

Pythia

A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Presented by Cedric Caspar

Rahul Bera Konstantinos Kanellopoulos Sreenivas Subramoney

Anant V.Nori Onur Mutlu Taha Shahroodi

ETH Zürich

Processor Architectur Research Labs, Intel Labs

TU Delft

Executive Summary

Background: Prefetchers predict address of future memory requests by finding access patterns from program context / feature

Problem: Three key shortcomings of prior prefetchers:

- Using only single program feature
- Lack of system awareness / feedback
- Lack of in-silicon customizability

Goal: Design adaptive and multi-feature prefetching framework

Contribution: Pythia, formulating prefetching as a reinforcement learning problem

Results:

- Evaluated using wide range of workloads
- Outperforms current best prefetchers by 3.4%, 7.7% & 17% in 1/4/bw-constrained cores

1. Prefetching

1. Prefetching

- **DRAM latency** remains a critical bottleneck
- **Spatial locality** provides significant performance benefits
- Irregular patterns are difficult, inaccurate, hardware intensive

1. Prefetching

- DRAM latency remains a critical bottleneck
- Spatial locality provides significant performance benefits
- Irregular patterns are difficult, inaccurate, hardware intensive

· Solutions:

- Reduce latency
- Tolerate latency via multithreading
- Hide latency via caching/prefetching

J

• Simplest: Next-Line or Stride prefetcher

- Simplest: Next-Line or Stride prefetcher
- Cache-block address based stride prefetcher
 Stream buffer prefetcher

Hardware intensive

- Simplest: Next-Line or Stride prefetcher
- Cache-block address based stride prefetcher
 Stream buffer prefetcher
- Locality based prefetching

Hardware intensive Bandwidth intensive

- Simplest: Next-Line or Stride prefetcher
- Cache-block address based stride prefetcher
 Stream buffer prefetcher
- Locality based prefetching

Hardware intensive Bandwidth intensive

Key Ideas for Pythia:

- · Adaptive to access pattern switch
- Memory bandwidth consideration
- Parametric variability for the prefetcher

Different form of Machine Learning

- Different form of Machine Learning
- No training data needed in advance (online)

- Different form of Machine Learning
- No training data needed in advance (online)

· Q-Values for each state-action pair represent expected reward

- Different form of Machine Learning
- No training data needed in advance (online)

· Q-Values for each state-action pair represent expected reward

What is State?

k-dimensional feature vector

```
feature = control flow component + data flow component
e.g. - PC - Cacheline Address
- Branch PC - Physical Page Number
- Last 3 PCs, ... - last 4 deltas, ...
```

What is State?

k-dimensional feature vector

```
feature = control flow component + data flow component
e.g. - PC - Cacheline Address
- Branch PC - Physical Page Number
- Last 3 PCs, ... - last 4 deltas, ...
```

What is Action?

Given a demand address A select prefetch offset O

Action range: [-63,63], will be pruned for efficiency

If zero-offset selected, no prefetch is generated

What is Reward?

Defines the **objective** of Pythia encapsulating two metrics:

- Prefetch usefulness
- System feadback

What is Reward?

Defines the **objective** of Pythia encapsulating two metrics:

- Prefetch usefulness
- System feadback

Many different kinds of rewards get awarded:

```
Accurate + timely (Rat) | Accurate + late (Ral) | Out of physical page (Rcl)

No-prefetch + low/high mem b/w (Rnp-L / Rnp-H)

Inaccurate + low/high mem b/w (Rin-L / Rin-H)
```

What is Reward?

Defines the **objective** of Pythia encapsulating two metrics:

- Prefetch usefulness
- System feadback

Many different kinds of rewards get awarded:

Accurate + timely (Rat) | Accurate + late (Ral) | Out of physical page (Rcl)

No-prefetch + low/high mem b/w (Rnp-L / Rnp-H)

Inaccurate + low/high mem b/w (Rin-L / Rin-H)

3. Pythia Design

Two major components:

- Q-Value store
- Evaluation Queue

 Search EQ for every new demand and assign rewards

- Search EQ for every new demand and assign rewards
- 2. Extract state-vector from demand

- Search EQ for every new demand and assign rewards
- 2. Extract state-vector from demand
- 3. **Search QValue** efficiently for every possible action

- Search EQ for every new demand and assign rewards
- 2. Extract state-vector from demand
- 3. **Search QValue** efficiently for every possible action
- 4. **Issue** Memory request

- Search EQ for every new demand and assign rewards
- 2. Extract state-vector from demand
- 3. **Search QValue** efficiently for every possible action
- 4. **Issue** Memory request
- 5. Add request parameters to EQ

- Search EQ for every new demand and assign rewards
- 2. Extract state-vector from demand
- 3. **Search QValue** efficiently for every possible action
- 4. **Issue** Memory request
- 5. Add request parameters to EQ
- 6. Evict EQ entries and update QVStore

- Search EQ for every new demand and assign rewards
- 2. Extract state-vector from demand
- 3. **Search QValue** efficiently for every possible action
- 4. **Issue** Memory request
- 5. Add request parameters to EQ
- 6. Evict EQ entries and update QVStore
- 7. When memory loads the value set **filled bit** in corresponding EQ entry

