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Abstract—Deep neural networks (DNNs) have recently
achieved great success in many visual recognition tasks. How-
ever, existing deep neural network models are computationally
expensive and memory intensive, hindering their deployment in
devices with low memory resources or in applications with strict
latency requirements. Therefore, a natural thought is to perform
model compression and acceleration in deep networks without
significantly decreasing the model performance. During the past
five years, tremendous progress has been made in this area. In
this paper, we review the recent techniques for compacting and
accelerating DNN models. In general, these techniques are di-
vided into four categories: parameter pruning and quantization,
low-rank factorization, transferred/compact convolutional filters,
and knowledge distillation. Methods of parameter pruning and
quantization are described first, after that the other techniques
are introduced. For each category, we also provide insightful
analysis about the performance, related applications, advantages
and drawbacks. Then we go through some very recent successful
methods, for example, dynamic capacity networks and stochastic
depths networks. After that, we survey the evaluation matrices,
the main datasets used for evaluating the model performance and
recent benchmark efforts. Finally, we conclude this paper, discuss
remaining the challenges and possible directions for future work.

Index Terms—Deep Learning, Convolutional Neural Networks,
Model Compression and Acceleration,

I. INTRODUCTION

In recent years, deep neural networks have recently received
lots of attention, been applied to different applications and
achieved dramatic accuracy improvements in many tasks.
These works rely on deep networks with millions or even
billions of parameters, and the availability of GPUs with
very high computation capability plays a key role in their
success. For example, the work by Krizhevsky et al. [1]
achieved breakthrough results in the 2012 ImageNet Challenge
using a network containing 60 million parameters with five
convolutional layers and three fully-connected layers. Usually,
it takes two to three days to train the whole model on
ImagetNet dataset with a NVIDIA K40 machine. Another
example is the top face verification results on the Labeled
Faces in the Wild (LFW) dataset were obtained with networks
containing hundreds of millions of parameters, using a mix
of convolutional, locally-connected, and fully-connected layers
[2], [3]. It is also very time-consuming to train such a model
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to get reasonable performance. In architectures that rely only
on fully-connected layers, the number of parameters can grow
to billions [4].

As larger neural networks with more layers and nodes
are considered, reducing their storage and computational cost
becomes critical, especially for some real-time applications
such as online learning and incremental learning. In addition,
recent years witnessed significant progress in virtual reality,
augmented reality, and smart wearable devices, creating un-
precedented opportunities for researchers to tackle fundamen-
tal challenges in deploying deep learning systems to portable
devices with limited resources (e.g. memory, CPU, energy,
bandwidth). Efficient deep learning methods can have signif-
icant impacts on distributed systems, embedded devices, and
FPGAs for Artificial Intelligence. For example, the ResNet-50
[5] with 50 convolutional layers needs over 95MB memory for
storage and over 3.8 billion floating number multiplications
when processing an image. After discarding some redundant
weights, the network still works as usual but saves more than
75% of parameters and 50% computational time. For devices
like cell phones and FPGAs with only several megabyte
resources, how to compact the models used on them is also
important.

Achieving these goals calls for joint solutions from many
disciplines, including but not limited to machine learning,
optimization, computer architecture, signal processing, and
hardware design. In this paper, we review recent works on
compressing and accelerating deep neural networks, which
attracts a lot of attention from the deep learning community
and already achieved lots of progress in the past years.

Based on their properties, we divide these approaches into
four categories: parameter pruning and quantization, low-
rank factorization, transferred/compact convolutional filters,
and knowledge distillation. The parameter pruning and quanti-
zation based methods explore the redundancy in the model pa-
rameters and try to remove the redundant and uncritical ones.
Low-rank factorization based techniques use matrix/tensor
decomposition to estimate the informative parameters of the
DNNs. The approaches based on transferred/compact convo-
lutional filters design special structural convolutional filters to
reduce the parameter space and save storage/computation. The
knowledge distillation based methods learn a distilled model
and train a more compact neural network to reproduce the
output of a larger network.

In Table I, we briefly summarize these four types of
approaches. The parameter pruning & quantization, low-rank
factorization and knowledge distillation approaches can be
deployed in DNN models with fully connected layers and
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TABLE I
SUMMARIZATION OF DIFFERENT APPROACHES FOR MODEL COMPRESSION AND ACCELERATION.

