Binary Numbers

Digital Design and Computer Architecture
Mohammad Sadrosadati
Frank K. Gürkaynak

http://safari.ethz.ch/ddca
In This Lecture

- How to express numbers using only 1s and 0s
- Using hexadecimal numbers to express binary numbers
- Different systems to express negative numbers
- Adding and subtracting with binary numbers
Number Systems

- **Decimal Numbers**

 $5374_{10} =$

- **Binary Numbers**

 $1101_2 =$
Number Systems

- **Decimal Numbers**

\[5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0 \]

- **Binary Numbers**

\[1101_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 13_{10} \]
Powers of two

<table>
<thead>
<tr>
<th>2^0</th>
<th>28</th>
<th>29</th>
<th>210</th>
<th>211</th>
<th>212</th>
<th>213</th>
<th>214</th>
<th>215</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
<td>=</td>
</tr>
</tbody>
</table>
Powers of two

<table>
<thead>
<tr>
<th>2^0</th>
<th>$= 1$</th>
<th>2^8</th>
<th>$= 256$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^1</td>
<td>$= 2$</td>
<td>2^9</td>
<td>$= 512$</td>
</tr>
<tr>
<td>2^2</td>
<td>$= 4$</td>
<td>2^{10}</td>
<td>$= 1024$</td>
</tr>
<tr>
<td>2^3</td>
<td>$= 8$</td>
<td>2^{11}</td>
<td>$= 2048$</td>
</tr>
<tr>
<td>2^4</td>
<td>$= 16$</td>
<td>2^{12}</td>
<td>$= 4096$</td>
</tr>
<tr>
<td>2^5</td>
<td>$= 32$</td>
<td>2^{13}</td>
<td>$= 8192$</td>
</tr>
<tr>
<td>2^6</td>
<td>$= 64$</td>
<td>2^{14}</td>
<td>$= 16384$</td>
</tr>
<tr>
<td>2^7</td>
<td>$= 128$</td>
<td>2^{15}</td>
<td>$= 32768$</td>
</tr>
</tbody>
</table>

Handy to memorize up to 2^{15}
Binary to Decimal Conversion

- Convert 10011_2 to decimal
Binary to Decimal Conversion

- Convert 10011_2 to decimal

\[2^4 \times 1 + 2^3 \times 0 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 = \]
Binary to Decimal Conversion

Convert 10011_2 to decimal

$$2^4 \times 1 + 2^3 \times 0 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1 =$$

$$16 \times 1 + 8 \times 0 + 4 \times 0 + 2 \times 1 + 1 \times 1 =$$

$$16 + 0 + 0 + 2 + 1 = 19_{10}$$
Decimal to Binary Conversion

Convert 47_{10} to binary
Decimal to Binary Conversion

Convert 47_{10} to binary

- Start with $2^6 = 64 \text{ is } 64 \leq 47 \ ? \text{ no do nothing}$
- Now $2^5 = 32$
Decimal to Binary Conversion

Convert \(47_{10}\) **to binary**

- Start with \(2^6 = 64\) is \(64 \leq 47\) ? no do nothing
- Now \(2^5 = 32\) is \(32 \leq 47\) ? yes subtract 47 – 32 = 15
- Now \(2^4 = 16\) is \(16 \leq 15\) ? no do nothing
- Now \(2^3 = 8\) is \(8 \leq 15\) ? yes subtract 15 – 8 = 7
- Now \(2^2 = 4\) is \(4 \leq 7\) ? yes subtract 7-4 = 3
- Now \(2^1 = 2\) is \(2 \leq 3\) ? yes subtract 3-2 =1
- Now \(2^0 = 1\) is \(1 \leq 1\) ? yes we are done
Decimal to binary conversion

Convert 47_{10} to binary

- Start with $2^6 = 64$ is $64 \leq 47$? no 0 do nothing
- Now $2^5 = 32$ is $32 \leq 47$? yes 1 subtract $47 - 32 = 15$
- Now $2^4 = 16$ is $16 \leq 15$? no 0 do nothing
- Now $2^3 = 8$ is $8 \leq 15$? yes 1 subtract $15 - 8 = 7$
- Now $2^2 = 4$ is $4 \leq 7$? yes 1 subtract $7 - 4 = 3$
- Now $2^1 = 2$ is $2 \leq 3$? yes 1 subtract $3 - 2 = 1$
- Now $2^0 = 1$ is $1 \leq 1$? yes 1 we are done

