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Executive summary 
Problem & Motivation

● Growing demand for AI applications

● State of the art DNN architectures continuously changing

● Training and inference expensive

Goal

● Flexible, cost effective, scalable HW for efficient, low latency inference

Key Ideas

● Identify and exploit Lessons from previous TPU versions
● Leverage technological improvement

○ Bring memory closer to processing elements

○ Exploit existing compiler optimizations

○ Expand computational capacity where appropriate

Results

● Compared to TPUv3: 2.3x perf/TDP using 1.6x transistors
● Compared to Nvidia T4: 1.3-1.6x speed @ 0.9-1.0x perf/TDP 2
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What is a TPU?

● Tensor Processing Unit
○ Domain-Specific Architectures DSA

○ Developed by 

○ Training & Inference

○ TPUv4i - inference only

● AI Workloads
○ Matrix multiplications

○ Convolutions

○ Activation evaluation

● Better efficiency compared to 

CPU or GPUs
○ 30-80X higher performance/Watt
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How did the TPU design evolve?
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2.3x better 
perf/TDP
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1. Lessons applying to any DSA
… and potentially also to CPUs and GPUs in general
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Summary of the 10 Lessons



① Logic, wires, SRAM, & DRAM improve unequally

● Updated Horowitz’s Energy per 

Operation

● Logic improves faster than wires 

or SRAM
○ Logic is relatively “free”

● High Bandwidth Memory (HBM) - 

short DRAM stacks close to DSA
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Energy per operation [pJ] 45nm vs 7nm



● C compilers improve 1-2% annually

● Nvidia CUDA (2007)  1.8x 

● Google TPU XLA (2016) 2.2x

● Performance of DSAs is compelled 

by quality of their compilers

● Significant compiler optimizations 

come after hardware is available

● HW must stay compiler compatible 

to exploit the optimizations in future

② Leverage prior compiler optimizations
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Relative DSA compiler gains over 20 months on 
MLPerf benchmark



● Capital Expense (CapEx) - Initial purchase cost 
for an item

● Operation Expense (OpEx)  - The cost of 
electricity and provisioning over the lifetime of 
an item.

Computer hardware lifetime: 3-5 years

● Total Cost of Ownership (TCO)

● CPUs and GPUs aim at best performance/CapEx 
● Companies aim at good performance/TCO 

③ Design for performance per TCO vs per CapEx
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Correlation of System TDP and TCO



2. Lessons focusing on DNN DSAs
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Summary of the 10 Lessons



④ Support Backwards ML Compatibility

● Developers don’t want to change existing DNNs 

○ Quantization - time costly and loss of accuracy

○ Time-to-market constraints of deployed DNNs

○ Minimize effort in migrating to new hardware
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⑤ Inference DSAs need air cooling for global scale

● High TDP requires Liquid cooling
○ Expensive at small scales

● Low latency worldwide user-facing inference

○ Air Cooling - easier deployment 

TPU version TDP Cooling Peak TFLOPS/Chip

TPUv1 (inf) 75W Air 92 (8b int)

TPUv2 (train + inf) 280W Air 46 (bf16)

TPUv3 (train + inf) 450W Liquid 123 (bf16)

TPUv4i (inf) 175W Air 138 (bf16/8b int)
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⑥ Some inference apps need floating point arithmetic

● Training performed in FP (fp32, bfp16)
● Inference sometimes quantized to int8

○ Better area and power 
○ Reduced accuracy and delayed deployment

● Some applications don’t work with 
quantization

● ImageNet improved by 1% 2019-2020 
● ④ Support Backwards ML Compatibility
● Inference Hardware should support 

Floating Point Operations
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Inferior performance of quantized image 
segmentation model



3. Lessons regarding DNN applications
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Summary of the 10 Lessons



⑦ Production inference normally needs multi-tenancy

● Sharing can lower cost and reduce 

latency 

● Flexible SW engineering

● Hardware should support fast 

model switching
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Multi-tenancy Requirements across 
Google ML Workload



Lessons Regarding DNN Application evolution
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⑧ DNNs grow ~1.5x/year in memory and compute

⑨ DNN workloads evolve with DNN breakthroughs

● DNNs continuously updated

● TPU needs sufficient hardware

● What will come next…?

● Programmability and flexibility

Google ML Workload



⑩ Inference limited by latency, not throughput

● Batchsize size = Throughput

● In datacenters Latency is major 

limitation

● Hardware should hide Latency
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High-Level Operations

LLO

Compiler compatibility

● Based on TPUv3 HW design
○ compiler optimization ②

○ maintain backwards ML compatibility ④ 

● Compiler compatibility
○ XLA compiler separates:

■ High-Level Operations (HLO)

● Hardware agnostic

■ Low-Level Operations (LLO)

● Hardware dependent

○ Maintains compiler compatibility ②
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TPUv2

LLO LLO

TPUv3 TPUv4i



● HBM kept from TPUv3
○ Multi-tenancy ⑦
○ Rapid DNN growth ⑧
○ Better energy efficiency to DRAM ①  

● SRAM - CMEM
○ 128MB CMEM 28% of die
○ 20x more efficient than DRAM ①
○ - Significant fraction of TCO ③