Organisation of QVStore

The **heart of Pythia** is the **Q-Value** store which stores for all **state-action pairs** representing the **expected rewards**

Organisation of QVStore

The **heart of Pythia** is the **Q-Value** store which stores for all **state-action pairs** representing the **expected rewards**

Instead of neural net based a specialized 2D table is proposed

Organisation of QVStore

The **heart of Pythia** is the **Q-Value** store which stores for all **state-action pairs** representing the **expected rewards**

Instead of neural net based a specialized 2D table is proposed

Problem:

Table size k features, hashing

Fast search pipelining

Feature-action pairs stored in vaults

Multiple overlapping hash-functions implementing tile encoding

Feature-action pairs stored in vaults

Multiple overlapping hash-functions implementing tile encoding

- => sharing partial Q-Values for **similar features**
- => not sharing values for **wildly different features** using multiple planes

Feature-action pairs stored in vaults

Multiple overlapping hash-functions implementing tile encoding

- => sharing partial Q-Values for **similar features**
- => not sharing values for **wildly different features** using multiple planes

Problem: need to get **max-Q** for each possible action

Feature-action pairs stored in vaults

Multiple overlapping hash-functions implementing tile encoding

- => sharing partial Q-Values for similar features
- => not sharing values for wildly different features using multiple planes

Problem: need to get **max-Q** for each possible action

Pipeline the search iterating over all possible actions

keep track of overall max Q-Value

Feature-action pairs stored in vaults

Multiple overlapping hash-functions implementing tile encoding

- => sharing partial Q-Values for similar features
- => not sharing values for wildly different features using multiple planes

Problem: need to get **max-Q** for each possible action

Pipeline the search iterating over all possible actions

keep track of overall max Q-Value

- => drastic decrease of critical path
- => area overhead stays minimal

State space exploration (aka. brute forcing)

State space exploration (aka. brute forcing)

1. Create all pairs of control-flow & data-flow components

State space exploration (aka. brute forcing)

- 1. Create all pairs of control-flow & data-flow components
- 2. Prune list of actions [-63,63]

State space exploration (aka. brute forcing)

- 1. Create all pairs of control-flow & data-flow components
- 2. Prune list of actions [-63,63]
- 3. Select best tuning configuration (uniform grid search)

State space exploration (aka. brute forcing)

- 1. Create all pairs of control-flow & data-flow components
- 2. Prune list of actions [-63,63]
- 3. Select best tuning configuration (uniform grid search)

Features	PC+Delta, Sequence of last-4 deltas
Prefetch Action List	{-6,-3,-1,0,1,3,4,5,10,11,12,16,22,23,30,32}
Reward Level Values	\mathcal{R}_{AT} =20, \mathcal{R}_{AL} =12, \mathcal{R}_{CL} =-12, \mathcal{R}_{IN}^{H} =-14, \mathcal{R}_{IN}^{L} =-8, \mathcal{R}_{NP}^{H} =-2, \mathcal{R}_{NP}^{L} =-4
Hyperparameters	$\alpha = 0.0065, \gamma = 0.556, \epsilon = 0.002$

4. Performance Analysis

State of the art **prefetcher competition**:

· SPP	Path Confidence Lookahead	6.2 KB
· Bingo	Spatial Data Pattern	46 KB
· MLOP	Multi-Lookahead Offset	8 KB
 DSPatch 	Dual Spatial Pattern	3.6 KB
· PPF	Perceptron-based Filtering	39.3 KB
· Pythia	Reinforcement Learning	25.5 KB

Coverage & Overprediction

Coverage & Overprediction

Workload Speedup

Workload Speedup

Single Core System

Workload Speedup

Single Core System

Four Core System

Executive Summary - Questions?

Background: Prefetchers predict address of future memory requests by finding access patterns from program context / feature

Problem: Three key shortcomings of prior prefetchers:

- Using only single program feature
- Lack of system awareness / feedback
- Lack of in-silicon customizability

Goal: Design adaptive and multi-feature prefetching framework

Contribution: Pythia, formulating prefetching as a reinforcement learning problem

Results:

- Evaluated using wide range of workloads
- Outperforms current best prefetchers by 3.4%, 7.7% & 17% in 1/4/bw-constrained cores

Strengths of the Paper

Strengths of the Paper

- · Simple idea, great execution
- Multiple levels of detail presented
- Intuitive illustrations
- · Good amount of self analysis, reflection conceptually and testing
- Example usage & installation

Weaknesses of the Paper

- A lot of repetition in the beginning
- Typical ML problem: Only knows it works, not how!
- Brute forcing its way through and no report of struggle
- Paper only states Pythia is better than everybody but what is the theoretical limit or future improvements?

Discussion

Are there security vulnerabilities with Prefetching as RL?

Are Prefetchers still needed with the rise of Near/In Memory Processing?

Could this Prefetcher be used in the Industry soon?
Is the simple adaption worth the benefith and overcome the "lazyness" of the industry?

Innovation instead of exploration?

Pythia

A Customizable Hardware Prefetching Framework Using Online Reinforcement Learning

Presented by Cedric Caspar

Rahul Bera Konstantinos Kanellopoulos Sreenivas Subramoney Anant V.Nori Onur Mutlu Taha Shahroodi

ETH Zürich

Processor Architectur Research Labs, Intel Labs

TU Delft