Category Name Description Applications More details
Parameter pruning and quantization Reducing redundant parameters which Convolutional layer and Robust to various settings, can achieve

are not sensitive to the performance fully connected layer good performance, can support both train
from scratch and pre-trained model

Low-rank factorization Using matrix/tensor decomposition to Convolutional layer and Standardized pipeline, easily to be
estimate the informative parameters fully connected layer implemented, can support both train

from scratch and pre-trained model
Transferred/compact convolutional Designing special structural convolutional Convolutional layer Algorithms are dependent on applications,

filters filters to save parameters only usually achieve good performance,
only support train from scratch

Knowledge distillation Training a compact neural network with Convolutional layer and Model performances are sensitive
distilled knowledge of a large model fully connected layer to applications and network structure

only support train from scratch

convolutional layers, achieving comparable performances. On
the other hand, methods using transferred/compact filters are
designed for convolutional layers only. Low-rank factoriza-
tion and transferred/compact filters based approaches provide
an end-to-end pipeline and can be easily implemented in
CPU/GPU environment. Parameter pruning & quantization
use different strategies such as binary coding and sparse
constraints to perform the task.

Regarding the training protocols, models based on param-
eter pruning/quantization and low-rank factorization can be
extracted from pre-trained models or trained from scratch.
While the transferred/compact filter and knowledge distillation
models can only support training from scratch. Most of these
methods are independently designed and complementary to
each other. For example, transferred layers and parameter
pruning & quantization can be deployed together. Another
example is that, model quantization & binarization can be
used together with low-rank approximations to achieve further
compression/speedup. We will describe the details of their
properties, and analysis of strengths and drawbacks in the
following sections separately.

II. PARAMETER PRUNING AND QUANTIZATION

Early works showed that network pruning and quantization
are effective in reducing the network complexity and address-
ing the over-fitting problem [6]. After found that pruning can
bring regularization to neural networks and hence improve
generalization, it has been widely studied to compress DNNs.
These techniques can be further mapped into three sub-
categories: quantization and binarization, network pruning, and
structural matrix.

A. Quantization and Binarization

Network quantization compresses the original network by
reducing the number of bits required to represent each weight.
Gong et al. [6] and Wu et al. [7] applied k-means scalar
quantization to the parameter values. Vanhoucke et al. [8]
showed that 8-bit quantization of the parameters can result
in significant speed-up with minimal loss of accuracy. The
work in [9] used 16-bit fixed-point representation in stochastic
rounding based CNN training, which significantly reduced
memory usage and float point operations with little loss in
classification accuracy.

Fig. 1. The three-stage compression methods proposed in [10]: pruning,
quantization and huffman encoding. The input is the original model and the
output is the compressed model.

The method proposed in [10] quantized the link weights
using weight sharing and then applied Huffman coding to the
quantized weights as well as the codebook to further reduce
the rate. As shown in Figure 1, it started by learning the
connectivity via normal network training, followed by prun-
ing the small-weight connections. Finally, the network was
retrained to learn the final weights for the remaining sparse
connections. This work achieved the state-of-art performance
among all quantization based methods. In [11], it was shown
that Hessian weight could be used to measure the importance
of network parameters, and proposed to minimize Hessian-
weighted quantization errors in average to cluster parameters.
Quantization is a very effective way for model compression
and acceleration.

In the extreme case of the 1-bit representation of each
weight, that is binary weight neural networks. The main idea is
to directly learn binary weights or activation during the model
training. There are several works that directly train CNNs with
binary weights, for instance, BinaryConnect [12], BinaryNet
[13] and XNOR [14]. A systematic study in [15] showed
networks trained with back propagation could be resilient to
specific weight distortions, including binary weights.

Discussion: the accuracy of the binary nets is significantly
lowered when dealing with large CNNs such as GoogleNet.
Another drawback of such binary nets is that existing bina-
rization schemes are based on simple matrix approximations
and ignore the effect of binarization on the accuracy loss.
To address this issue, the work in [16] proposed a proximal
Newton algorithm with diagonal Hessian approximation that
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directly minimizes the loss with respect to the binary weights.
The work in [17] reduced the time on float point multiplication
in the training stage by stochastically binarizing weights and
converting multiplications in the hidden state computation
to significant changes. Zhao et al. [18] proposed half-wave
Gaussian Quantization to learning low precision networks,
achieving promissing results.

B. Network Pruning

An early approach to pruning was the Biased Weight Decay
[19]. The Optimal Brain Damage [20] and the Optimal Brain
Surgeon [21] methods reduced the number of connections
based on the Hessian of the loss function. Their work sug-
gested that such pruning gave higher accuracy than magnitude-
based pruning, e.g., weight decay method.

