RawAlign

Accurate, Fast, and Scalable Raw Nanopore Signal Mapping via Combining Seeding and Alignment

Joël Lindegger
Can Firtina Nika Mansouri Ghiasi
Mohammad Sadrosadati Mohammed Alser Onur Mutlu
Nanopore Sequencing

Nanopore Sequencing: a widely used sequencing technology

- Can sequence large fragments of nucleic acid molecules (up to >2Mbp)
- Offers high throughput
- Cost-effective
- Enables **real-time genome analysis**
Real-Time Analysis with Nanopore Sequencing

Raw Signals: Ionic current measurements generated at a certain *throughput*

Real-Time Analysis: Analyzing all raw signals by matching the throughput

Real-Time Decisions: Stopping sequencing *early* based on real-time analysis
Benefits of Real-Time Genome Analysis

- **Reducing latency** by overlapping the sequencing and analysis steps

- **Reducing sequencing time and cost** by stopping sequencing early

Sequencing is stopped early with a real-time decision.
Challenges in Real-Time Genome Analysis

- **Rapid analysis** to match the nanopore sequencer throughput
- **Timely decisions** to stop sequencing as early as possible
- **Accurate analysis** from noisy raw signal data
- **Power-efficient** computation for scalability and portability
Executive Summary

Problem: Real-time analysis of nanopore raw signals **fails to scale** to large reference databases (e.g., the human genome)

Goal: Analyze raw nanopore signals with
- high accuracy
- high throughput
- low latency
- low memory usage
- needing few bases to be sequenced
for a **wide range of reference database size**

RawAlign: The **first Seed-Filter-Align mapper** for raw nanopore signals

Key Results:
- Only tool to map raw nanopore signals to **large reference databases** with **high accuracy**
- **Generalizes** to all kinds of **reference database sizes**
- Compared to **RawHash:** similar **throughput** (between $0.80\times -1.08\times$) while **improving accuracy** on all datasets (between $1.02\times -1.64\times$ F-1 score)
Nanopore Signal Analysis Overview

Conventional Analysis Pipeline

Raw Signal Analysis Pipeline

Nanopore Sequencer → Raw Signal → Basecaller → Basecalled Read → Basecalled Read Mapper → Mapping Locations → Downstream Analysis

Raw Signal Mapper → Chr. 7 Pos. 4157
Existing Solutions Nanopore Signal Analysis

1. Deep neural networks (DNNs) for translating signals to bases

 - Basecalling
 - Read Mapping

 Less noisy analysis from basecalled sequences

 Costly and power-hungry computational requirements

2. Mapping signals to reference genomes without basecalling

 - Mapping Raw Signals

 Raw signals contain richer information than bases

 Efficient analysis with better scalability and portability

SAFARI
The Problem – Mapping Raw Signals

Raw Signal

Small Reference Genome

- Fewer candidate regions in small genomes
- Accurate mapping
- High throughput

Large Reference Genome (Human)

- Substantially larger number of regions to check per read as the genome size increases
- Problem: Probabilistic mechanisms on many regions ⇒ inaccurate mapping
- Problem: Distance calculation on many regions ⇒ reduced throughput
The Problem – Mapping Raw Signals

Existing solutions are inaccurate or inefficient for large genomes
Outline

Background

RawAlign

Evaluation

Conclusion
Goal

Analyze raw nanopore signals with
- high accuracy
- high throughput
- low latency
- low memory usage
- needing few bases to be sequenced
for a wide range of reference database size
RawHash Overview [Firtina+]

Reference Genome

...GCTATTACCTTAATGTG...

Reference-to-Event Conversion

1. 2.21 -0.9 1.15

Quantization

2. 28 6 18

Hashing

3. Store 0x01

4. Matching Regions

Raw Nanopore Signal

Signal-to-Event Conversion

1. 2.22 -0.91 1.18

Quantization

2. 28 6 18

Hashing

3. Query 0x01

4. Chaining & Mapping

Mapping Positions

RawHash Overview [Firtina+]

1. Seeding

2. Chaining

RawAlign Overview

1. Seeding

2. Chaining

3. Alignment

Coarse-Grained Fast

Fine-Grained Accurate
Alignment Algorithms

Needleman-Wunsch

Compare Basecalled Sequences

\[dp[i,j] = \min \begin{cases}
 dp[i-1,j-1] + (\text{read}[i] == \text{ref}[j]) \ ? 0 : 1 \\
 dp[i-1,j] + 1 \\
 dp[i,j-1] + 1
\end{cases} \]

