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Executive Summary 

• Motivation: True random numbers are used across a wide 
range of workloads

• Problem:
• High throughput TRNGs use specialized hardware

• Not all computing systems have designated TRNG hardware

• Limited ability to run TRN-needing applications

• Goal: high-throughput and low-latency TRNG in commodity 
DRAM chips

• Key Idea: Use Quadruple Activation to generate 
metastability in DRAM Sense Amplifiers

5



Presentation Overview

• Random Number Generation

• Challenges and Solution

• Background

• QUAC-TRNG

• Experimental Results and Conclusion

• Paper Analysis:
• Strengths
• Weaknesses

• Audience Questions and Discussion

6



Use Cases for Random Numbers

Cryptography (e.g. 
signature generation)

Scientific Simulations Machine Learning (e.g. 
Randomized Training)
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Random Number Generators

Random Number Generator (RNG): device or program that 
produces random numbers

8



Random Number Generators

• Pseudo-Random Number Generator (PRNG)

• True Random Number Generator (TRNG)

9



Random Number Generators

• Pseudo-Random Number Generator (PRNG)

• Arithmetic transformation on seed

• True Random Number Generator (TRNG)

• Sample random physical processes

10

seed state 01001101



Random Number Generators

• Pseudo-Random Number Generator (PRNG)

• Arithmetic transformation on seed

• True Random Number Generator (TRNG)

• Sample random physical processes

11

seed state 01001101

Physical 
process

sample 01001101



Random Number Generators

• Pseudo-Random Number Generator (PRNG)

• Arithmetic transformation on seed

• True Random Number Generator (TRNG)

• Sample random physical processes

12

seed state 01001101

Physical 
process

sample 01001101

If seed is compromised 

the RN-sequence can be 

regenerated.



Random Number Generators

• Pseudo-Random Number Generator (PRNG)

• Arithmetic transformation on seed

• True Random Number Generator (TRNG)

• Sample random physical processes
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seed state 01001101

Physical 
process

sample 01001101

If seed is compromised 

the RN-sequence can be 

regenerated.

Output cannot be 

regenerated by observing 

physical process.
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Post Processing:

• Remove bias

• Improve TRN quality



Cryptographic Hash Functions
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Cryptographic Hash Functions

• Scramble and randomize input
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Von Neuman Corrector (VNC) 

• Split all bits into groups of 2
• Remove group if same value

• Replace with "1" if the bits are 
"01"

• Replace with "0" otherwise
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Von Neuman Corrector (VNC) 

• Split all bits into groups of 2
• Remove group if same value

• Replace with "1" if the bits are 
"01"

• Replace with "0" otherwise

• E.g. "0010" becomes "0" after 
VNC
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Challenges

• High throughput TRNGs use specialized hardware

• Not all computing systems have designated TRNG hardware

• Limited ability to run TRN-needing applications

24

Goal: TRNG that uses commodity DRAM devices to 

generate random numbers with high throughput and low 

latency.



DRAM-based TRNGS
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DRAM-based TRNGS

• DRAM is used in most computing systems

• Low hardware cost to implement

• In-memory generation: less data movement
• Good for PIM workloads

• Avoids communication with designated TRNG 
hardware

• High throughput: more applications can use TRNs
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DRAM Organization 

………



Accessing a DRAM Cell
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[Ataberk Olgun ISCA 21-Talk, Seshadri+ MICRO’17]



Accessing a DRAM Cell

½ VDD + δ

enable

bitline

wordline

capacitor

access 
transistor

½ VDDVDD

enable 
wordline

enable 
sense amp

connects cell 
to bitline

cell loses charge 
to bitline

cell charge 
restored

Sense 
Amp

deviation in 
bitline voltage

½ VDD0

bitline

[Ataberk Olgun ISCA 21-Talk, Seshadri+ MICRO’17]

1

2

3

4

5

6



DRAM Operation
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DRAM Timing Parameters

• DRAM controller must obey timing parameters when scheduling commands
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DRAM Timing Parameters

• DRAM controller must obey timing parameters when scheduling commands

• ACT and PRE commands interleaved by tRAS

• Allow cells to fully restore charge

• PRE and ACT interleaved by tRP

• Settle the bitline voltage, disable activated wordline
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Quadruple Activation

• We can induce entropy in DRAM by violating the timing parameters for 
the following command sequence:

39

ACT PRE ACT
<3ns <3ns

35ns 14ns



Quadruple Activation

• We can induce entropy in DRAM by violating the timing parameters for 
the following command sequence:

• Activates 4 consecutive rows in succession

40

ACT PRE ACT
<3ns <3ns

35ns 14ns



Quadruple Activation

• We can induce entropy in DRAM by violating the timing parameters for 
the following command sequence:

• Activates 4 consecutive rows in succession

• Works in commodity DRAM chips by SK Hynix
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Hierarchical DRAM Organization

• Hierarchical wordlines

2 step DRAM row access
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Hierarchical DRAM Organization

• Hierarchical wordlines

2 step DRAM row access:
1. Select and activate master 

wordline (MWL)

2. Drive local wordlines with
control signals to activate 
DRAM cells
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Hypothetical Row Decoder

• Goal: Simultaneously activates 4 rows when it receives a 
series of ACT-PRE-ACT commands
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Hypothetical Row Decoder

• Goal: Simultaneously activates 4 rows when it receives a 
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Hypothetical Row Decoder

• Goal: Simultaneously activates 4 rows when it receives a 
series of ACT-PRE-ACT commands

• ACT(R0)-PRE-ACT(R3)
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Generating Random Values via QUAC
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QUAC-TRNG Testing Setup

• 136 DRAM chips from 17 off-the-shelf DDR4 modules by 
SK Hynix

• Modified SoftMC

• DDR4 commands sent to FPGA board

• Control DRAM temperatures (50°C)
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Shannon Entropy

Measure Randomness in Bitstream
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Probabilities: proportion of logic-1 and logic-0 values in bitstream
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Shannon Entropy

Measure Randomness in Bitstream

Probabilities: proportion of logic-1 and logic-0 values in bitstream

• Perform QUAC 1000 times

• Measure entropy for each SAs 1000-bit bitstream
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Data Pattern Dependence
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Data Pattern Dependence

• 50 °C, 8K DRAM segments, 16 data patterns, across 17 DRAM 
modules
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Data Pattern Dependence

• 50 °C, 8K DRAM segments, 16 data patterns, across 17 DRAM 
modules

66
[Image: Ataberk Olgun ISCA 21-Talk]

R2

R3

R0
R1

1
1

1
1

Data pattern: 1111 (four ones)

R0

R1

R2

R3

1
0

0
0

Data pattern: 1000



Data Pattern Dependence

• Cache block entropy (CBE): sum of entropy of all bitlines in that cache 
block (max: 512)
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Data Pattern Dependence

• Cache block entropy (CBE): sum of entropy of all bitlines in that cache 
block (max: 512)

• Average CBE: average across all cache blocks in a module

• Maximum CBE: greatest of all CBEs in a module
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Data Pattern Dependence
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Data Pattern Dependence
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Data Pattern Dependence
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• Average entropy varies with data 
pattern

• More randomness when R0 

initialized to inverted value of 

other 3 (more time to share 

charge)



Spatial Distribution of Entropy

Distribution of Entropy based on physical location of 
the segment on the DRAM chip
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Spatial Distribution of Entropy

Distribution of Entropy based on physical location of 
the segment on the DRAM chip

Segment entropy: sum of all bitline entropies in 
DRAM segment (max: 64K)

Data pattern: "0111"
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Spatial Distribution of Entropy
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Spatial Distribution of Entropy

• Wave like pattern: Systematic process 
variations
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Spatial Distribution of Entropy

• Wave like pattern: Systematic process 
variations

• Post manufacturing repair (rows 
being remapped)

• Segments distance from SAs

• Significant increase towards the end 
and drop: differently sized subarrays 
at the end of bank?
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Randomness Test 

1. Initialize highest entropy DRAM segments with data pattern "0111"
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Randomness Test 

1. Initialize highest entropy DRAM segments with data pattern "0111"

2. Perform QUAC

3. Read out the values generated in the SAs, split into 256-bit blocks

4. Post process with Von Neumann Corrector and SHA-256
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NIST Statistical Test Suite 

• Measure quality of TRNG
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NIST Statistical Test Suite 

• Measure quality of TRNG

• Runs multiple tests, evaluates statistical properties to find patterns
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NIST Statistical Test Suite 

• Measure quality of TRNG

• Runs multiple tests, evaluates statistical properties to find patterns

• Inputs can either pass or fail test
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NIST STS Results
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NIST STS Results

Desired: p-value > 0.001

• Both bitstreams pass all tests

• QUAC-TRNG outputs high 
quality random bitstreams
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QUAC-TRNG Throughput
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QUAC-TRNG Throughput

Throughput of 

(256•SIB)/(L•10^-9)

bits per second
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QUAC-TRNG Throughput

Throughput of 

(256•SIB)/(L•10^-9)

bits per second

• SIB: SHA Input Blocks, number of input blocks with 256 bits of entropy in highest 
entropy DRAM segment

• L: Latency of QUAC operation [ns]
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Results
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System Performance
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System Performance

• SPEC2006 benchmark suite

• Simulate 3.2 GHz core, 4 DRAM channels
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System Performance