A following trend in this direction is to prune redundant,
non-informative weights in a pre-trained DNN model. For
example, Srinivas and Babu [22] explored the redundancy
among neurons, and proposed a data-free pruning method to
remove redundant neurons. Han et al. [23] proposed to reduce
the total number of parameters and operations in the entire
network. Chen et al. [24] proposed a HashedNets model that
used a low-cost hash function to group weights into hash
buckets for parameter sharing. The deep compression method
in [10] removed the redundant connections and quantized the
weights, and then used Huffman coding to encode the quan-
tized weights. In [25], a simple regularization method based
on soft weight-sharing was proposed, which included both
quantization and pruning in one simple (re-)training procedure.
The above pruning schemes typically produce connections
pruning in DNNs.

There is also growing interest in training compact DNNs
with sparsity constraints. Those sparsity constraints are typ-
ically introduced in the optimization problem as l0 or l1-
norm regularizers. The work in [26] imposed group sparsity
constraint on the convolutional filters to achieve structured
brain Damage, i.e., pruning entries of the convolution kernels
in a group-wise fashion. In [27], a group-sparse regularizer
on neurons was introduced during the training stage to learn
compact CNNs with reduced filters. Wen et al. [28] added a
structured sparsity regularizer on each layer to reduce trivial
filters, channels or even layers. In the filter-level pruning, all
the above works used l1 or l2-norm regularizers. The work in
[29] used l1-norm to select and prune unimportant filters.

Discussion: there are some issues of using network pruning.
First, pruning with l1 or l2 regularization requires more
iterations to converge than general methods. In addition, all
pruning criteria require manual setup of sensitivity for layers,
which demands fine-tuning of the parameters and could be
cumbersome for some applications. Finally, network pruning
usually is able to reduce model size but not improve the
efficiency (training or inference time).

C. Designing Structural Matrix

In architectures that contain fully-connected layers, it is
critical to explore this redundancy of parameters in fully-
connected layers, which is often the bottleneck in terms of

memory consumption. These network layers use the nonlinear
transforms f(x,M) = σ(Mx), where σ(·) is an element-wise
nonlinear operator, x is the input vector, and M is the m×n
matrix of parameters [30]. When M is a large general dense
matrix, the cost of storing mn parameters and computing
matrix-vector products in O(mn) time. Thus, an intuitive
way to prune parameters is to impose x as a parameterized
structural matrix. An m × n matrix that can be described
using much fewer parameters than mn is called a structured
matrix. Typically, the structure should not only reduce the
memory cost, but also dramatically accelerate the inference
and training stage via fast matrix-vector multiplication and
gradient computations.

Following this direction, the work in [31], [32] proposed a
simple and efficient approach based on circulant projections,
while maintaining competitive error rates. Given a vector r =
(r0, r1, · · · , rd−1), a circulant matrix R ∈ Rd×d is defined
as:

R = circ(r) :=



r0 rd−1 . . . r2 r1
r1 r0 rd−1 r2
... r1 r0

. . .
...

rd−2

. . .
. . . rd−1

rd−1 rd−2 . . . r1 r0

 . (1)

thus the memory cost becomes O(d) instead of O(d2).
This circulant structure also enables the use of Fast Fourier
Transform (FFT) to speed up the computation. Given a d-
dimensional vector r, the above 1-layer circulant neural net-
work in Eq. 1 has time complexity of O(d log d).

In [33], a novel Adaptive Fastfood transform was introduced
to reparameterize the matrix-vector multiplication of fully
connected layers. The Adaptive Fastfood transform matrix
R ∈ Rn×d was defined as:

R = SHGΠHB (2)

where S, G and B are random diagonal matrices. Π ∈
{0, 1}d×d is a random permutation matrix, and H denotes
the Walsh-Hadamard matrix. Reparameterizing a fully con-
nected layer with d inputs and n outputs using the Adaptive
Fastfood transform reduces the storage and the computational
costs from O(nd) to O(n) and from O(nd) to O(n log d),
respectively.

The work in [30] showed the effectiveness of the new
notion of parsimony in the theory of structured matrices. Their
proposed method can be extended to various other structured
matrix classes, including block and multi-level Toeplitz-like
[34] matrices related to multi-dimensional convolution [35].
Following this idea, [36] proposed a general structured effi-
cient linear layer for CNNs.

Drawbacks: one issue of this kind of approaches is that
the structural constraint usually hurts the performance since
the constraint might bring bias to the model. On the other
hand, how to find a proper structural matrix is hard. There is
no theoretical way to derive it out.