Dynamic Time Warping

Compare Raw Signal Sequences

\[dp[i,j] = \min \begin{cases}
 dp[i-1,j-1] \\
 dp[i-1,j] \\
 dp[i,j-1]
\end{cases} + \text{abs}(\text{read}[i] - \text{ref}[j]) \]

Nucleotide Bases

Numeric Signal Values
Challenges in Integrating Alignment to Mapping

1. Alignment Algorithms Called Frequently

2. Each Call to Alignment Algorithm is Expensive
Recall: RawAlign Overview

1. Seeding
- Coarse-Grained
- Fast

2. Chaining
- Fine-Grained
- Accurate
- Slow

3. Alignment

Reference Pos. vs. Read Pos.
Alignment is Expensive

Dynamic programming table scales with the square of the read length
Efficient Alignment

RawAlign **efficiently** integrates **alignment** through

1. Pre-alignment **filtering** (chaining)
2. **Early termination** (branch-and-bound)
3. **Anchor-guided alignment**
4. **Banding/windowing**
5. **Vectorization** (SIMD)
All Details in the Paper

RawAlign: Accurate, Fast, and Scalable Raw Nanopore Signal Mapping via Combining Seeding and Alignment

Joël Lindegger§ Can Firtina§ Nika Mansouri Ghiasi§
Mohammad Sadrosadati§ Mohammed Alser§ Onur Mutlu§

§ETH Zürich
Evaluation Methodology

• Compared to **UNCALLED** [Kovaka+, Nat. Biotech. 2021]
 Sigmap [Zhang+, ISMB/ECCB 2021]
 and **RawHash** [Firtina+, Bioinformatics 2023]

- **CPU baseline:** Intel Xeon Gold 6226R @2.9GHz
- **64 threads** for each tool

• **Use cases** for real-time genome analysis:
 1. Read mapping
 2. Relative abundance estimation
 3. Contamination analysis
Evaluation Methodology

- **Evaluation metrics:**
 - **Memory footprint (GB)**
 - **Mean throughput (bp/s) per thread**
 - **Mean analysis latency (ms)**
 - **Mean sequencing latency (chunks)**
 - **Accuracy (F-1 score)**

- **Datasets:**

<table>
<thead>
<tr>
<th>Organism</th>
<th>Flow Cell Version</th>
<th>Reads (#)</th>
<th>Bases (#)</th>
<th>SRA Accession</th>
<th>Reference Genome</th>
<th>Genome Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1 SARS-CoV-2</td>
<td>R9.4</td>
<td>1,382,016</td>
<td>594M</td>
<td>CADDE Centre</td>
<td>GCF_009858895.2</td>
<td>29,903</td>
</tr>
<tr>
<td>d2 E. coli</td>
<td>R9.4</td>
<td>353,317</td>
<td>2,364M</td>
<td>ERR9127551</td>
<td>GCA_000007445.1</td>
<td>5M</td>
</tr>
<tr>
<td>d3 Yeast</td>
<td>R9.4</td>
<td>49,992</td>
<td>380M</td>
<td>SRR8648503</td>
<td>GCA_000146045.2</td>
<td>12M</td>
</tr>
<tr>
<td>d4 Green Algae</td>
<td>R9.4</td>
<td>63,215</td>
<td>1,335M</td>
<td>ERR3237140</td>
<td>GCF_000002595.2</td>
<td>111M</td>
</tr>
<tr>
<td>d5 Human HG001</td>
<td>R9.4</td>
<td>269,507</td>
<td>1,584M</td>
<td>FAB42260 Nanopore WGS</td>
<td>T2T-CHM13 (v2)</td>
<td>3,117M</td>
</tr>
</tbody>
</table>

Relative Abundance Estimation

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1-D5</td>
<td>2,118,047</td>
<td>6,257M</td>
<td>d1-d5</td>
</tr>
</tbody>
</table>
| Contamination Analysis
| D1 and D5 | 1,651,523| 2,178M | d1 |

Dataset numbers (e.g., d1-d5) show the combined datasets.
Datasets are from R9.4. Base counts in millions (M).
Read Mapping Results

