (EQ)]

|

Assign reward to
corresponding EQ entry

|

Generate
prefetch

Prefetch Fill

Memory
Hierarchy

28.

Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

3. Search QValue efficiently for every
possible action

4. Issue Memory request

5. Add request parameters to EQ

Find the Action with max Q-Value

Look up

Demand B State

QVStore

e

Request Vector o

- v .
Al A2 A3

Generate

~ prefetch Memory
- = Hierarchy

54

Q-Value Store
(QVStore)

Evaluation Queue (EQ)]

|

Assign reward to

corresponding EQ entry

Insert prefetch action &
] State-Action pair in EQ

Prefetch Fill

29.

Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

3. Search QValue efficiently for every
possible action

4. Issue Memory request

5. Add request parameters to EQ

6. Evict EQ entries and update QVStore

Find the Action with max Q-Value

Look up

Demand B State
Request Vector

QVStore

e

» . *

Al A2 A3

Generate
prefetch

51

A1 vl

53

e Evict EQ entry and
update QVStore

54

Q-Value Store
(QVStore)

Evaluation Queue (EQ)]

0 |

Assign reward to
corresponding EQ entry

Memory
Hierarchy

Insert prefetch action &

] State-Action pair in EQ

Prefetch Fill

30.

Prefetch sequence

1. Search EQ for every new demand
and assign rewards

2. Extract state-vector from demand

3. Search QValue efficiently for every
possible action

4. Issue Memory request

5. Add request parameters to EQ
6. Evict EQ entries and update QVStore

7. When memory loads the value set
filled bit in corresponding EQ entry

Find the Action with max Q-Value

o Look up

Demand State QVstore
-

Request Vector o

b 51

- v .
Al A2 A3

53

= s L

54

G Evict EQ entry and
update QVStore

Q-Value Store
(QVStore)

Evaluation Queue (EQ)]

0 |

Assign reward to
corresponding EQ entry

Generate
prefetch

Insert prefetch action &

Memory
Hierarchy

State-Action pair in EQ
Set filled bit o

Prefetch Fill

Organisation of QVStore

The heart of Pythia is the Q-Value store which
stores for all state-action pairs representing the expected rewards

Organisation of QVStore

The heart of Pythia is the Q-Value store which
stores for all state-action pairs representing the expected rewards

Instead of neural net based a specialized 2D table is proposed

Organisation of QVStore

The heart of Pythia is the Q-Value store which
stores for all state-action pairs representing the expected rewards

Instead of neural net based a specialized 2D table is proposed

Problem:

- Table size k features, hashing

- Fast search pipelining

Action (A)

(a) R S o
ot '
l l i ; Index | |
: Generation l
oL vault, | ¢%-—{ vault, | --- ¢%-—{ vault, x| _—
Srogram d)s I Generation
1
feature l } : | Index T plane;
1 ! & N | . Generation |
Q(¢Sa A) Q(¢S$A) Q(¢’Sa A) N L :
Feature-action Q-value J Y i
O e s f ,,,,,,,
MAX 0
© - Q(d5, 4)
l TR R ke Feature-action Q-value
Q(5.4) ‘
ds—> + — # - reature Index

State-action Q-value

Feature-action pairs stored in vaults

Multiple overlapping hash-functions
implementing tile encoding

o

10

35.

Action (A) Action (A) (b)

[] i

Index

[Generation |] |

11 12 k '
¢Gg—| Vault, | ¢5-—| Vault, | --- ¢g-— Vault, ok . Index |

S Generation !