III. LOW-RANK APPROXIMATION AND SPARSITY

Convolution operations contribute the bulk of most com-
putations in deep DNNs, thus reducing the convolution layer
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Fig. 2. A typical framework of the low-rank regularization method. The left
is the original convolutional layer and the right is the low-rank constraint
convolutional layer with rank-K.

would improve the compression rate as well as the overall
speedup. The convolution kernels can be viewed as a 3D
tensor. Ideas based on tensor decomposition is derived by
the intuition that there is a structure spacity in the 3D tensor.
Regarding the fully-connected layer, it can be view as a 2D
matrix (or 3D tensor) and the low-rankness can also help.

It has been a long time for using low-rank filters to
accelerate convolution, for example, high dimensional DCT
(discrete cosine transform) and wavelet systems using tensor
products to be constructed from 1D DCT transform and
1D wavelets respectively. Learning separable 1D filters was
introduced by Rigamonti et al. [37] using a dictionary learning
approach. For some simple DNN models, a few low-rank
approximation and clustering schemes for the convolutional
kernels were proposed in [38]. They achieved 2× speedup
for a single convolutional layer with 1% drop in classification
accuracy. The work in [39] proposed to use different tensor
decomposition schemes, reporting a 4.5× speedup with 1%
drop in accuracy in text recognition.

The low-rank approximation was done layer by layer. The
parameters of one layer were fixed after it was done, and the
layers above were fine-tuned based on a reconstruction error
criterion. These are typical low-rank methods for compressing
3D convolutional layers, which is described in Figure 2. Fol-
lowing this direction, Canonical Polyadic (CP) decomposition
of was proposed for the kernel tensors in [40]. Their work
used nonlinear least squares to compute the CP decomposition.
In [41], a new algorithm for computing the low-rank tensor
decomposition for training low-rank constrained CNNs from
scratch were proposed. It used Batch Normalization (BN) to
transform the activation of the internal hidden units. In general,
both the CP and the BN decomposition schemes in [41] (BN
Low-rank) can be used to train CNNs from scratch. However,
there are few differences between them. For example, finding
the best low-rank approximation in CP decomposition is an ill-
posed problem, and the best rank-K (K is the rank number)
approximation may not exist sometimes. While for the BN
scheme, the decomposition always exists. We perform a simple
comparison of both methods shown in Table II. The actual
speedup and the compression rates are used to measure their
performances.

As we mentioned before, the fully connected layers can
be viewed as a 2D matrix and thus the above mentioned
methods can also be applied there. There are several classical
works on exploiting low-rankness in fully connected layers.
For instance, Misha et al. [42] reduced the number of dynamic
parameters in deep models using the low-rank method. [43]

TABLE II
COMPARISONS BETWEEN DIFFERENT LOW-RANK MODELS AND THEIR

BASELINES ON ILSVRC-2012.

Model TOP-5 Accuracy Speed-up Compression Rate
AlexNet 80.03% 1. 1.

BN Low-rank 80.56% 1.09 4.94
CP Low-rank 79.66% 1.82 5.

VGG-16 90.60% 1. 1.
BN Low-rank 90.47% 1.53 2.72
CP Low-rank 90.31% 2.05 2.75

GoogleNet 92.21% 1. 1.
BN Low-rank 91.88% 1.08 2.79
CP Low-rank 91.79% 1.20 2.84

explored a low-rank matrix factorization of the final weight
layer in a DNN for acoustic modeling. In [3], Lu et al. adopted
truncated SVD (singular value decomposition) to decompose
the fully connected layer for designing compact multi-task
deep learning architectures.

Discussion: low-rank approximation based approaches are
straightforward for model compression and acceleration. How-
ever, the implementation is not that easy since it involves
decomposition operation, which is computationally expensive.
Another issue is that current methods perform low-rank ap-
proximation layer by layer, thus cannot perform global param-
eters compression, which is important as different layers hold
different information. Finally, factorization requires extensive
model retraining to achieve convergence when compared to
the original model.