Larger Area is Better
Read Mapping Results

RawAlign is the only tool to do well in all metrics and has the highest accuracy and throughput.
Read Mapping Results
Read Mapping Results

<table>
<thead>
<tr>
<th></th>
<th>Memory Footprint (GB)</th>
<th>Throughput (bp/s)</th>
<th>Analysis Latency (ms)</th>
<th>Sequencing Latency (Chunks)</th>
<th>Accuracy (F-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>d1 SARS-CoV-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncalled</td>
<td>0.250</td>
<td>6,575,310</td>
<td>29.244</td>
<td>0.410</td>
<td>0.972</td>
</tr>
<tr>
<td>Sigmap</td>
<td>28.250</td>
<td>350,565,180</td>
<td>1.111</td>
<td>1.005</td>
<td>0.711</td>
</tr>
<tr>
<td>RawHash</td>
<td>4.210</td>
<td>502,043,190</td>
<td>0.942</td>
<td>1.238</td>
<td>0.925</td>
</tr>
<tr>
<td>RawAlign</td>
<td>4.520</td>
<td>438,089,990</td>
<td>1.070</td>
<td>1.126</td>
<td>0.939</td>
</tr>
<tr>
<td>d2 E.coli</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncalled</td>
<td>0.800</td>
<td>5,174,050</td>
<td>115.787</td>
<td>1.290</td>
<td>0.973</td>
</tr>
<tr>
<td>Sigmap</td>
<td>111.170</td>
<td>19,215,930</td>
<td>34.441</td>
<td>2.111</td>
<td>0.967</td>
</tr>
<tr>
<td>RawHash</td>
<td>4.270</td>
<td>49,559,740</td>
<td>19.754</td>
<td>3.200</td>
<td>0.928</td>
</tr>
<tr>
<td>RawAlign</td>
<td>0.000</td>
<td>53,693,170</td>
<td>13.323</td>
<td>1.995</td>
<td>0.968</td>
</tr>
<tr>
<td>d3 Yeast</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncalled</td>
<td>0.580</td>
<td>5,151,670</td>
<td>159.304</td>
<td>2.773</td>
<td>0.941</td>
</tr>
<tr>
<td>Sigmap</td>
<td>14.710</td>
<td>15,217,010</td>
<td>67.602</td>
<td>4.139</td>
<td>0.947</td>
</tr>
<tr>
<td>RawHash</td>
<td>4.530</td>
<td>17,996,930</td>
<td>77.586</td>
<td>5.826</td>
<td>0.906</td>
</tr>
<tr>
<td>RawAlign</td>
<td>4.530</td>
<td>17,854,870</td>
<td>48.394</td>
<td>3.071</td>
<td>0.963</td>
</tr>
<tr>
<td>d4 Green Algae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncalled</td>
<td>1.260</td>
<td>8,174,320</td>
<td>440.815</td>
<td>11.790</td>
<td>0.840</td>
</tr>
<tr>
<td>Sigmap</td>
<td>53.710</td>
<td>2,251,370</td>
<td>608.898</td>
<td>5.804</td>
<td>0.938</td>
</tr>
<tr>
<td>RawHash</td>
<td>14.060</td>
<td>5,429,580</td>
<td>700.304</td>
<td>10.646</td>
<td>0.824</td>
</tr>
<tr>
<td>RawAlign</td>
<td>12.200</td>
<td>5,871,450</td>
<td>276.094</td>
<td>4.514</td>
<td>0.932</td>
</tr>
<tr>
<td>d5 Human</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncalled</td>
<td>13.170</td>
<td>5,612,920</td>
<td>1,077.536</td>
<td>12.959</td>
<td>0.320</td>
</tr>
<tr>
<td>Sigmap</td>
<td>313.400</td>
<td>195,180</td>
<td>16,296.435</td>
<td>10.401</td>
<td>0.327</td>
</tr>
<tr>
<td>RawHash</td>
<td>56.940</td>
<td>1,298,520</td>
<td>6,318.984</td>
<td>10.695</td>
<td>0.557</td>
</tr>
<tr>
<td>RawAlign</td>
<td>80.350</td>
<td>956,310</td>
<td>3,510.682</td>
<td>6.321</td>
<td>0.703</td>
</tr>
<tr>
<td>Contamination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncalled</td>
<td>1.060</td>
<td>6,607,850</td>
<td>199.283</td>
<td>3.557</td>
<td>0.964</td>
</tr>
<tr>
<td>Sigmap</td>
<td>111.650</td>
<td>405,956,490</td>
<td>1.206</td>
<td>2.062</td>
<td>0.650</td>
</tr>
<tr>
<td>RawHash</td>
<td>4.280</td>
<td>524,042,570</td>
<td>1.139</td>
<td>2.409</td>
<td>0.872</td>
</tr>
<tr>
<td>RawAlign</td>
<td>4.500</td>
<td>455,376,380</td>
<td>2.004</td>
<td>3.227</td>
<td>0.938</td>
</tr>
<tr>
<td>Relative Abundance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uncalled</td>
<td>10.870</td>
<td>6,721,770</td>
<td>309.079</td>
<td>4.921</td>
<td>0.218</td>
</tr>
<tr>
<td>Sigmap</td>
<td>506.340</td>
<td>181,880</td>
<td>5,670.365</td>
<td>3.338</td>
<td>0.406</td>
</tr>
<tr>
<td>RawHash</td>
<td>60.760</td>
<td>596,740</td>
<td>2,264.014</td>
<td>3.816</td>
<td>0.459</td>
</tr>
<tr>
<td>RawAlign</td>
<td>83.760</td>
<td>480,050</td>
<td>1,652.162</td>
<td>2.336</td>
<td>0.754</td>
</tr>
</tbody>
</table>
Relative Abundance Results

