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Abstract

Deep neural networks (DNNs) are computationally/memory-intensive and vulnera-
ble to adversarial attacks, making them prohibitive in some real-world applications.
By converting dense models into sparse ones, pruning appears to be a promising
solution to reducing the computation/memory cost. This paper studies classifica-
tion models, especially DNN-based ones, to demonstrate that there exists intrinsic
relationships between their sparsity and adversarial robustness. Our analyses reveal,
both theoretically and empirically, that nonlinear DNN-based classifiers behave
differently under l2 attacks from some linear ones. We further demonstrate that an
appropriately higher model sparsity implies better robustness of nonlinear DNNs,
whereas over-sparsified models can be more difficult to resist adversarial examples.

1 Introduction

Although deep neural networks (DNNs) have advanced the state-of-the-art of many artificial intelli-
gence techniques, some undesired properties may hinder them from being deployed in real-world
applications. With continued proliferation of deep learning powered applications, one major concern
raised recently is the heavy computation and storage burden that DNN models shall lay upon mobile
platforms. Such burden stems from substantially redundant feature representations and parameteriza-
tions [6]. To address this issue and make DNNs less resource-intensive, a variety of solutions have
been proposed. In particular, it has been reported that more than 90% of connections in a well-trained
DNN can be removed using pruning strategies [14, 13, 28, 21, 23], while no accuracy loss is observed.
Such a remarkable network sparsity leads to considerable compressions and speedups on both GPUs
and CPUs [25]. Aside from being efficient, sparse representations are theoretically attractive [2, 8]
and have made their way into tremendous applications over the past decade.

Orthogonal to the inefficiency issue, it has also been discovered that DNN models are vulnerable to
adversarial examples—maliciously generated images which are perceptually similar to benign ones
but can fool classifiers to make arbitrary predictions [26, 3]. Furthermore, generic regularizations
(e.g., dropout and weight decay) do not really help on resisting adversarial attacks [11]. Such
undesirable property may prohibit DNNs from being applied to security-sensitive applications. The
cause of this phenomenon seems mysterious and remains to be an open question. One reasonable
explanation is the local linearity of modern DNNs [11]. Quite a lot of attempts, including adversarial
training [11, 27, 19], knowledge distillation [24], detecting and rejecting [18], and some gradient
masking techniques like randomization [31], have been made to ameliorate this issue and defend
adversarial attacks.
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It is crucial to study potential relationships between the inefficiency (i.e., redundancy) and adversarial
robustness of classifiers, in consideration of the inclination to avoid “robbing Peter to pay Paul”, if
possible. Towards shedding light on such relationships, especially for DNNs, we provide compre-
hensive analyses in this paper from both the theoretical and empirical perspectives. By introducing
reasonable metrics, we reveal, somewhat surprising, that there is a discrepancy between the robustness
of sparse linear classifiers and nonlinear DNNs, under l2 attacks. Our results also demonstrate that an
appropriately higher sparsity implies better robustness of nonlinear DNNs, whereas over-sparsified
models can be more difficult to resist adversarial examples, under both the l∞ and l2 circumstances.

2 Related Works

In light of the “Occam’s razor” principle, we presume there exists intrinsic relationships between
the sparsity and robustness of classifiers, and thus perform a comprehensive study in this paper. Our
theoretical and empirical analyses shall cover both linear classifiers and nonlinear DNNs, in which
the middle-layer activations and connection weights can all become sparse.

The (in)efficiency and robustness of DNNs have seldom been discussed together, especially from
a theoretical point of view. Very recently, Gopalakrishnan et al. [12, 20] propose to sparsify the
input representations as a defense and provide provable evidences on resisting l∞ attacks. Though
intriguing, their theoretical analyses are limited to only linear and binary classification cases. Con-
temporaneous with our work, Wang et al. [29] and Ye et al. [32] experimentally discuss how pruning
shall affect the robustness of some DNNs but surprisingly draw opposite conclusions. Galloway et
al. [9] focus on binary DNNs instead of the sparse ones and show that the difficulty of performing
adversarial attacks on binary networks DNNs remains as that of training.

