Number Systems

Digital Design and Computer Architecture
Mohammad Sadrosadati
Frank K. Gürkaynak

http://safari.ethz.ch/ddca
What will we learn?

- How to represent fractions?
- Fixed point
- Floating point

Briefly:
 - Adding floating point numbers
 - Life is a bit more complicated
Number Systems

- For what kind of numbers do you know binary representations?
 - *Positive integers*
 - Unsigned binary
 - *Negative integers*
 - Sign/magnitude numbers
 - Two’s complement

- What about fractions?
Fractions: Two Representations

- **Fixed-point**: binary point is fixed

 \[1101101.0001001 \]

- **Floating-point**: binary point floats to the right of the most significant 1 and an exponent is used

 \[1.1011010001001 \times 2^6 \]
Fixed-Point Numbers

- Fixed-point representation using 4 integer bits and 3 fraction bits:

\[
\begin{align*}
0110110 \\
\text{interpreted as} \\
0110.110 \\
= ?
\end{align*}
\]
Fixed-Point Numbers

- Fixed-point representation using 4 integer bits and 3 fraction bits:

\[
\text{interpreted as } 0110.110 = 2^2 + 2^1 + 2^{-1} + 2^{-2} = 6.75
\]

- The binary point *is not a part* of the representation but is implied.

- The number of integer and fraction bits must be *agreed upon* by those generating and those reading the number.
Signed Fixed-Point Numbers

Negative fractional numbers can be represented two ways:

- Sign/magnitude notation
- Two’s complement notation

Represent \(-7.5_{10}\) using an 8-bit binary representation with 4 integer bits and 4 fraction bits in Two’s complement:

- +7.5: 01111000
- Invert bits: 10000111
- Add 1 to lsb: 10001000
Floating-Point Numbers

The binary point floats to the right of the most significant digit

Similar to decimal scientific notation:
- For example, 273_{10} in scientific notation is $273 = 2.73 \times 10^2$

In general, a number is written in scientific notation as:
\[\pm M \times B^E \]

Where:
- M = mantissa
- B = base
- E = exponent

In the example, $M = 2.73$, $B = 10$, and $E = 2$
Floating-Point Numbers

Example: represent the value 228_{10} using a 32-bit floating point representation

We show three versions; the final version is used in the IEEE 754 floating-point standard
Floating-Point Representation 1

- Convert the decimal number to binary:
 \[228_{10} = 11100100_2 = 1.11001 \times 2^7 \]

- Fill in each field of the 32-bit number:
 - The sign bit is positive (0)
 - The 8 exponent bits represent the value 7
 - The remaining 23 bits are the mantissa

<table>
<thead>
<tr>
<th>1 bit</th>
<th>8 bits</th>
<th>23 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000111</td>
<td>11 1001 0000 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

Sign | **Exponent** | **Mantissa**
Floating-Point Representation 2

- **First bit of the mantissa is always 1:**
 \[228_{10} = 11100100_2 = 1.11001 \times 2^7 \]
 - Thus, storing the most significant 1, also called the implicit leading 1, is redundant information.

- **Instead, store just the fraction bits in the 23-bit field**

 The leading 1 is implied

<table>
<thead>
<tr>
<th>1 bit</th>
<th>8 bits</th>
<th>23 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000111</td>
<td>110 0100 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000111</td>
<td>110 0100 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>
Floating-Point Representation 3 (IEEE)

- Bias for 8 bits = \(127_{10} = 01111111_2\)
- Biased exponent = bias + exponent
 - Exponent of 7 is stored as:
 \[127 + 7 = 134 = 10000110_2\]
- The IEEE 754 32-bit floating-point representation of \(228_{10}\)

<table>
<thead>
<tr>
<th>1 bit</th>
<th>8 bits</th>
<th>23 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000110</td>
<td>110 0100 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

- Sign
- Biased Exponent
- Fraction
Floating-Point Example

Write the value -58.25_{10} using IEEE 754 32-bit floating-point standard

- First, convert the decimal number to binary:
 \[58.25_{10} = \]

- Next, fill in each field in the 32-bit number:
 - Sign bit:
 - 8 exponent bits:
 - 23 fraction bits:

<table>
<thead>
<tr>
<th>1 bit</th>
<th>8 bits</th>
<th>23 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sign</td>
<td>Exponent</td>
<td>Fraction</td>
</tr>
</tbody>
</table>
Floating-Point Example

Write the value \(-58.25\)\(_{10}\) using IEEE 754 32-bit floating-point standard

- First, convert the decimal number to binary:
 \[58.25 = 111010.01_2 = 1.1101001 \times 2^5 \]