• SPEC2006 benchmark suite

• Simulate 3.2 GHz core, 4 DRAM channels

• Calculate when channel idle
• Issue QUAC-TRNG commands in idle periods
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Results

• 10.2 Gb/s average throughput
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Results

• 10.2 Gb/s average throughput

• 3.22 Gb/s min, 14.3 Gb/s max
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Results

• 10.2 Gb/s average throughput

• 3.22 Gb/s min, 14.3 Gb/s max

• 74.13% of imperical average (3.44•4=13.76 Gb/s for 4 
channels)
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Comparison With Prior Work

• Throughput and latency on 4 DRAM channels
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Comparison With Prior Work

• Throughput and latency on 4 DRAM channels

103

High latency 

can be alleviated 

with random 

number buffer



System Integration I 

• SHA-256 can be implemented in hardware at low area and 
latency cost
• Suitable for implementation in memory controller

• 0.001mm² area
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System Integration II

QUAC-TRNG:

• Memory Overhead: 192 KB reserved (0.002% of 8 GB DDR4)
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System Integration II

QUAC-TRNG:

• Memory Overhead: 192 KB reserved (0.002% of 8 GB DDR4)

• Area Overhead: 0.0003mm²

• Total (including SHA-256): 0.0014mm² (0.04% of chip area)
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Executive Summary 

• Motivation: True random numbers are used across a wide 
range of workloads

• Problem:
• High throughput TRNGs use specialized hardware

• Not all computing systems have designated TRNG hardware

• Limited ability to run TRN-needing applications

• Goal: high-throughput and low-latency TRNG in commodity 
DRAM chips

• Key Idea: Use Quadruple Activation to generate 
metastability in DRAM Sense Amplifiers
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Strengths of the Paper

• Explores a new and interesting idea which provides 
significant improvement

• Many aspects of implementation are analyzed

• Provides a lot of background

• The concept is thoroughly researched and the results are 
presented comprehensively

• PIM solution
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processes on the system
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Weaknesses of the Paper

• Not explored how QUAC-TRNG would interact with other 
processes on the system

• Only capable of using DRAM by one manufacturer to 
generate random numbers

• Repetitive writing style
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Discussion I

• Are there potential unseen dangers in violating DRAM 
timing parameters?

• Induce Rowhammer?

• Reduce quality of SAs? Accelerating aging?

• Affect data stored nearby?

• How can we potentially avoid those issues?
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Discussion II

• Currently there are not many specific workloads that would 
require such a high TRN throughput.
• Future oriented thinking?

• Can this development lead to TRN intense workloads becoming 
more common?

• Can this lead to increased security in commodity devices?
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Discussion III

• Where do you most see QUAC-TRNG implemented?
• What kinds of workloads?

• What kinds of computing systems? 
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Backup Slides
SHA-256, More on DR-STRaNGE



Shortcomings of Past Works 
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Shortcomings of Past Works 

• High latencies because they rely on fundamentally slow 
processes

• e.g. DRAM retention values or startup values
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Shortcomings of Past Works 

• High latencies because they rely on fundamentally slow 
processes

• e.g. DRAM retention values or startup values

• Low throughput
• Use only small portions of selected DRAM

• Or fail to induce metastability in all sense amplifiers (SAs)
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DRAM Chip Requirements

• Row addresses only differ in their two LSBs
• e.g. rows 111, 110, 101, 100

• But not 110, 101, 100, 001

• The address of the two ACT commands must have LSBs inverted
• e.g. rows 111, 110, 101, 100

• Or rows 111, 110, 101, 100

• The order of the activate commands does not matter
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Temperature Dependence 

• Test bitline entropies at 50°C, 65°C and 85°C

• On real DRAM chips from 5 modules, with "0111" data pattern

135

Conclusion: Implementation 

needs to account for 
changes in temperature.



Maintaining Entropy with varying 
Temperature

• Goal: SHA-256 input blocks always have 256 bits of entropy 
despite different temperatures

• Memory controller stores list of column addresses for 
temperature ranges

• List initialized during one-time characterization step

• Depending on temperature QUAC-TRNG gets optimal 
address from list
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Spatial Distribution of Entropy

• Cache block entropy: sum of entropy of all bitlines in that cache 
block
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Spatial Distribution of Entropy

• Cache block entropy: sum of entropy of all bitlines in that cache 
block

• Cache block in highest entropy segment (in each module)

• Data pattern: "0111"
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Spatial Distribution of Entropy
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Spatial Distribution of Entropy

• Peaks around the middle
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Spatial Distribution of Entropy

• Peaks around the middle

• Drops towards the end

• Higher numbered cache blocks are less 
random

• Non uniform distribution
• Systematic variation in manufacturing
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Optimizing Latency & Throughput 