To some extent, several very recent defense methods also utilize the sparsity of DNNs. For improved
model robustness, Gao et al. [10] attempt to detect the feature activations exclusive to the adversarial
examples and prune them away. Dhillon et al. [7] choose an alternative way that prunes activations
stochastically to mask gradients. These methods focus only on the sparsity of middle-layer activations
and pay little attention to the sparsity of connections.

3 Sparsity and Robustness of Classifiers

This paper aims at analyzing and exploring potential relationships between the sparsity and robust-
ness of classifiers to untargeted white-box adversarial attacks, from both theoretical and practical
perspectives. To be more specific, we consider models which learn parameterized mappings xi 7→ yi,
when given a set of labelled training samples {(xi, yi)} for supervision. Similar to a bunch of other
theoretical efforts, our analyses start from linear classifiers and will be generalized to nonlinear DNNs
later in Section 3.2.

Generally, the sparsity of a DNN model can be considered in two aspects: the sparsity of connections
among neurons and the sparsity of neuron activations. In particular, the sparsity of activations also
include that of middle-layer activations and inputs, which can be treated as a special case. Knowing
that the input sparsity has been previously discussed [12], we shall focus primarily on the weight and
activation sparsity for nonlinear DNNs and just study the weight sparsity for linear models.

3.1 Linear Models

For simplicity of notation, we first give theoretical results for binary classifiers with ŷi = sgn(wTxi),
in which w,xi ∈ Rn. We also ignore the bias term b for clarity. Notice that wTx + b can be simply
rewritten as ẃT [x; 1] in which ẃ = [w; b], so all our theoretical results in the sequel apply directly
to linear cases with bias. Given ground-truth labels yi ∈ {+1,−1}, a classifier can be effectively
trained by minimizing some empirical loss

∑
i τ(−yi ·wTxi) using a logistic sigmoid function like

softplus: τ(·) = log(1 + exp(·)) [11].

Adversarial attacks typically minimize an lp norm (e.g., l2, l∞, l1 and l0) of the required perturbation
under certain (box) constraints. Though not completely equivalent with the distinctions in our visual
domain, such norms play a crucial role in evaluating adversarial robustness. We study both the l∞
and l2 attacks in this paper. With an ambition to totalize them, we propose to evaluate the robustness
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of linear models using the following metrics that describe the ability of resisting them respectively:

Binary : r∞ := Ex,y

(
1y=sgn(wT x̌)

)
,

r2 := Ex,y (1y=ŷ · d(x, x̃)) .
(1)

Here we let x̌ = x− εy · sgn(w) and x̃ = x−w(wTx)/‖w‖22 be the adversarial examples generated
by applying the fast gradient sign (FGS) [11] and DeepFool [22] methods as representatives. Without
box constraints on the image domain, they can be regarded as the optimal l∞ and l2 attacks targeting
on the linear classifiers [20, 22]. Function d calculates the Euclidean distance between two n-
dimensional vectors and we know that d(x, x̃) = |wTx|/‖w‖2.

The introduced two metrics evaluate robustness of classifiers from two different perspectives: r∞
calculates the expected accuracy on (FGS) adversarial examples and r2 measures a decision margin
between benign examples from the two classes. For both of them, higher value indicates stronger
adversarial robustness. Note that unlike some metrics calculating (maybe normalized) Euclidean
distances between all pairs of benign and adversarial examples, our r2 omits the originally misclassfied
examples, which makes more sense if the classifiers are imperfect in the sense of prediction accuracy.
We will refer to µk := E(x|y = k, ŷ = k), which is the conditional expectation for class k.

