
Ten Lessons From Three Generations
Shaped Google’s TPUv4i

Presented by Jakub Mandula

Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B. Jablin, George Kurian,
James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas Norrie, Nishant Patil, Sushma Prasad, Cliff Young,

Zongwei Zhou, and David Patterson, Google LLC

Published in 2021 at the ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)

1

Executive summary
Problem & Motivation

● Growing demand for AI applications

● State of the art DNN architectures continuously changing

● Training and inference expensive

Goal

● Flexible, cost effective, scalable HW for efficient, low latency inference

Key Ideas

● Identify and exploit Lessons from previous TPU versions
● Leverage technological improvement

○ Bring memory closer to processing elements

○ Exploit existing compiler optimizations

○ Expand computational capacity where appropriate

Results

● Compared to TPUv3: 2.3x perf/TDP using 1.6x transistors
● Compared to Nvidia T4: 1.3-1.6x speed @ 0.9-1.0x perf/TDP 2

Outline

● Background - What is a TPU?

● Summary of the 10 Lessons

● How have these 10 Lessons shaped the design of TPUv4i

● Performance evaluation

● Strengths and Weaknesses

● Takeaways and Insights

● Discussion

3

What is a TPU?

● Tensor Processing Unit
○ Domain-Specific Architectures DSA

○ Developed by

○ Training & Inference

○ TPUv4i - inference only

● AI Workloads
○ Matrix multiplications

○ Convolutions

○ Activation evaluation

● Better efficiency compared to

CPU or GPUs
○ 30-80X higher performance/Watt

4

How did the TPU design evolve?

5

2.3x better
perf/TDP

Outline

● Background - What is a TPU?

● Summary of the 10 Lessons

● How have these 10 Lessons shaped the design of TPUv4i

● Performance evaluation

● Strengths and Weaknesses

● Takeaways and Insights

● Discussion

6

1. Lessons applying to any DSAs

2. Lessons Focusing on DNN DSAs

3. Lessons Regarding DNN applications

1. Lessons applying to any DSA
… and potentially also to CPUs and GPUs in general

7

Summary of the 10 Lessons

① Logic, wires, SRAM, & DRAM improve unequally

● Updated Horowitz’s Energy per

Operation

● Logic improves faster than wires

or SRAM
○ Logic is relatively “free”

● High Bandwidth Memory (HBM) -

short DRAM stacks close to DSA

8

Energy per operation [pJ] 45nm vs 7nm

● C compilers improve 1-2% annually

● Nvidia CUDA (2007) 1.8x

● Google TPU XLA (2016) 2.2x

● Performance of DSAs is compelled

by quality of their compilers

● Significant compiler optimizations

come after hardware is available

● HW must stay compiler compatible

to exploit the optimizations in future

② Leverage prior compiler optimizations

9

Relative DSA compiler gains over 20 months on
MLPerf benchmark

● Capital Expense (CapEx) - Initial purchase cost
for an item

● Operation Expense (OpEx) - The cost of
electricity and provisioning over the lifetime of
an item.

Computer hardware lifetime: 3-5 years

● Total Cost of Ownership (TCO)

● CPUs and GPUs aim at best performance/CapEx
● Companies aim at good performance/TCO

③ Design for performance per TCO vs per CapEx

10

Correlation of System TDP and TCO

2. Lessons focusing on DNN DSAs

11

Summary of the 10 Lessons

④ Support Backwards ML Compatibility

● Developers don’t want to change existing DNNs

○ Quantization - time costly and loss of accuracy

○ Time-to-market constraints of deployed DNNs

○ Minimize effort in migrating to new hardware

12

⑤ Inference DSAs need air cooling for global scale

● High TDP requires Liquid cooling
○ Expensive at small scales

● Low latency worldwide user-facing inference

○ Air Cooling - easier deployment

TPU version TDP Cooling Peak TFLOPS/Chip

TPUv1 (inf) 75W Air 92 (8b int)

TPUv2 (train + inf) 280W Air 46 (bf16)

TPUv3 (train + inf) 450W Liquid 123 (bf16)