IV. TRANSFERRED/COMPACT CONVOLUTIONAL FILTERS

CNNs are parameter efficient due to exploring the trans-
lation invariant property of the representations to the input
image, which is the key to the success of training very deep
models without severe over-fitting. Although a strong theory
is currently missing, a large number of empirical evidence
support the notion that both the translation invariant property
and the convolutional weight sharing are important for good
predictive performance. The idea of using transferred convolu-
tional filters to compress CNN models is motivated by recent
works in [44], which introduced the equivariant group theory.
Let x be an input, Φ(·) be a network or layer and T (·) be the
transform matrix. The concept of equivalence is defined as:

T ‘Φ(x) = Φ(T x) (3)

indicating that transforming the input x by the transform T (·)
and then passing it through the network or layer Φ(·) should
give the same result as first mapping x through the network
and then transforming the representation. Note that in Eq.
(10), the transforms T (·) and T ′

(·) are not necessarily the
same as they operate on different objects. According to this
theory, it is reasonable applying transform to layers or filters
Φ(·) to compress the whole network models. From empirical
observation, deep CNNs also benefit from using a large set of
convolutional filters by applying certain transform T (·) to a
small set of base filters since it acts as a regularizer for the
model.

Following this direction, there are many recent reworks
proposed to build a convolutional layer from a set of base
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filters [44]–[47]. What they have in common is that the
transform T (·) lies in the family of functions that only operate
in the spatial domain of the convolutional filters. For example,
the work in [46] found that the lower convolution layers of
CNNs learned redundant filters to extract both positive and
negative phase information of an input signal, and defined T (·)
to be the simple negation function:

T (Wx) = W−
x (4)

where Wx is the basis convolutional filter and W−
x is the filter

consisting of the shifts whose activation is opposite to that
of Wx and selected after max-pooling operation. By doing
this, the work in [46] can easily achieve 2× compression
rate on all the convolutional layers. It is also shown that the
negation transform acts as a strong regularizer to improve
the classification accuracy. The intuition is that the learning
algorithm with pair-wise positive-negative constraint can lead
to useful convolutional filters instead of redundant ones.

In [47], it was observed that magnitudes of the responses
from convolutional kernels had a wide diversity of pattern
representations in the network, and it was not proper to discard
weaker signals with a single threshold. Thus a multi-bias non-
linearity activation function was proposed to generates more
patterns in the feature space at low computational cost. The
transform T (·) was define as:

T ‘Φ(x) = Wx + δ (5)

where δ were the multi-bias factors. The work in [48] con-
sidered a combination of rotation by a multiple of 90◦ and
horizontal/vertical flipping with:

T ‘Φ(x) = WTθ (6)

where WTθ was the transformation matrix which rotated the
original filters with angle θ ∈ {90, 180, 270}. In [44], the
transform was generalized to any angle learned from data, and
θ was directly obtained from data. Both works [48] and [44]
can achieve good classification performance.

The work in [45] defined T (·) as the set of translation
functions applied to 2D filters:

T ‘Φ(x) = T (·, x, y)x,y∈{−k,...,k},(x,y) 6=(0,0) (7)

where T (·, x, y) denoted the translation of the first operand by
(x, y) along its spatial dimensions, with proper zero padding
at borders to maintain the shape. The proposed framework
can be used to 1) improve the classification accuracy as a
regularized version of maxout networks, and 2) to achieve
parameter efficiency by flexibly varying their architectures to
compress networks.

Table III briefly compares the performance of different
methods with transferred convolutional filters, using VGGNet
(16 layers) as the baseline model. The results are reported
on CIFAR-10 and CIFAR-100 datasets with Top-5 error. It is
observed that they can achieve reduction in parameters with
little or no drop in classification accuracy.

Discussions: there are a few issues to be addressed for
approaches that apply transform constraints to convolutional
filters. First, these methods can achieve competitive perfor-
mance for wide/flat architectures (e.g., VGGNet, AlexNet)

TABLE III
A SIMPLE COMPARISON OF DIFFERENT APPROACHES ON CIFAR-10 AND

CIFAR-100.

Model CIFAR-100 CIFAR-10 Compression Rate
VGG-16 34.26% 9.85% 1.

MBA [47] 33.66% 9.76% 2.
CRELU [46] 34.57% 9.92% 2.
CIRC [44] 35.15% 10.23% 4.
DCNN [45] 33.57% 9.65% 1.62

but not thin/deep ones (e.g., ResNet). Secondly, the transfer
assumptions sometimes are too strong to guide the learning,
making the results unstable in some situation.

Using a compact filter for convolution can directly reduce
the computation cost. The key idea is to replace the loose
and over-parametric filters with compact blocks to improve
the speed. Decomposing 3 × 3 convolution into two 1 × 1
convolutions was used in [49], which achieved significant
acceleration. SqueezeNet [50] was proposed to replace 3 × 3
convolution with 1× 1 convolution, which created a compact
neural network with about 50 fewer parameters. Similar tech-
nique has been adapted in MobileNets [51].