Be aware that although there exists attack-agnostic guarantees on the model robustness [16, 30], they
are all instance-specific. Instead of generalizing them to the entire input space for analysis, we focus
on the proposed statistical metrics and present their connections to the guarantees later in Section 3.2.
Some other experimentally feasible metrics shall be involved in Section 4. The following theorem
sheds light on intrinsic relationships between the described robustness metrics and lp norms of w.

Theorem 3.1. (The sparsity and robustness of binary linear classifiers). Suppose that Py(k) = 1/2
for k = ±1, and an obtained linear classifier achieves the same expected accuracy t on different
classes, then we have

r2 =
t

2
· w

T (µ+1 − µ−1)

‖w‖2
and r∞ ≤

t

2
· w

T (µ+1 − µ−1)

ε‖w‖1
. (2)

Proof. For r∞, we first rewrite it in the form of Pr(y ·wT x̌ > 0). We know from assumptions that
Pr(ŷ = k|y = k) = t and Pr(y = k) = 1/2, so we further get

r∞ =
∑
k=±1

t

2
Pr (k ·wTx > ε‖w‖1| y = k, ŷ = k), (3)

by using the law of total probability and substituting x̌ with x− εy · sgn(w). Lastly the result follows
after using the Markov’s inequality.

As for r2, the proof is straightforward by similarly casting its definition into the sum of conditional
expectations. That is,

r2 =
∑
k=±1

t

2
Ex|y,ŷ

(
|wTx|
‖w‖2

∣∣∣∣ y = k, ŷ = k

)
. (4)

Theorem 3.1 indicates clear relationships between the sparsity and robustness of linear models. In
terms of r∞, optimizing the problem gives rise to a sparse solution of w. By duality, maximizing the
squared upper bound of r∞ also resembles solving a sparse PCA problem [5]. Reciprocally, we might
also concur that a highly sparse w implies relatively robust classification results. Nevertheless, it
seems that the defined r2 has nothing to do with the sparsity of w. It gets maximized iff w approaches
µ+1 − µ−1 or µ−1 − µ+1, however, sparsifying w probably does not help on reaching this goal.
In fact, under some assumptions about data distributions, the dense reference model can be nearly
optimal in the sense of r2. We will see this phenomenon remains in multi-class linear classifications
in Theorem 3.2 but does not remain in nonlinear DNNs in Section 3.2. One can check Section 4.1
and 4.2 for some experimental discussions in more details.

Having realized that the l∞ robustness of binary linear classifiers is closely related to ‖w‖1, we now
turn to multi-class cases with the ground truth yi ∈ {1, . . . , c} and prediction ŷi = arg maxk(wT

k xi),
in which wk = W [:, k] indicates the k-th column of a matrix W ∈ Rn×c. Here the training objective
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f calculates the cross-entropy loss between ground truth labels and outputs of a softmax function.
The introduced two metrics shall be slightly modified to:

Multi-class : r∞ := Ex,y

(
1y=arg maxk(wT

k x̌)

)
,

r2 := Ex,y (1y=ŷ · d(x, x̃)) .
(5)

Likewise, x̌ = x + ε · sgn(∇f(x)) and x̃ = x − wδ(w
T
δ x)/‖wδ‖22 are the FGS and DeepFool

adversarial examples under multi-class circumstances, in which wδ = wŷ−we and e ∈ {1, . . . , c}−
{ŷ} is carefully chosen such that |(wŷ −we)

Tx|/‖wŷ −we‖2 is minimized. Denote an averaged
classifier by w̄ :=

∑
kwk/c, we provide upper bounds for both r∞ and r2 in the following theorem.

Theorem 3.2. (The sparsity and robustness of multi-class linear classifiers). Suppose that Py(k) =
1/c for k ∈ {1, ..., c}, and an obtained linear classifier achieves the same expected accuracy t on
different classes, then we have

r2 ≤
t

c

c∑
k=1

(wk − w̄)Tµk
‖wk − w̄‖2

and r∞ ≤
t

c

c∑
k=1

(wk − w̄)Tµk
ε‖wk − w̄‖1

(6)

under two additional assumptions: (I) FGS achieves higher per-class success rates than a weaker
perturbation like −ε · sgn(wy − w̄), (II) the FGS perturbation does not correct misclassifications.