TPUv4i (inf) 175W Air 138 (bf16/8b int)

13

⑥ Some inference apps need floating point arithmetic

● Training performed in FP (fp32, bfp16)
● Inference sometimes quantized to int8

○ Better area and power
○ Reduced accuracy and delayed deployment

● Some applications don’t work with
quantization

● ImageNet improved by 1% 2019-2020
● ④ Support Backwards ML Compatibility
● Inference Hardware should support

Floating Point Operations

14

Inferior performance of quantized image
segmentation model

3. Lessons regarding DNN applications

15

Summary of the 10 Lessons

⑦ Production inference normally needs multi-tenancy

● Sharing can lower cost and reduce

latency

● Flexible SW engineering

● Hardware should support fast

model switching

16

Multi-tenancy Requirements across
Google ML Workload

Lessons Regarding DNN Application evolution

17

⑧ DNNs grow ~1.5x/year in memory and compute

⑨ DNN workloads evolve with DNN breakthroughs

● DNNs continuously updated

● TPU needs sufficient hardware

● What will come next…?

● Programmability and flexibility

Google ML Workload

⑩ Inference limited by latency, not throughput

● Batchsize size = Throughput

● In datacenters Latency is major

limitation

● Hardware should hide Latency

18

Outline

● Background - What is a TPU?

● Summary of the 10 Lessons

● How have these 10 Lessons shaped the design of TPUv4i

● Performance evaluation

● Strengths and Weaknesses

● Takeaways and Insights

● Discussion

19

High-Level Operations

LLO

Compiler compatibility

● Based on TPUv3 HW design
○ compiler optimization ②

○ maintain backwards ML compatibility ④

● Compiler compatibility
○ XLA compiler separates:

■ High-Level Operations (HLO)

● Hardware agnostic

■ Low-Level Operations (LLO)

● Hardware dependent

○ Maintains compiler compatibility ②

20

TPUv2

LLO LLO

TPUv3 TPUv4i

● HBM kept from TPUv3
○ Multi-tenancy ⑦
○ Rapid DNN growth ⑧
○ Better energy efficiency to DRAM ①

● SRAM - CMEM
○ 128MB CMEM 28% of die
○ 20x more efficient than DRAM ①
○ - Significant fraction of TCO ③

● 4D tensor DMA
○ Programmable & Flexible ⑧⑨

■ Support for various striding
techniques

○ Compiler compatible ②
○ Synchronizing partial completion

progress, hiding DMA ramp-up,
ramp-down latency ⑩②

On-chip storage & DMA

21

● Point-to-point routing infeasible ①

Custom OCI

● Connects all components on die

● Flexible & scalable topology ⑧ ⑨

● HBM Bandwidth/core
○ 1.3x over TPUv3 ⑧

● 4 non-overlapping network groups
○ Provides locality + reduced latency ①

○ 153GB/s HBM bandwidth

Custom on-chip interconnect (OCI)

22

Arithmetic unit & TDP

● Retain both int8 and bf16 support
○ Logic is “free” ①
○ TPUv1 - TPUv3 ML compatibility ④
○ Not requiring quantization ⑥

● 4 MXUs per chip
○ XLA can handle 2x MXUs ①②

● Custom 4-input FP adders
○ Minimal numerical difference ④
○ 40% area saved reducing CapEx ③
○ 12% lower peak power ➤ Lower TDP ⑤

● TDP 175W @ 1.05GHz
○ closer to TPUv1 (75W)
○ Allows Air cooling ⑤
○ Reduces TCO (OpEx) ③

23

● 2 ICI links
○ 4 chips/board access nearby memory

quickly for future DNN growth ⑧

● Extensive tracing a HW

performance counters included
○ Analyze system-level bottlenecks

○ Increased Design Time but worth it

since target is perf/TCO, not

perf/CapEx ③

○ System-level performance

improvements (compiler) ②

○ Boost developer productivity ⑦ ⑧ ⑨

ICI scaling & Workload analysis

24

Outline

● Background - What is a TPU?