• Latency is dominated by initialization of 4 DRAM rows

• Use in-DRAM copy operations to initialize segments at row 
granularity (Row-Clone based)

• Concurrently execute QUAC across multiple DRAM banks
(bank-level parallelism)
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System Integration

• Memory Overhead:

• Simultaneously use 8 DRAM rows

• 4 segments

• Across 4 banks in different bank groups

• Total: 192 KB reserved (0.002% of 8 BG DDR4)
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DR-STRaNGe
End-to-End System Design for DRAM-based TRNGs



DR-STRaNGe: 3 Key Challenges

1. Can cause significant slowdown of running applications

2. Doesn't differentiate between RNG and non-RNG memory 
requests
• Overhead from modifying timing parameters

• Unfair scheduling

3. High latency

147



DR-STRaNGe: Solutions

• Random number buffering mechanism
• Hide high latency

• Predict and use idle DRAM cycles to generate RN
• Less interference in system

• RNG-aware scheduler
• Reduces interference

• Separate RNG and non-RNG request queues

• Schedule based on priority levels of running processes

• Application Interface
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DR-STRaNGe: Performance

• Improves performance for both RNG and non-RNG tasks

• Reduces execution time compared to RNG-oblivious system:
• Dual core:

•By 17.9% for non-RNG

•By 25.1% for RNG

• Multi core (average over 4-, 8-, 16-core workloads):
•7.6% for non-RNG

•17.8% for RNG

• Improves system fairness by 32.1%

• 16 entry random number buffer achieves an average serve rate of 
0.55

• Idleness predictor: 19.3% and 23.9% improvement
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DR-STRaNGe: Area and Energy 
Consumption

• Area Overhead: 0.0022mm²

• 0.00048% of Intel Cascade Lake CPU Core (at 22nm process 
technology node)

• Reduced energy consumption and total memory cycles by 
21% for RNG and 15.8% for non-RNG
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Simple DRAM Idleness Predictor 

• Goal: identify long idle periods in DRAM

• Uses last accessed memory address to predict period length

• Table stored for each channel:
• 2-bit saturating counters

• Register for last accessed address value

• Counter for idle period length (initialized at 0)
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Simple DRAM Idleness Predictor 

• A channels predictor table is accessed when request queue 
is empty

• 2 kinds of idle periods:
• Long: # of cycles >= Period Threshold

• Short: # of cycles < Period Threshold

• Period Threshold empirically determined at 40 cycles

• Predictor table updated during idle periods
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Reinforcement Learning Agent for 
DRAM Idleness Predictor 
• Define DRAM idleness problem as a reinforcement 

learning (RL) problem

• State machine

• Performing action a at state s generates Q-value Q(s,a)

• 2 possible actions:
• Initiate random number generation
• Wait

• After action taken: update Q(s,a) determine reward r
• Idle period length determines correctness of prediction

• Q(s,a) = (1-α) Q(s,a) + α •r (α= 0,05; learning rate)
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RNG-Aware Memory Scheduler 

• Goal: improve system fairness, don't stall any request for 
too long

• 2 modes for memory controller: RNG and non-RNG

• Separate queues for RNG and non-RNG memory requests

• Use OS provided priority levels for applications to 
prioritize one of the queues

• Schedule all the requests in a queue at a time
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System Integration

• SHA-256 can be implemented in hardware at low area and 
latency cost
• Suitable for implementation in memory controller

• 65 clock cycle latency, 19.7 GB/s throughput, 0.001mm² area
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SHA-256 

• Secure Hashing Algorithm

• Input padded to 512 bits

• Divide input into 32-bit words: M0...Mn

• Process the input for each Mi

• 8 buffered A, B, C, D, E, F, G, H of 32 bits each are used
• Values are fixed at the beginning
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SHA-256 

157

Addition 

mod 2^32
Process each 16 words for 64 rounds

• Wt: different depending on the 

repetition, for the first 16 rounds it's the 
input message

• Kt: has a new fixed value for each round

Source: https://en.wikipedia.org/wiki/SHA-2
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SHA-256 

• In the end the initial value of A, B, C, D, E, F, G, H is added 
to the computed values

• Total 256 bits of output
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NIST Statistical Test Suite

• Validate randomness

• Null hypothesis H0: input sequence is random

• Outputs p-value for all statistical test used

• H0 holds if p-value larger than level of significance α

• Here: α=0.001
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NIST STS Results

Desired: p-value > 0.001

• Both bitstreams pass all tests

• QUAC-TRNG outputs high 
quality random bitstreams

SHA-256:

• DRAM segment produces 
1Mb sequences

• Test 1024 sequences per 
segment

• 99.28% pass NIST STS (over 
acceptable rate of 98.84%)
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Average p-value for each test