We present in Theorem 3.2 similar bounds for multi-class classifiers to that provided in Theorem 3.1,
under some mild assumptions. Our proof is deferred to the supplementary material. We emphasize
that the two additional assumptions are intuitively acceptable. First, increasing the classification loss
in a more principled way, say using FGS, ought to diminish the expected accuracy more effectively.
Second, with high probability, an original misclassification cannot be fixed using the FGS method, as
one intends to do precisely the opposite.

Similarly, the presented bound for r∞ also implies sparsity, though it is the sparsity of wk − w̄.
In fact, this is directly related with the sparsity of wk, considering that the classifiers can be post-
processed to subtract their average simultaneously whilst the classification decision won’t change for
any possible input. Particularly, Theorem 3.2 also partially suits linear DNN-based classifications.
Let the classifier gk be factorized in a form of wT

k = (w′k)TWT
d−1 . . .W

T
1 , it is evident to see that

higher sparsity of the multipliers encourages higher probability of a sparse wk.

3.2 Deep Neural Networks

A nonlinear feedforward DNN is usually specified by a directed acyclic graph G = (V, E) [4] with a
single root node for final outputs. According to the forward propagation rule, the activation value of
each internal (and also output) node is calculated based on its incoming nodes and learnable weights
corresponding to the edges. Nonlinear activation functions are incorporated to ensure the capacity.
With biases, some nodes output a special value of one. We omit them for simplicity reasons as before.

Classifications are performed by comparing the prediction scores corresponding to different classes,
which means ŷ = arg maxk∈{1,...,c} gk(x). Benefit from some very recent theoretic efforts [16, 30],
we can directly utilize well-established robustness guarantees for nonlinear DNNs. Let us first denote
by Bp(x, R) a close ball centred at x with radius R and then denote by Lkq,x the (best) local Lipschitz
constant of function gŷ(x)− gk(x) over a fixed Bp(x, R), if there exists one. It has been proven that
the following lemma offers a reasonable lower bound for the required lp norm of instance-specific
perturbations when all classifiers are Lipschitz continuous [30].
Proposition 3.1. [30] Let ŷ = arg maxk∈{1,...,c} gk(x) and 1

p+ 1
q = 1, then for any ∆x ∈ Bp(0, R),

p ∈ R+ and a set of Lipschitz continuous functions {gk : Rn 7→ R}, with

‖∆x‖p ≤ min

{
min
k 6=ŷ

gŷ(x)− gk(x)

Lkq,x
, R

}
:= γ, (7)

it holds that ŷ = arg maxk∈{1,...,c} gk(x + ∆x), which means the classification decision does not
change on Bp(x, γ).

Here the introduced γ is basically an instance-specific lower bound that guarantees the robustness of
multi-class classifiers. We shall later discuss its connections with our rps, for p ∈ {∞, 2}, and now
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we try providing a local Lipschitz constant (which may not be the smallest) of function gŷ(x)−gk(x),
to help us delve deeper into the robustness of nonlinear DNNs. Without loss of generality, we will let
the following discussion be made under a fixed radius R > 0 and a given instance x ∈ Rn.