- Next, fill in each field in the 32-bit number:
 - Sign bit: 1 (negative)
 - 8 exponent bits: \((127 + 5) = 132\)\(_{10}\) = \(10000100_2\)
 - 23 fraction bits: \(110\ 1001\ 0000\ 0000\ 0000\ 0000_2\)

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 0010 0</td>
<td>110 1001 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

In hexadecimal: \(0xC2690000\)
Floating-Point Numbers: Special Cases

- The IEEE 754 standard includes special cases for numbers that are difficult to represent, such as 0 because it lacks an implicit leading 1

<table>
<thead>
<tr>
<th>Number</th>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>00000000</td>
<td>00000000000000000000000</td>
</tr>
<tr>
<td>-(\infty)</td>
<td>0</td>
<td>11111111</td>
<td>00000000000000000000000</td>
</tr>
<tr>
<td>-(-\infty)</td>
<td>1</td>
<td>11111111</td>
<td>00000000000000000000000</td>
</tr>
<tr>
<td>NaN</td>
<td>X</td>
<td>11111111</td>
<td>non-zero</td>
</tr>
</tbody>
</table>

- NaN (= Not a Number) is used for numbers that don’t exist, such as \(\sqrt{-1}\) or \(\log(-5)\)
Floating-Point Number Precision

- **Single-Precision:**
 - 32-bit notation
 - 1 sign bit, 8 exponent bits, 23 fraction bits
 - bias = 127

- **Double-Precision:**
 - 64-bit notation
 - 1 sign bit, 11 exponent bits, 52 fraction bits
 - bias = 1023
Floating-Point Numbers: Rounding

Problems:
- *Overflow*: number is too large to be represented
- *Underflow*: number is too small to be represented

Rounding modes:
- Down
- Up
- Toward zero
- To nearest
Floating-Point Numbers: Rounding Example

Round $1.100101 (1.578125)$ so that it uses only 3 fractional bits

- Down:
- Up:
- Toward zero:
- To nearest:
Floating-Point Numbers: Rounding Example

- Round 1.100101 (1.578125) so that it uses only 3 fractional bits
 - Down: 1.100
 - Up: 1.101
 - Toward zero: 1.100
 - To nearest: 1.101 (1.625 is closer to 1.578125 than 1.5 is)
Floating-Point Addition

- **Steps for floating point addition:**
 1. Extract exponent and fraction bits
 2. Prepend leading 1 to form mantissa
 3. Compare exponents
 4. Shift smaller mantissa if necessary
 5. Add mantissas
 6. Normalize mantissa and adjust exponent if necessary
 7. Round result
 8. Assemble exponent and fraction back into floating-point format

- **Not so easy as binary addition!**
Floating-Point Addition: Example

- Add the following floating-point numbers:

 0x3FC00000
 0x40500000
Floating-Point Addition: Example

1. Extract exponent and fraction bits

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01111111</td>
<td>100 0000 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign</th>
<th>Exponent</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000000</td>
<td>101 0000 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

- For first number (N1): $S = 0$, $E = 127$, $F = .1$
- For second number (N2): $S = 0$, $E = 128$, $F = .101$

2. Prepend leading 1 to form mantissa

- N1: 1.1
- N2: 1.101
Floating-Point Addition: Example

3. Compare exponents

\[127 - 128 = -1 \]

so shift N1 right by 1 bit

4. Shift smaller mantissa if necessary

shift N1’s mantissa:

\[1.1 \gg 1 = 0.11 \times 2^1 \]

5. Add mantissas

\[
\begin{array}{c}
0.11 \times 2^1 \\
+ 1.101 \times 2^1 \\
\hline
10.011 \times 2^1 \\
\end{array}
\]
Floating-Point Addition: Example

6. Normalize mantissa and adjust exponent if necessary

\[10.011 \times 2^1 = 1.0011 \times 2^2 \]

7. Round result

No need (fits in 23 bits)

8. Assemble exponent and fraction back into floating-point format

\[S = 0, \ E = 2 + 127 = 129 = 10000001_2, \ F = 001100.. \]

<table>
<thead>
<tr>
<th>1 bit</th>
<th>8 bits</th>
<th>23 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10000001</td>
<td>001 1000 0000 0000 0000 0000 0000</td>
</tr>
</tbody>
</table>

Sign Exponent Fraction

Written in hexadecimal: \(0x40980000 \)
Floating-Point Unit of ARM
What did we learn

- How to express real numbers in binary
 - Fixed point
 - Floating point

- IEEE Standard to express floating point numbers
 - Sign
 - Exponent (biased)
 - Mantissa

- Briefly
 - Adding floating point numbers