● 4D tensor DMA
○ Programmable & Flexible ⑧⑨

■ Support for various striding 
techniques

○ Compiler compatible ②
○ Synchronizing partial completion 

progress, hiding DMA ramp-up, 
ramp-down latency ⑩②

On-chip storage & DMA
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● Point-to-point routing infeasible ①

Custom OCI

● Connects all components on die

● Flexible & scalable topology ⑧ ⑨

● HBM Bandwidth/core 
○ 1.3x over TPUv3 ⑧

● 4 non-overlapping network groups
○ Provides locality + reduced latency ①

○ 153GB/s HBM bandwidth 

Custom on-chip interconnect (OCI)
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Arithmetic unit & TDP

● Retain both int8 and bf16 support 
○ Logic is “free” ①
○ TPUv1 - TPUv3 ML compatibility ④
○ Not requiring quantization ⑥

● 4 MXUs per chip
○ XLA can handle 2x MXUs ①②

● Custom 4-input FP adders
○ Minimal numerical difference ④
○ 40% area saved reducing CapEx ③
○ 12% lower peak power ➤ Lower TDP ⑤

● TDP 175W @ 1.05GHz
○ closer to TPUv1 (75W)
○ Allows Air cooling ⑤
○ Reduces TCO (OpEx) ③
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● 2 ICI links
○ 4 chips/board access nearby memory 

quickly for future DNN growth ⑧

● Extensive tracing a HW 

performance counters included
○ Analyze system-level bottlenecks

○ Increased Design Time but worth it 

since target is perf/TCO, not 

perf/CapEx ③

○ System-level performance 

improvements (compiler) ②

○ Boost developer productivity ⑦ ⑧ ⑨

ICI scaling & Workload analysis
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Performance/Watt

● TPUv3 and TPUv4i ~1.9x faster
○ TPUv2 & TPUv3 have 2 cores

○ TPUv4i has 1 - winning perf/TCO

● TPUv4i has 2.3x perf/TDP vs TPUv3

Breakdown:

● CMEM ~1.5x 

● 7nm ~1.3x

● Other contributions ~1.2x
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Strengths

● 5 years of Design Team’s experience

● Detailed overview of main principles guiding modern DSA 

architecture decisions

● Detailed analysis of workload requirements and TPU benchmarks

● Pragmatic, Production-focused, industry approach
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Weaknesses

● Extremely broad coverage
○ Design details are covered superficially

● Some Lessons are extremely restricting 
○ Production & compatibility focus ②④ ➤ Restricts innovation

● Limited benchmark comparison to competition DSAs, and alternative 

architectures CPU,GPU (Nvidia T4)

● Some Lessons redundant 
○ ④ Support Backwards ML Compatibility  & ⑥ Some inference apps need floating point 

arithmetic

○ ⑧ DNNs grow ~1.5x/year in memory and compute & ⑨ DNN workloads evolve with 
DNN breakthroughs

●  Benchmarks mainly on Google Workloads
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Key Takeaways and insights

● Documentation of unequal technological improvement (①)

● Significance of compiler optimization (②)

● Design for perf/TCO vs perf/CapEx (③)

● Significance of Backwards ML compatibility in production (④) 

● Know your workload

● Iterative improvement is key for evolving problems
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Discussion and Questions

As Moore's law reaches plateau and Dennard scaling 

finishes, what are the next steps to keep pace with 

growing DNN models?
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Discussion and Questions

Is compiler, ML and hardware backwards compatibility 

restricting innovation in production hardware?
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Discussion and Questions

Is sacrificing flexibility, that Google seeks in its TPU 
hardware, a viable approach in extracting more 

performance from current hardware?
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As Moore's law reaches plateau and Dennard scaling finishes, what 

are the next steps to keep pace with growing DNN models?

● Alternative model architectures?

● ICI scaling - high bandwidth interchip communication

● Near, in memory computing?

● New computing paradigms? 
○ Spiking neural networks

○ Memristor computing
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Is compiler, ML and hardware backwards compatibility restricting 

innovation in production hardware?

● Production hardware generally has slower adoption rate.

● Exploit compilers to provide bridge between new paradigms

34



Is sacrificing flexibility, that Google seeks in its TPU hardware, 

a viable approach in extracting more performance from 

current hardware?

● Edge processing hardware does not always require flexibility

● Personal devices have a shorter lifespan + don’t care about OpExp
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Backup Slides: Roofline model
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Backup Slides: CMEM size
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Comparison to NVIDIA T4

● TPUs used bf16
● NVIDIA used int8 (fp16 on NMT)

● TPUv4i wins on speed
○ 1.3-1.6x faster
○ 0.9-1.0x for perf/TDP
○ 1.3x perf/TDP for NMT (both use fp)

● Measuring average power 
○ 1.6-2x of T4 for NMT

● For Google, backwards ML 
compatibility more important 
than small int8 perf/TDP
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Backup Slides: 10 Lessons summary

① Logic, wires, SRAM, & DRAM improve unequally
② Leverage prior compiler optimizations
③ Design for performance per TCO vs per CapEx
④ Support Backwards ML Compatibility
⑤ Inference DSAs need air cooling for global scale
⑥ Some inference apps need floating point arithmetic
⑦ Production inference normally needs multi-tenancy
⑧ DNNs grow ~1.5x/year in memory and compute
⑨ DNN workloads evolve with DNN breakthroughs
⑩ Inference SLO limit is P99 latency, not batch size
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