Some modern DNNs can be structurally very complex. Let us simply consider a multi-layer perceptron
(MLP) parameterized by a series of weight matrices W1 ∈ Rn0×n1 , . . . ,Wd ∈ Rnd−1×nd , in which
n0 = n and nd = c. Discussions about networks with more advanced architectures like convolutions,
pooling and skip connections can be directly generalized [1]. Specifically, we have

gk(xi) = wT
k σ(WT

d−1σ(. . . σ(WT
1 xi))), (8)

in which wk = Wd[:, k] and σ is the nonlinear activation function. Here we mostly focus on “ReLU
networks” with rectified-linear-flavoured nonlinearity, so the neuron activations in middle-layers are
naturally sparse. Due to clarity reasons, we discuss the weight and activation sparsities separately.
Mathematically, we let a0 = x and aj = σ(WT

j aj−1) for 0 < j < d be the layer-wise activations.
We will refer to

Dj(x) := diag
(
1Wj [:,1]T aj−1>0, . . . , 1Wj [:,nj ]T aj−1>0

)
, (9)

which is a diagonal matrix whose entries taking value one correspond to nonzero activations within the
j-th layer, and Mj ∈ {0, 1}nj−1×nj , which is a binary mask corresponding to each (possibly sparse)
Wj . Along with some analyses, the following lemma and theorem present intrinsic relationships
between the adversarial robustness and (both weight and activation) sparsity of nonlinear DNNs.

Lemma 3.1. (A local Lipschitz constant for ReLU networks). Let 1
p + 1

q = 1, then for any x ∈ Rn,
k ∈ {1, . . . , c} and q ∈ {1, 2}, the local Lipschitz constant of function gŷ(x)− gk(x) satisfies

Lkq,x ≤ ‖wŷ −wk‖q sup
x′∈Bp(x,R)

d−1∏
j=1

(‖Dj(x
′)‖p‖Wj‖p) . (10)

Theorem 3.3. (The sparsity and robustness of nonlinear DNNs). Let the weight matrix be represented
as Wj = W ′j ◦Mj , in which {Mj [u, v]} are independent Bernoulli B(1, 1− αj) random variables
and 0 /∈ {W ′j [u, v]}, for j ∈ {1, . . . , d− 1}. Then for any x ∈ Rn and k ∈ {1, . . . , c}, it holds that

EM1,...,Md−1
(Lk2,x) ≤ c2 · (1− η(α1, . . . , αd−1;x)) (11)

and
EM1,...,Md−1

(Lk1,x) ≤ c1 · (1− η(α1, . . . , αd−1;x)), (12)

in which function η is monotonically increasing w.r.t. each αj , c2 = ‖wŷ −wk‖2
∏
j ‖W ′j‖F and

c1 = ‖wŷ −wk‖1
∏
j ‖W ′j‖1,∞ are two constants.

Proof Sketch. Function
∏
‖Dj(·)‖p‖Wj‖p defined on Rn is bounded from above and below, thus

we know there exists an x̂ ∈ Bp(x, R) satisfying

Lkq,x ≤ ‖wŷ −wk‖q
∏
j

‖Dj(x̂)‖p‖Wj‖p. (13)

Particularly,
∏
‖Dj(x̂)‖p 6= 0 is fulfilled iff ‖Dd−1(x̂)‖p 6= 0 (i.e., it equals 1 for q ∈ {1, 2}). Under

the assumptions on Mj , we know that the entries of Wj are independent of each other, thus

PrM1,...,Md−1
(Dd−1(x̂)[u, u] = 0) = PrM1,...,Md−1

(Wd−1[:, u]Tad−2 ≤ 0)

≥
∏
u′

(αd−1 + ξd−2,u′ − αd−1ξd−2,u′),
(14)

in which ξd−2,u′ is a newly introduced scalar that equals or less equals to the probability of the u′-th
neuron being deactivated. In this manner, we can recursively define the function η and it is easy to
validate its monotonicity. Additionally, we prove that cq ≥ ‖wŷ−wk‖qE (

∏
‖Wj‖p|‖Dd−1(x̂)‖p =

1) holds for q ∈ {1, 2} and the result follows. See the supplementary material for a detailed proof.