<table>
<thead>
<tr>
<th>Tool</th>
<th>SARS-CoV-2</th>
<th>E.coli</th>
<th>Yeast</th>
<th>Green Algae</th>
<th>Human</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Truth</td>
<td>0.652</td>
<td>0.167</td>
<td>0.024</td>
<td>0.030</td>
<td>0.127</td>
<td></td>
</tr>
<tr>
<td>minimap2</td>
<td>0.613</td>
<td>0.163</td>
<td>0.025</td>
<td>0.053</td>
<td>0.147</td>
<td>0.050</td>
</tr>
<tr>
<td>Uncalled</td>
<td>0.072</td>
<td>0.466</td>
<td>0.001</td>
<td>0.150</td>
<td>0.312</td>
<td>0.689</td>
</tr>
<tr>
<td>Sigmmap</td>
<td>0.201</td>
<td>0.446</td>
<td>0.002</td>
<td>0.123</td>
<td>0.229</td>
<td>0.549</td>
</tr>
<tr>
<td>RawHash</td>
<td>0.309</td>
<td>0.440</td>
<td>0.000</td>
<td>0.073</td>
<td>0.178</td>
<td>0.445</td>
</tr>
<tr>
<td>RawAlign</td>
<td>0.565</td>
<td>0.248</td>
<td>0.002</td>
<td>0.050</td>
<td>0.136</td>
<td>0.123</td>
</tr>
</tbody>
</table>

RawAlign approaches the accuracy of the state-of-the-art basecalling-based analysis pipeline (using minimap2).
All Details in the Paper

RawAlign: Accurate, Fast, and Scalable Raw Nanopore Signal Mapping via Combining Seeding and Alignment

Joël Lindegger$ Can Firtina$ Nika Mansouri Ghiasi$
Mohammad Sadrosadati$ Mohammed Alser$ Onur Mutlu$

$ETH Zürich

SAFARI
RawAlign Source Code

https://github.com/CMU-SAFARI/RawAlign
Conclusion

Problem: Real-time analysis of nanopore raw signals **fails to scale** to large reference databases (e.g., the human genome)

Goal: Analyze raw nanopore signals with
- high accuracy
- high throughput
- low latency
- low memory usage
- needing few bases to be sequenced
for a **wide range of reference database size**

RawAlign: The first **Seed-Filter-Align mapper** for raw nanopore signals

Key Results:
- Only tool to map raw nanopore signals to **large reference databases** with **high accuracy**
- **Generalizes** to all kinds of **reference database sizes**
- Compared to **RawHash:** **similar throughput** (between 0.80×-1.08×) while **improving accuracy** on all datasets (between 1.02×-1.64× F-1 score)
Strengths

• RawAlign improves on the State-of-the-Art numbers: accuracy, runtime, decision latency

• RawAlign is based on well-tested algorithmic principles

• RawAlign solves significant challenges of combining seeding and alignment
Weaknesses

• There remains a significant accuracy and performance headroom to be explored

• The downstream analysis for a pure raw signal read mapper is limited/non-existent
How Can We Make RawAlign Faster?