Program :
]

Phne1
feature [| ‘ R \ Gemdr::inn L=
Qg% 4) Q6% 4) Qs A) N L]

Feature-action Q-value J ‘_ P @_J
MAX) L
- (e) .~ Q(Ct's, A)
l R S Feature-action Q-value
Q(S, A) "
State-action Q-wie ds—> + — # - reature Index

Feature-action pairs stored in vaults

Multiple overlapping hash-functions
implementing tile encoding

=> sharing partial Q-Values for similar features
=> not sharing values for wildly different
features using multiple planes

Action (A) Action (A) (b)

(a) e i s e e B
| l - I !
& . Index | | |]
Generation | :
fD}g ~—| Vault, (925 ~—{ Vault, | --- ¢’§, —| Vault, ok _ !
s Generation 1
Program A :
feature [| |~ Index E 1
(1 A 42 A k A A% i Genemm_m T
Q ?s;) Q(¢S) Q(’?’s-) S)
Feature-action Q-value J e % @_J
MAX) {
: (c) .~ Q(Qt's, A)
l skt Feature-action Q-value
Q(S, A) 5
State-action Q-value @5 —+ + — # — Feature Index

Feature-action pairs stored in vaults

Multiple overlapping hash-functions
implementing tile encoding

=> sharing partial Q-Values for similar features
=> not sharing values for wildly different
features using multiple planes

Problem: need to get max-Q for
each possible action

10

Action (A)

l

fﬁ_ls'—" Vault, Cﬁ?gH Vault,

Program
feature I
Q(¢5, 4) Q(¢%, 4)
Feature-action Q-value J
MAX
Q(8,4)

State-action Q-value

Feature-action pairs stored in vaults

o) s

Index

I Generation

: Index
1 Generation
- Index
\
A

_ Generation

L

¢§f- + —= # ——> Feature Index

Multiple overlapping hash-functions

implementing tile encoding

=> sharing partial Q-Values for similar features

Action (A) (b)

Plane1

!

Q(¢5, A)

Feature-action Q-value

=> not sharing values for wildly different
features using multiple planes

Problem: need to get max-Q for
each possible action

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4
—
s~ § [
B
, | |~ x
p5— & |— < s
‘i —_— i Z o|'
%) | |
¢3 — E i B
s — —_— -EL \ %axim um of all
—_— —ut: ' feature-action Q-values Track maximum
to compute "
_— i / state-action Q-value state-action Q-value

Sum up all partial
feature-action

Retrieve partial
Q-values

feature-action Q-values

Pipeline the search iterating over
all possible actions

keep track of overall max Q-Value

Action (A) Action (A) (b) _§_t?_§!t_?__0_+ Stage 1 Stage 2 Stage 3 Stage 4
(a) sussssssssseeseclonoa SO NN 0 TR R L
l l P .‘ 3 Index | i I :
: Generation | : 3
QL Vault, 2 Vault, | --- ok —d Vault, ok { oIndex i ¢)S — é
Program : Plane | c > >
e S l RS = : 62— § sl %] Q54 |
Q(¢5, A) Q(¢%, A) Qs A) N\ L L | 5] s 2
Feature-action Q-value J N 5 ! , %X &
' \.L l I ¢S 7 E ‘ et maximum of all
- ey i Q(¢5,4) — | @/ R pa
l Shift RS Feature-action Q-value - / stal‘e[-';i:r:lfgﬁ:rm’ue A e
Q(S, A) * : Sum up all partial
stote-octon Qvotve 95—+ S8~ [+ reature ndes s O
Feature-action pairs stored in vaults Pipeline the search iterating over
: ') all possible actions
Multiple overlapping hash-functions P
implementing tile encoding keep track of overall max Q-Value
=> sharing partial Q-Values for similar features => drastic decrease of critical path

=> not sharing values for wildly different

features using multiple planes => area overhead stays minimal

Problem: need to get max-Q for
each possible action

39.

Lots of hyperparameters

State space exploration (aka. brute forcing)

11

Lots of hyperparameters

State space exploration (aka. brute forcing)

1. Create all pairs of control-flow & data-flow components

11

Lots of hyperparameters

State space exploration (aka. brute forcing)

1. Create all pairs of control-flow & data-flow components

2. Prune list of actions [-63,63]

11

Lots of hyperparameters

State space exploration (aka. brute forcing)

1. Create all pairs of control-flow & data-flow components
2. Prune list of actions [-63,63]

3. Select best tuning configuration (uniform grid search)

11

Lots of hyperparameters

State space exploration (aka. brute forcing)