In Lemma 3.1 we introduce probably smaller local Lipschitz constants than the commonly known
ones (i.e., c2 and c1), and subsequently in Theorem 3.3 we build theoretical relationships between
Lkq,x and the network sparsity, for q ∈ {1, 2} (i.e., p ∈ {∞, 2}). Apparently, Lkq,x is prone to get
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: The robustness of linear classifiers with varying weight sparsity. Upper: binary classification
between “1”s and “7”s, lower: multi-class classification on the whole MNIST test set.

smaller if any weight matrix gets more sparse. It is worthy noting that the local Lipschitz constant is of
great importance in evaluating the robustness of DNNs, and it is effective to regularize DNNs by just
minimizing Lkq,x, or equivalently ‖∇gŷ(x)−∇gk(x)‖q for differentiable continuous functions [16].
Thus we reckon, when the network is over-parameterized, an appropriately higher weight sparsity
implies a larger γ and stronger robustness. There are similar conclusions if aj gets more sparse.

Recall that in the linear binary case, we apply the DeepFool adversarial example x̃ when evaluating the
robustness using r2. It is not difficult to validate that the equality d(x, x̃) = |(wŷ −wk 6=ŷ)Tx|/Lk2,x
holds for such x̃ and w±1 := ±w, which means the DeepFool perturbation ideally minimizes the
Euclidean norm and helps us measure a lower bound in this regard. This can be directly generalized to
multi-class classifiers. Unlike r2 which represents a margin, our r∞ is basically an expected accuracy.
Nevertheless, we also know that a perturbation of −εy · sgn(w) shall successfully fool the classifiers
if ε ≥ |(wŷ −wk 6=ŷ)Tx|/Lk1,x.

4 Experimental Results

In this section, we conduct experiments to testify our theoretical results. To be consistent, we still
start from linear models and turn to nonlinear DNNs afterwards. As previously discussed, we perform
both l∞ and l2 attacks on the classifiers to evaluate their adversarial robustness. In addition to the
FGS [11] and DeepFool [22] attacks which have been thoroughly discussed in Section 3, we introduce
two more attacks in this section for extensive comparisons of the model robustness.

Adversarial attacks. We use the FGS and randomized FGS (rFGS) [27] methods to perform l∞
attacks. As a famous l∞ attack, FGS has been widely exploited in the literature. In order to generate
adversarial examples, it calculates the gradient of training loss w.r.t. benign inputs and uses its sign as
perturbations, in an element-wise manner. The rFGS attack is a computationally efficient alternative
to multi-step l∞ attacks with an ability of breaking adversarial training-based defences. We keep its
hyper-parameters fixed for all experiments in this paper. For l2 attacks, we choose DeepFool and the
C&W’s attack [3]. DeepFool linearises nonlinear classifiers locally and approximates the optimal
perturbations iteratively. C&W’s method casts the problem of constructing adversarial examples as
optimizing an objective function without constraints, such that some recent gradient-descent-based
solvers can be adopted. On the base of different attacks, four r2 and r∞ values can be calculated for
each classification model.

4.1 The Sparse Linear Classifier Behaves Differently under l∞ and l2 Attacks

In our experiments on linear classifiers, both the binary and multi-class scenarios shall be evaluated.
We choose the well-established MNIST dataset as a benchmark, which consists of 70,000 28× 28
images of handwritten digits. According to the official test protocol, 10,000 of them should be used
for performance evaluation and the remaining 60,000 for training. For experiments on the binary
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: The robustness of nonlinear DNNs with varying weight sparsity. (a)-(b): LeNet-300-100,
(c)-(d): LeNet-5, (e)-(f): the VGG-like network, (g)-(h): ResNet-32.

cases, we randomly choose a pair of digits (e.g., “0” and “8” or “1” and “7”) as positive and negative
classes. Linear classifiers are trained following our previous discussions and utilizing the softplus
function: minw,b

∑
i log(1 + exp(−yi(wTxi + b))). Parameters w and b are randomly initialized

and learnt by means of stochastic gradient descent with momentum. For the “1” and “7” classification
case, we train 10 reference models from different initializations and achieve a prediction accuracy of
99.17± 0.00% on the benign test set. For the classification of all 10 classes, we train 10 references
similarly and achieve a test-set accuracy of 92.26± 0.08%.