V. KNOWLEDGE DISTILLATION

To the best of our knowledge, exploiting knowledge transfer
(KT) to compress model was first proposed by Caruana et
al. [52]. They trained a compressed/ensemble model of strong
classifiers with pseudo-data labeled, and reproduced the output
of the original larger network. But the work is limited to
shallow models. The idea has been recently adopted in [53]
as knowledge distillation (KD) to compress deep and wide
networks into shallower ones, where the compressed model
mimicked the function learned by the complex model. The
main idea of KD based approaches is to shift knowledge from
a large teacher model into a small one by learning the class
distributions output via softmax.

The work in [54] introduced a KD compression framework,
which eased the training of deep networks by following a
student-teacher paradigm, in which the student was penalized
according to a softened version of the teacher’s output. The
framework compressed an ensemble of teacher networks into
a student network of similar depth. The student was trained
to predict the output and the classification labels. Despite
its simplicity, KD demonstrates promising results in various
image classification tasks. The work in [55] aimed to address
the network compression problem by taking advantage of
depth neural networks. It proposed an approach to train thin
but deep networks, called FitNets, to compress wide and
shallower (but still deep) networks. The method was extended
the idea to allow for thinner and deeper student models. In
order to learn from the intermediate representations of teacher
network, FitNet made the student mimic the full feature maps
of the teacher. However, such assumptions are too strict since
the capacities of teacher and student may differ greatly.

All the above approaches are validated on MNIST, CIFAR-
10, CIFAR-100, SVHN and AFLW benchmark datasets, and
experimental results show that these methods match or outper-
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form the teacher’s performance, while requiring notably fewer
parameters and multiplications.

There are several extension along this direction of dis-
tillation knowledge. The work in [56] trained a parametric
student model to approximate a Monte Carlo teacher. The
proposed framework used online training, and used deep
neural networks for the student model. Different from previous
works which represented the knowledge using the soften label
probabilities, [57] represented the knowledge by using the
neurons in the higher hidden layer, which preserved as much
information as the label probabilities, but are more compact.
The work in [58] accelerated the experimentation process by
instantaneously transferring the knowledge from a previous
network to each new deeper or wider network. The techniques
are based on the concept of function-preserving transfor-
mations between neural network specifications. Zagoruyko
et al. [59] proposed Attention Transfer (AT) to relax the
assumption of FitNet. They transferred the attention maps that
are summaries of the full activations.

Discussions: KD-based approaches can make deeper models
shallower and help significantly reducing the computational
cost. However, there are a few disadvantages. One of those
is that KD can only be applied to tasks with softmax loss
function, which hinders its usage. Another drawback is that
KD-based approaches generally achieve less competitive per-
formance compared with other type of approaches.

VI. OTHER TYPES OF APPROACHES

We first summarize the works utilizing attention-like mech-
anism [60], which can reduce computations significantly by
learning to selectively focus or “attend” to a few, task-relevant
input regions. In [61], dynamic deep neural networks (D2NN)
were introduced, which were a type of feed-forward deep
neural network that selected and executed a subset of D2NN
neurons based on the input. The dynamic capacity network
(DCN) [62] that combined the small sub-networks with low
capacity, and the large ones with high capacity. The attention
mechanism was used to direct the high-capacity sub-networks
to focus on the task-relevant regions. By dong this, the size of
the model has been significantly reduced. Following this direc-
tion, the work in [63] introduced the conditional computation
idea, which only computes the gradient for some important
neurons via a sparsely-gated mixture-of-experts Layer (MoE).

There have been other attempts to reduce the number of
parameters of neural networks by replacing the fully connected
layer with global average pooling [45], [64]. Network architec-
ture such as GoogleNet or Network in Network, can achieve
state-of-the-art results on several benchmarks by adopting
this idea. However, these architectures have not been fully
optimized the utilization of the computing resources inside
the network. This problem was noted by Szegedy et al. [64]
and motivated them to increase the depth and width of the
network while keeping the computational budget constant.

The work in [65] targeted the Residual Network based
model with a spatially varying computation time, called
stochastic depth, which enabled the seemingly contradictory
setup to train short networks and used deep networks at test

TABLE IV
SUMMARIZATION OF BASELINE MODELS USED IN DIFFERENT

REPRESENTATIVE WORKS OF NETWORK COMPRESSION.