1. Create all pairs of control-flow & data-flow components
2. Prune list of actions [-63,63]

3. Select best tuning configuration (uniform grid search)

Features PC+Delta, Sequence of last-4 deltas

Prefetch Action List {-6,-3,-1,0,1,3,4,5,10,11,12,16,22,23,30,32}

Rar=20, Rar=12, Rcr=-12, Rip=-14,

Reward Level Values I H L
Rin=—8 Ryp=—2 Ry p=—4

Hyperparameters a = 0.0065, y = 0.556, € = 0.002

11

4. Performance Analysis

State of the art prefetcher competition:

- SPP

- Bingo

- MLOP

- DSPatch
- PPF

- Pythia

Path Confidence Lookahead
Spatial Data Pattern
Multi-Lookahead Offset
Dual Spatial Pattern
Perceptron-based Filtering
Reinforcement Learning

6.2 KB
46 KB
8 KB
3.6 KB
39.3 KB
25.5 KB

12

Coverage & Overprediction

Fraction of LLC misses

250%
200%
150%
100%
50%
0%

309% 315%
] L —_
W Covered [JUncovered @ Overpredicted
(a8 o] (o © (o o o o | QO (o] (a8 (3] (o (@] [a W 1] o (@] (a8 (1] [a o O (1]
S 22 5|5 2955 29522955 2998|528 ¢
o = g . o 0 2 0 = e m o E B o g
SPECO06 SPEC17 PARSEC Ligra Cloudsuite AVG

13

Coverage & Overprediction

Pythia consistently brings the highest coverage

while having lowest overpredictions

13

47.

Workload Speedup

14

a 15
Workload Speedup T w14 (@ S| 7P Beineo zmLop B Pythia

2313 MY

= - 7 7

& B12 f 7 f

$ 511 | M7 ? % ?

- € > 7 % 7 W=t
Single Core System 53 1 | : l :
S S ¥ R <Qo'\“\
C G

14

Workload Speedup

Single Core System

Four Core System

Geomean speedup

Geomean speedup

28 ol el
R R NWROV

over baseline

over baselin

[(JSPP EBingo ZMLOP M Pythia

am

&
&

14

Workload Speedup

Sing

Fou

In single core systems Pythia consistently
brings the highest performance benefits

In multi core systems Pythia consistently

brings even higher performance benefits due
to better memory bandwith usage

14

51.

Executive Summary - Questions?

Background: Prefetchers predict address of future memory requests by
finding access patterns from program context / feature
Problem: Three key shortcomings of prior prefetchers:
- Using only single program feature
- Lack of system awareness / feedback
- Lack of in-silicon customizability
Goal: Design adaptive and multi-feature prefetching framework

Contribution: Pythia, formulating prefetching as
a reinforcement learning problem

Results:
- Evaluated using wide range of workloads
- Outperforms current best prefetchers
by 3.4%, 7.7% & 17% in 1/4/bw-constrained cores

15

Strengths of the Paper

16

Strengths of the Paper

- Simple idea, great execution
- Multiple levels of detail presented
- Intuitive illustrations

- Good amount of self analysis, reflection conceptually and testing

- Example usage & installation

16

Weaknesses of the Paper

17

Weaknesses of the Paper

- A lot of repetition in the beginning
- Typical ML problem: Only knows it works, not how!

- Brute forcing its way through and no report of struggle

- Paper only states Pythia is better than everybody
but what is the theoretical limit or future improvements?

17

Discussion

Are there security vulnerabilities with Prefetching as RL?

Are Prefetchers still needed with the rise of Near/In Memory Processing?

Could this Prefetcher be used in the Industry soon?
Is the simple adaption worth the benefith and overcome the "lazyness"
of the industry?

Innovation instead of exploration?

18

Pythia

A Customizable
Hardware Prefetching Framework
Using Online Reinforcement Learning

Presented by
Cedric Caspar

Rahul Bera Konstantinos Kanellopoulos Anant V.Nori Taha Shahroodi
Sreenivas Subramoney Onur Mutlu

ETH Zirich Processor Architectur Research Labs, Intel Labs TU Delft

58.