To produce models with different weight sparsities, we use a progressive pruning strategy [14]. That
being said, we follow a pipeline of iteratively pruning and re-training. Within each iteration, a portion
(ρ) of nonzero entries of w, whose magnitudes are relatively small in comparison with the others,
will be directly set to zero and shall never be activated again. After m times of such “pruning”, we
shall collect 10(m + 1) models from all 10 dense references. Here we set m = 16, ρ = 1/3 so
the achieved final percentage of zero weights should be 99.74% ≈ 1− (1− ρ)m. We calculate the
prediction accuracies on adversarial examples (i.e., r∞) under different l∞ attacks and the average
Euclidean norm of required perturbations (i.e., r2) under different l2 attacks to evaluate the adversarial
robustness of different models in practice. For l∞ attacks, we set ε = 0.1.

Figure 1 illustrates how our metrics of robustness vary with the weight sparsity. We only demonstrate
the variability of the first 12 points (from left to right) on each curve, to make the bars more resolvable.
The upper and lower subfigures correspond to binary and multi-class cases, respectively. Obviously,
the experimental results are consistent with our previous theoretical ones. While sparse linear models
are prone to be more robust in the sense of r∞, their r2 robustness maintains similar or becomes even
slightly weaker than the dense references, until there emerges inevitable accuracy degradations on
benign examples (i.e., when r∞ may drop as well). We also observe from Figure 1 that, in both the
binary and multi-class cases, r2 starts decreasing much earlier than the benign-set accuracy. Though
very slight in the binary case, the degradation of r2 actually occurs after the first round of pruning
(from 2.0103± 0.0022 to 2.0009± 0.0016 with DeepFool incorporated, and from 2.3151± 0.0023
to 2.3061± 0.0023 with the C&W’s attack).

4.2 Sparse Nonlinear DNNs Can be Consistently More Robust

Regarding nonlinear DNNs, we follow the same experimental pipeline as described in Section 4.1.
We train MLPs with 2 hidden fully-connected layers and convolutional networks with 2 convolutional
layers, 2 pooling layers and 2 fully-connected layers as references on MNIST, following the “LeNet-
300-100” and “LeNet-5” architectures in network compression papers [14, 13, 28, 21]. We also follow
the training policy suggested by Caffe [17] and train network models for 50,000 iterations with a batch
size of 64 such that the training cross-entropy loss does not decrease any longer. The well-trained
reference models achieve much higher prediction accuracies (LeNet-300-100: 98.20± 0.07% and
LeNet-5: 99.11± 0.04%) than previous tested linear ones on the benign test set.
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Weight sparsity. Then we prune the dense references and illustrate some major results regarding
the robustness and weight sparsity in Figure 2 (a)-(d). (See Figure 3 in our supplementary material for
results under rFGS and the C&W’s attack.) Weight matrices/tensors within each layer is uniformly
pruned so the network sparsity should be approximately equal to the layer-wise sparsity. As expected,
we observe similar results to previous linear cases in the context of our r∞ but significantly different
results in r2. Unlike previous linear models which behave differently under l∞ and l2 attacks,
nonlinear DNN models show a consistent trend of adversarial robustness with respect to the sparsity.
In particular, we observe increased r∞ and r2 values under different attacks when continually pruning
the models, until the sparsity reaches some thresholds and leads to inevitable capacity degradations.
For additional verifications, we calculate the CLEVER [30] scores that approximate attack-agnostic
lower bounds of the lp norms of required perturbations (in Table 3 in the supplementary material).