Baseline Models Representative Works
Alexnet [1] structural matrix [30], [31], [33]

low-rank factorization [41]
Network in network [76] low-rank factorization [41]

VGG nets [77] transferred filters [45]
low-rank factorization [41]

Residual networks [78] compact filters [50], stochastic depth [65]
parameter sharing [25]

All-CNN-nets [75] transferred filters [46]
LeNets [74] parameter sharing [25]

parameter pruning [21], [23]

time. It started with very deep networks, while during training,
for each mini-batch, randomly dropped a subset of layers
and bypassed them with the identity function. Following this
direction, thew work in [66] proposed a pyramidal residual
networks with stochastic depth. In [67], Wu et al. proposed
an approach that learns to dynamically choose which layers
of a deep network to execute during inference so as to best
reduce total computation. Veit et al. exploited convolutional
networks with adaptive inference graphs to adaptively define
their network topology conditioned on the input image [68].

Other approaches to reduce the convolutional overheads in-
clude using FFT based convolutions [69] and fast convolution
using the Winograd algorithm [70]. Zhai et al. [71] proposed a
strategy call stochastic spatial sampling pooling, which speed-
up the pooling operations by a more general stochastic version.
Saeedan et al. presented a novel pooling layer for convolu-
tional neural networks termed detail-preserving pooling (DPP),
based on the idea of inverse bilateral filters [72]. Those works
only aim to speed up the computation but not reduce the
memory storage. The MobileNetV2 [73] proposed the novel
inverted residual structure.

VII. BENCHMARKS, EVALUATION AND DATABASES

In the past years the deep learning community had made
great efforts in benchmark. One of the most well-known model
used in compression and acceleration for CNNs is Alexnet
[1], which has been occasionally used for assessing the perfor-
mance of compression. Other popular standard models include
LeNets [74], All-CNN-nets [75] and many others. LeNet-300-
100 is a fully connected network with two hidden layers, with
300 and 100 neurons each. LeNet-5 is a convolutional network
that has two convolutional layers and two fully connected
layers. Recently, more and more state-of-the-art architectures
are used as baseline models in many works, including network
in networks (NIN) [76], VGG nets [77] and residual networks
(ResNet) [78]. Table IV summarizes the baseline models
commonly used in several typical compression methods.

The standard criteria to measure the quality of model
compression and acceleration are the compression and the
speedup rates. Assume that a is the number of the parameters
in the original model M and a∗ is that of the compressed
model M∗, then the compression rate α(M,M∗) of M∗ over
M is:

α(M,M∗) =
a

a∗
. (8)
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Another widely used measurement is the index space saving
defined in several papers [31], [36] as

β(M,M∗) =
a− a∗

a∗
, (9)

where β(M,M∗) is the defined space saving rate.
Similarly, given the running time s of M and s∗ of M∗,

the speedup rate δ(M,M∗) is defined as:

δ(M,M∗) =
s

s∗
. (10)

Most work used the average training time per epoch to measure
the running time, while in [31], [36], the average testing time
was used. Generally, the compression rate and speedup rate
are highly correlated, as smaller models often results in faster
computation for both the training and the testing stages.

A good compression method is expected to achieve almost
the same performance as the original model with much smaller
parameters and less computational time. However, for different
applications with different CNN designs, the relation between
parameter size and computational time might be different.
For example, it is observed that for deep CNNs with fully
connected layers, most of the parameters are in the fully
connected layers; while for image classification tasks, float
point operations are mainly in the first few convolutional layers
since each filter is convolved with the whole image, which is
usually very large at the beginning. Thus compression and
acceleration of the network should focus on different type of
layers for different applications.

VIII. CHALLENGES AND FUTURE WORK

We summarized recent efforts on compressing and accel-
erating deep neural networks (DNNs). Here we discuss more
details about how to choose different compression approaches,
technique challenges and possible solutions for future work.

A. General Suggestions

There are no golden criteria to measure which approach
is the best. How to choose a proper method really depends
on the applications and requirements. Here are some general
suggestions we can provide:
• If the applications need compacted models from pre-

trained deep nets, you can choose either pruning &
quantization or low rank factorization based methods.
If you need end-to-end solutions for your problem, the
low rank and transferred convolutional filters approaches
should be considered.

• For applications in particular domains (e.g., medical
images), methods with human prior (like the transferred
convolutional filters, structural matrix) sometimes have
benefits. For example, when doing medical images clas-
sification, transferred convolutional filters could work
well as medical images (like organ) do have the rotation
transformation property.

• The approaches of pruning & quantization generally give
reasonable compression rate while not hurt the accuracy.
Thus for applications which requires stable model perfor-
mance, it is better to utilize pruning & quantization.