● Summary of the 10 Lessons

● How have these 10 Lessons shaped the design of TPUv4i

● Performance evaluation

● Strengths and Weaknesses

● Takeaways and Insights

● Discussion

25

Performance/Watt

● TPUv3 and TPUv4i ~1.9x faster
○ TPUv2 & TPUv3 have 2 cores

○ TPUv4i has 1 - winning perf/TCO

● TPUv4i has 2.3x perf/TDP vs TPUv3

Breakdown:

● CMEM ~1.5x

● 7nm ~1.3x

● Other contributions ~1.2x

26

Strengths

● 5 years of Design Team’s experience

● Detailed overview of main principles guiding modern DSA

architecture decisions

● Detailed analysis of workload requirements and TPU benchmarks

● Pragmatic, Production-focused, industry approach

27

Weaknesses

● Extremely broad coverage
○ Design details are covered superficially

● Some Lessons are extremely restricting
○ Production & compatibility focus ②④ ➤ Restricts innovation

● Limited benchmark comparison to competition DSAs, and alternative

architectures CPU,GPU (Nvidia T4)

● Some Lessons redundant
○ ④ Support Backwards ML Compatibility & ⑥ Some inference apps need floating point

arithmetic

○ ⑧ DNNs grow ~1.5x/year in memory and compute & ⑨ DNN workloads evolve with
DNN breakthroughs

● Benchmarks mainly on Google Workloads

28

Key Takeaways and insights

● Documentation of unequal technological improvement (①)

● Significance of compiler optimization (②)

● Design for perf/TCO vs perf/CapEx (③)

● Significance of Backwards ML compatibility in production (④)

● Know your workload

● Iterative improvement is key for evolving problems

29

Discussion and Questions

As Moore's law reaches plateau and Dennard scaling

finishes, what are the next steps to keep pace with

growing DNN models?

30

Discussion and Questions

Is compiler, ML and hardware backwards compatibility

restricting innovation in production hardware?

31

Discussion and Questions

Is sacrificing flexibility, that Google seeks in its TPU
hardware, a viable approach in extracting more

performance from current hardware?

32

As Moore's law reaches plateau and Dennard scaling finishes, what

are the next steps to keep pace with growing DNN models?

● Alternative model architectures?

● ICI scaling - high bandwidth interchip communication

● Near, in memory computing?

● New computing paradigms?
○ Spiking neural networks

○ Memristor computing

33

Is compiler, ML and hardware backwards compatibility restricting

innovation in production hardware?

● Production hardware generally has slower adoption rate.

● Exploit compilers to provide bridge between new paradigms

34

Is sacrificing flexibility, that Google seeks in its TPU hardware,

a viable approach in extracting more performance from

current hardware?

● Edge processing hardware does not always require flexibility

● Personal devices have a shorter lifespan + don’t care about OpExp

35

Thank you to my advisors

36

Nika Mansouri Ghiasi
Joël LindeggerGagandeep Singh

Backup Slides: Roofline model

37

Backup Slides: CMEM size

38

Comparison to NVIDIA T4

● TPUs used bf16
● NVIDIA used int8 (fp16 on NMT)

● TPUv4i wins on speed
○ 1.3-1.6x faster
○ 0.9-1.0x for perf/TDP
○ 1.3x perf/TDP for NMT (both use fp)

● Measuring average power
○ 1.6-2x of T4 for NMT

● For Google, backwards ML
compatibility more important
than small int8 perf/TDP

39

Backup Slides: 10 Lessons summary

① Logic, wires, SRAM, & DRAM improve unequally
② Leverage prior compiler optimizations
③ Design for performance per TCO vs per CapEx
④ Support Backwards ML Compatibility
⑤ Inference DSAs need air cooling for global scale
⑥ Some inference apps need floating point arithmetic
⑦ Production inference normally needs multi-tenancy
⑧ DNNs grow ~1.5x/year in memory and compute
⑨ DNN workloads evolve with DNN breakthroughs
⑩ Inference SLO limit is P99 latency, not batch size

40