Experiments are also conducted on CIFAR-10, in which deeper nonlinear networks can be involved.
We train 10 VGG-like network models [23] (each incorporates 12 convolutional layers and 2 fully-
connected layers) and 10 ResNet models [15] (each incorporates 31 convolutional layers and a single
fully-connected layers) from scratch. Such deep architectures lead to average prediction accuracies of
93.01% and 92.89%. Still, we prune dense network models in the progressive manner and illustrate
quantitative relationships between the robustness and weight sparsity in Figure 2 (e)-(h). The first
and last layers in each network are kept dense to avoid early accuracy degradation on the benign set.
The same observations can be made. Note that the ResNets are capable of resisting some DeepFool
examples, for which the second and subsequent iterations make little sense and can be disregarded.

Activation sparsity. Having testified relationship between the robustness and weight sparsity of
nonlinear DNNs, we now examine the activation sparsity. As previously mentioned, the middle-layer
activations of ReLU incorporated DNNs are naturally sparse. We simply add a l1 norm regularization
of activation matrices/tensors to the learning objective to encourage higher sparsities and calculate
r∞ and r2 accordingly. Experiments are conducted on MNIST. Table 1 summarizes the results, in
which “Sparsity (a)” indicates the percentage of deactivated (i.e., zero) neurons feeding to the last
fully-connected layer. Here the r∞ and r2 values are calculated using the FGS and DeepFool attacks,
respectively. Apparently, we still observe positive correlations between the robustness and (activation)
sparsity in a certain range.

Table 1: The robustness of DNNs regularized using the l1 norm of activation matrices/tensors.

Network r∞ r2 Accuracy Sparsity (a)

0.2862±0.0113 1.3213±0.0207 98.20±0.07% 45.25±1.14%
LeNet-300-100 0.3993±0.0079 1.5903±0.0240 98.27±0.04% 75.92±0.54%

0.2098±0.0133 1.1440±0.0402 97.96±0.07% 95.22±0.18%

0.7388±0.0188 2.7831±0.1490 99.11±0.04% 51.26±1.88%
LeNet-5 0.7729±0.0081 3.1688±0.1203 99.19±0.05% 97.54±0.10%

0.6741±0.0162 2.0799±0.0522 99.10±0.06% 99.64±0.02%

4.3 Avoid “Over-pruning”

We discover from Figure 2 that the sharp decrease of the adversarial robustness, especially in the sense
of r2, may occur in advance of the benign-set accuracy degradation. Hence, it can be necessary to
evaluate the adversarial robustness of DNNs during an aggressive surgery, even though the prediction
accuracy of compressed models may remain competitive with their references on benign test-sets.
To further explore this, we collect some off-the-shelf sparse models (including a 56× compressed
LeNet-300-100 and a 108× compressed LeNet-5) [13] and their corresponding dense references
from the Internet and hereby evaluate their r∞ and r2 robustness. Table 2 compares the robustness of
different models. Obviously, these extremely sparse models are more vulnerable to the DeepFool
attack, and what’s worse, the over 100× pruned LeNet-5 seems also more vulnerable to FGS, which
suggests researchers to take care and avoid “over-pruning” if possible. One might also discover the
fact with other pruning methods.
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Table 2: The robustness of pre-compressed nonlinear DNNs and their provided dense references.

Model r∞ r2 Sparsity (W )

LeNet-300-100 dense 0.2663 1.3899 0.00%
LeNet-300-100 sparse 0.3823 1.1058 98.21%

LeNet-5 dense 0.7887 2.7226 0.00%
LeNet-5 sparse 0.6791 1.7383 99.07%

5 Conclusions

In this paper, we study some intrinsic relationships between the adversarial robustness and the sparsity
of classifiers, both theoretically and empirically. By introducing plausible metrics, we demonstrate
that unlike some linear models which behave differently under l∞ and l2 attacks, sparse nonlinear
DNNs can be consistently more robust to both of them than their corresponding dense references,
until their sparsity reaches certain thresholds and inevitably causes harm to the network capacity. Our
results also demonstrate that such sparsity, including sparse connections and middle-layer neuron
activations, can be effectively imposed using network pruning and l1 regularization of weight tensors.
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