• Filtering before chaining

• Filtering before alignment

• Faster alternative to alignment

• Hardware acceleration
Backup Slides
Events in Raw Nanopore Signals

- **Event:** A segment of the raw signal
 - Corresponds to a particular k-mer

- **Event detection** finds these segments to identify k-mers
 - Start and end positions are marked by abrupt signal changes
 - Statistical methods identify these abrupt changes
 - **Event value:** average of signals within an event

Event Value (picoampere)
Practical Similarity Identification

Reference

Read

K-mers

Seeding

Determine potential matching regions (seeds) in the reference genome

Seed Filtering (e.g., Chaining)

Prune some seeds in the reference genome

Alignment

Determine the exact differences between the read and the reference genome

SAFARI
Existing Solutions – Real-time Basecalling

Deep neural networks (DNNs) for translating signals to bases

Nanopore sequencing -> Raw Signal -> Real-time Analysis

- Basecalling
- Read mapping

DNNs provide less noisy analysis from basecalled sequences

Costly and power-hungry computational requirements
The Problem

The existing solutions are ineffective for large genomes

Costly and energy-hungry computations to basecall each read:
Portable sequencing becomes challenging with resource-constrained devices

Larger number of reference regions cannot be handled accurately or quickly, rendering existing solutions ineffective for large genomes
Applications of Read Until

Depletion: Reads mapping to a particular reference genome is ejected

- Removing contaminated reads from a sample
- Relative abundance estimation
- Controlling low/high-abundance genomes in a sample
- Controlling the sequencing of depth of a genome

Enrichment: Reads not mapping to a particular reference genome is ejected

- Purifying the sample to ensure it contains only the selected genomes
- Removing the host genome (e.g., human) in contamination analysis
Applications of Run Until and Sequence Until

Run Until: Stopping the sequencing without informative decision from analysis

• Stopping when reads reach to a particular depth of coverage

• Stopping when the abundance of all genomes reach a particular threshold

Sequence Until: Stopping the sequencing based on information decision

• Stopping when relative abundance estimations do not change substantially (for high-abundance genomes)

• Stopping when finding that the sample is contaminated with a particular set of genomes

• ...

SAFARI
Details: Quantizing the Event Values

- **Observation:** Identical k-mers generate similar raw signals
 - **Challenge:** Their corresponding event values can be slightly different

- **Key Idea:** Quantize the event values
 - To enable assigning the **same quantized value** to the **similar event values**

-0.091 in binary:
\[\begin{array}{ccccccccccc}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
\end{array} \]
Most significant \(Q = 9 \) bits:
\[\begin{array}{ccccccc}
1 & 0 & 1 & | & 1 & 1 & 0 & 1 & 1 \\
\end{array} \]
Pruning \(p = 4 \) bits:
\[\begin{array}{cccc}
1 & 0 & 0 & 1 & 1 \\
\end{array} \]

-0.084 in binary:
\[\begin{array}{cccccccccccc}
1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
\end{array} \]
Most significant \(Q = 9 \) bits:
\[\begin{array}{ccccccc}
1 & 0 & 1 & | & 1 & 1 & 0 & 1 & 1 \\
\end{array} \]
Pruning \(p = 4 \) bits:
\[\begin{array}{cccc}
1 & 0 & 0 & 1 & 1 \\
\end{array} \]

Slightly Different (Normalized) Event Values

Matching Quantized Event Values
Average Sequenced Bases and Chunks

<table>
<thead>
<tr>
<th>Tool</th>
<th>SARS-CoV-2</th>
<th>E. coli</th>
<th>Yeast</th>
<th>Green Algae</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average sequenced base length per read</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCALLED</td>
<td>184.51</td>
<td>580.52</td>
<td>1,233.20</td>
<td>5,300.15</td>
<td>6,060.23</td>
</tr>
<tr>
<td>RawHash</td>
<td>513.95</td>
<td>1,376.14</td>
<td>2,565.09</td>
<td>4,760.59</td>
<td>4,773.58</td>
</tr>
<tr>
<td>Average sequenced number of chunks per read</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigmap</td>
<td>1.01</td>
<td>2.11</td>
<td>4.14</td>
<td>5.76</td>
<td>10.40</td>
</tr>
<tr>
<td>RawHash</td>
<td>1.24</td>
<td>3.20</td>
<td>5.83</td>
<td>10.72</td>
<td>10.70</td>
</tr>
</tbody>
</table>