• If your application involves small/medium size datasets
or requires significantly improving efficiency, you can try
the knowledge distillation approaches. The compressed
student model can take the benefit of transferring knowl-
edge from teacher model, achieving robust performance
when datasets are not large.

• As we mentioned before, these aforementioned tech-
niques are orthogonal. It is reasonable to combine two
or three of them to maximize the gain. For some spe-
cific applications, like object detection, which requires
both convolutional and fully connected layers, you can
compress the convolutional layers with a low rank based
method and the fully connected layers with a pruning
technique.

B. Technique Challenges

We also summarize the following challenges still need to
be addressed.
• Most of the current state-of-the-art approaches build on

well-designed CNN models, which have limited freedom
to change the configuration (e.g., network architectures,
hyper-parameters). To handle more complicated tasks,
the furture work should provide more plausible ways to
configure the compressed models.

• Hardware constraints in various of small platforms (e.g.,
mobile, robotic, self-driving car) are still a major problem
to hinder the extension of deep CNNs. How to make full
use of the limited computational source and how to design
special compression methods for such platforms are still
challenges that need to be addressed.

• Pruning is an effective way to compress and acceler-
ate CNNs. The current pruning techniques are mostly
designed to eliminate connections between neurons. On
the other hand, pruning channel can directly reduce the
feature map width and shrink the model into a thinner
one. It is efficient but also challenging because removing
channels might dramatically change the input of the
following layer.

• As we mentioned before, methods of structural matrix
and transferred convolutional filters impose prior human
knowledge to the model, which could significantly affect
the performance and stability. It is critical to investigate
how to control the impact of those prior knowledge.

• The methods of knowledge distillation provide many ben-
efits such as directly accelerating model without special
hardware or implementations. It is still worthy developing
KD-based approaches and exploring how to improve their
performances.

• Despite the great achievements of these compression
approaches, the black box mechanism is still the key
barrier to the adoption. For example, why some neu-
rons/connections are pruned is not clear. Exploring the
knowledge interpret-ability is still an important challenge.

C. Possible Future Directions

To solve the hyper-parameters configuration problem, we
can rely on the recent neural architecture search strategies
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[79], [80]. This framework provides a mechanism allowing
the algorithm to automatically learn how to exploit structure
in the problem of interest. Leveraging reinforcement learning
to efficiently sample the design space and improve the model
compression has been tried in [81].

Regarding the use of CNNs in different hardware platforms,
proposing some hardware-aware approaches is one direction.
Wang et al. [82] proposed the Hardware-Aware Automated
Quantization (HAQ) to take the hardware accelerator‘s feed-
back in the design loop. Similar idea can be applied to make
CNNs more applicable for different platforms. The work in
[83] directly learn the architectures for large-scale target tasks
and target hardware based performance.

Channel pruning provides the efficiency benefit on both
CPU and GPU because no special implementation is required.
But it is also challenging to handle the input configuration.
One possible solution is to use the training-based channel
pruning methods [84], which focus on imposing sparse con-
straints on weights during training. In addition, training from
scratch for such methods is costly for deep CNNs. In [85], the
authors provided an iterative two-step algorithm to effectively
prune channels in each layer. The work in [86] associated a
scaling factor with each channel and imposed regularization on
these scaling factors during training to automatically identify
unimportant channels. Liu et al. [87] showed that pruned
architecture itself is more crucial and pruning can be useful
as an architecture search paradigm.

Exploring new types of knowledge in the teacher models
and transferring it to the student models is useful for the
knowledge distillation (KD) approaches. Instead of directly re-
ducing and transferring parameters, passing selectivity knowl-
edge of neurons could be helpful. One option is deriving a
way to select essential neurons related to the task [88], [89].
Very recently, the contrastive loss instead of KL divergence
for distillation has been tried in [90].

For methods with the convolutional filters and the structural
matrix, we can conclude that the transformation lies in the
family of functions that only operations on the spatial dimen-
sions. Hence to address the imposed prior issue, one solution is
to provide a generalization of the aforementioned approaches
in two aspects: 1) instead of limiting the transformation to
belong to a set of predefined transformations, let it be the
whole family of spatial transformations applied on 2D filters
or matrix, and 2) learn the transformation jointly with all the
model parameters.

Despite the image classification task, people are also adapt-
ing the compacted models in other tasks [73], [91], [92]. There
is also some work about deep natural language models [93],
[94]. We would like to see more work for applications with
larger deep nets (e.g., video and image frames [95], [96],
vision + language [97] and GANs [98], [99]).
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