RawHash **reduces sequencing time and cost for large genomes** up to **1.3×** compared to UNCALLED.

Although Sigmap processes less number of chunks than RawHash, it fails to provide real-time analysis capabilities for large genomes.
Breakdown Analysis of the RawHash Steps

<table>
<thead>
<tr>
<th>Tool</th>
<th>SARS-CoV-2</th>
<th>E. coli</th>
<th>Yeast</th>
<th>Green Algae</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>File I/O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Signal-to-Event</td>
<td>21.75</td>
<td>1.86</td>
<td>1.01</td>
<td>0.53</td>
<td>0.02</td>
</tr>
<tr>
<td>Sketching</td>
<td>0.74</td>
<td>0.06</td>
<td>0.04</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Seeding</td>
<td>3.86</td>
<td>4.14</td>
<td>3.52</td>
<td>6.70</td>
<td>5.39</td>
</tr>
<tr>
<td>Chaining</td>
<td>73.50</td>
<td>93.92</td>
<td>95.42</td>
<td>92.43</td>
<td>94.46</td>
</tr>
<tr>
<td>Seeding + Chaining</td>
<td>77.36</td>
<td>98.06</td>
<td>98.94</td>
<td>99.14</td>
<td>99.86</td>
</tr>
</tbody>
</table>

The entire runtime is **bottlenecked by the chaining step**
Required Computation Resources in Indexing

<table>
<thead>
<tr>
<th>Tool</th>
<th>Contamination</th>
<th>SARS-CoV-2</th>
<th>E. coli</th>
<th>Yeast</th>
<th>Green Algae</th>
<th>Human</th>
<th>Relative Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU Time (sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCALLED</td>
<td>8.72</td>
<td>9.00</td>
<td>11.08</td>
<td>18.62</td>
<td>285.88</td>
<td>4,148.10</td>
<td>4,382.38</td>
</tr>
<tr>
<td>Sigmap</td>
<td>0.02</td>
<td>0.04</td>
<td>8.66</td>
<td>24.57</td>
<td>449.29</td>
<td>36,765.24</td>
<td>40,926.76</td>
</tr>
<tr>
<td>RawHash</td>
<td>0.18</td>
<td>0.13</td>
<td>2.62</td>
<td>4.48</td>
<td>34.18</td>
<td>1,184.42</td>
<td>788.88</td>
</tr>
<tr>
<td></td>
<td>Real time (sec)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCALLED</td>
<td>1.01</td>
<td>1.04</td>
<td>2.67</td>
<td>7.79</td>
<td>280.27</td>
<td>4,190.00</td>
<td>4,471.82</td>
</tr>
<tr>
<td>Sigmap</td>
<td>0.13</td>
<td>0.25</td>
<td>9.31</td>
<td>25.86</td>
<td>458.46</td>
<td>37,136.61</td>
<td>41,340.16</td>
</tr>
<tr>
<td>RawHash</td>
<td>0.14</td>
<td>0.10</td>
<td>1.70</td>
<td>2.06</td>
<td>15.82</td>
<td>278.69</td>
<td>154.68</td>
</tr>
<tr>
<td></td>
<td>Peak memory (GB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCALLED</td>
<td>0.07</td>
<td>0.07</td>
<td>0.13</td>
<td>0.31</td>
<td>11.96</td>
<td>48.44</td>
<td>47.81</td>
</tr>
<tr>
<td>Sigmap</td>
<td>0.01</td>
<td>0.01</td>
<td>0.40</td>
<td>1.04</td>
<td>8.63</td>
<td>227.77</td>
<td>238.32</td>
</tr>
<tr>
<td>RawHash</td>
<td>0.01</td>
<td>0.01</td>
<td>0.35</td>
<td>0.76</td>
<td>5.33</td>
<td>83.09</td>
<td>152.80</td>
</tr>
</tbody>
</table>

The indexing step of RawHash is **orders of magnitude faster** than the indexing steps of UNCALLED and Sigmap, especially for large genomes.

RawHash requires **larger memory space** than UNCALLED.
Required Computation Resources in Mapping

<table>
<thead>
<tr>
<th>Tool</th>
<th>Contamination</th>
<th>SARS-CoV-2</th>
<th>E. coli</th>
<th>Yeast</th>
<th>Green Algae</th>
<th>Human</th>
<th>Relative Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CPU Time (sec)</td>
<td>Real time (sec)</td>
<td>Peak memory (GB)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNCALLLED</td>
<td>265,902.26</td>
<td>20,628.57</td>
<td>0.65</td>
<td>0.19</td>
<td>0.52</td>
<td>0.37</td>
<td>0.81</td>
</tr>
<tr>
<td>Sigmap</td>
<td>4,573.18</td>
<td>6,725.26</td>
<td>111.69</td>
<td>28.26</td>
<td>111.11</td>
<td>14.65</td>
<td>29.18</td>
</tr>
<tr>
<td>RawHash</td>
<td>3,721.62</td>
<td>3,917.49</td>
<td>4.13</td>
<td>4.20</td>
<td>4.16</td>
<td>4.37</td>
<td>11.75</td>
</tr>
</tbody>
</table>

The mapping step of RawHash is **significantly faster than Sigmap** for all genomes, and **faster than UNCALLLED for small genomes**

RawHash requires **larger memory space** than UNCALLLED
The mapping step of RawHash is **significantly faster than Sigmap** for all genomes, and **faster than UNCALLED for small genomes**.
Parameter Configurations

<table>
<thead>
<tr>
<th>Tool</th>
<th>Contamination</th>
<th>SARS-CoV-2</th>
<th>E. coli</th>
<th>Yeast</th>
<th>Green Algae</th>
<th>Human</th>
<th>Relative Abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>RawHash</td>
<td>-x viral -t 32</td>
<td>-x viral -t 32</td>
<td>-x sensitive -t 32</td>
<td>-x sensitive -t 32</td>
<td>-x fast -t 32</td>
<td>-x fast -t 32</td>
<td>-x fast -t 32</td>
</tr>
<tr>
<td>UNCALLED</td>
<td></td>
<td></td>
<td></td>
<td>map -t 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sigmatic</td>
<td></td>
<td></td>
<td></td>
<td>-m -t 32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimap2</td>
<td></td>
<td></td>
<td>-x map-ont -t 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preset (-x) Corresponding parameters Usage

<table>
<thead>
<tr>
<th>Preset (-x)</th>
<th>Corresponding parameters</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>viral</td>
<td>-e 5 -q 9 -l 3</td>
<td>Viral genomes</td>
</tr>
<tr>
<td>sensitive</td>
<td>-e 6 -q 9 -l 3</td>
<td>Small genomes (i.e., < 50M bases)</td>
</tr>
<tr>
<td>fast</td>
<td>-e 7 -q 9 -l 3</td>
<td>Large genomes (i.e., > 50M bases)</td>
</tr>
</tbody>
</table>
Versions

<table>
<thead>
<tr>
<th>Tool</th>
<th>Version</th>
<th>Link to the Source Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>RawHash</td>
<td>0.9</td>
<td>https://github.com/CMU-SAFARI/RawHash/tree/8042b1728e352a28fccc79c2efd80c8b631fe7bac</td>
</tr>
<tr>
<td>UNCALLED</td>
<td>2.2</td>
<td>https://github.com/skovaka/UNCALLED/tree/74a5d4e5b5d02fb31d6e88926e8a0896dc3475cb</td>
</tr>
<tr>
<td>Sigmoid</td>
<td>0.1</td>
<td>https://github.com/haowenz/sigmoid/tree/c9a40483264c9514587a36555b5af48d3f054f6f</td>
</tr>
</tbody>
</table>
RawAlign

Accurate, Fast, and Scalable Raw Nanopore Signal Mapping via Combining Seeding and Alignment

Joël Lindegger

Can Firtina Nika Mansouri Ghiasi

Mohammad Sadrosadati Mohammed Alser Onur Mutlu