Result is 0101111_2
Binary Values and Range

- **N-digit decimal number**
 - How many values? \(10^N\)
 - Range? \([0, 10^N - 1]\)
 - Example: 3-digit decimal number
 - \(10^3 = 1000\) possible values
 - Range: \([0, 999]\)

- **N-bit binary number**
 - How many values? \(2^N\)
 - Range: \([0, 2^N - 1]\)
 - Example: 3-digit binary number
 - \(2^3 = 8\) possible values
 - Range: \([0, 7] = [000_2\ to \ 111_2]\)
Hexadecimal (Base-16) Numbers

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hexadecimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>04</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>05</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>06</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>07</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>09</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0A</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0B</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0C</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0D</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0E</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0F</td>
<td></td>
</tr>
</tbody>
</table>
Hexadecimal (Base-16) Numbers

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hexadecimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>1010</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>1011</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>1100</td>
</tr>
<tr>
<td>13</td>
<td>D</td>
<td>1101</td>
</tr>
<tr>
<td>14</td>
<td>E</td>
<td>1110</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>1111</td>
</tr>
</tbody>
</table>
Hexadecimal Numbers

- Binary numbers can be pretty long.

- A neat trick is to use base 16

- How many binary digits represent a hexadecimal digit?
 4 (since $2^4 = 16$)

- Example 32 bit number:
 0101 1101 0111 0001 1001 1111 1010 0110
Hexadecimal Numbers

- Binary numbers can be pretty long.
- A neat trick is to use base 16
- How many binary digits represent a hexadecimal digit?
 4 (since $2^4 = 16$)

- Example 32 bit number:

 0101 1101 0111 0001 1001 1111 1010 0110
 5 D 7 1 9 F A 6
Hexadecimal Numbers

- Binary numbers can be pretty long.
- A neat trick is to use base 16.
- How many binary digits represent a hexadecimal digit?
 - 4 (since $2^4 = 16$)

- Example 32 bit number:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0101</td>
<td>1101</td>
<td>0111</td>
<td>0001</td>
<td>1001</td>
<td>1111</td>
<td>1010</td>
<td>0110</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>F</td>
<td>A</td>
<td>6</td>
</tr>
</tbody>
</table>

- The other way is just as simple

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>E</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>B</td>
</tr>
</tbody>
</table>
Hexadecimal Numbers

- Binary numbers can be pretty long.

- A neat trick is to use base 16

- How many binary digits represent a hexadecimal digit?
 4 (since \(2^4 = 16\))

- Example 32 bit number:

 \[
 \begin{array}{cccccccc}
 0101 & 1101 & 0111 & 0001 & 1001 & 1111 & 1010 & 0110 \\
 5 & D & 7 & 1 & 9 & F & A & 6 \\
 \end{array}
 \]

- The other way is just as simple

 \[
 \begin{array}{cccccccc}
 C & E & 2 & 8 & 3 & 5 & 4 & B \\
 1100 & 1110 & 0010 & 1000 & 0011 & 0101 & 0100 & 1011 \\
 \end{array}
 \]
Hexadecimal to Decimal Conversion

- Convert $4AF_{16}$ (or $0x4AF$) to decimal
Hexadecimal to decimal conversion

- Convert $4AF_{16}$ (or 0x4AF) to decimal

\[
16^2 \times 4 + 16^1 \times A + 16^0 \times F = \\
256 \times 4 + 16 \times 10 + 1 \times 15 = \\
1024 + 160 + 15 = 1199_{10}
\]
Bits, Bytes, Nibbles...

10010110

most significant bit

least significant bit

byte

10010110

nibble

CEBF9AD7

most significant byte

least significant byte
Powers of Two

- \(2^{10} = 1 \text{kilo} \approx 1000 \quad (1024)\)

- \(2^{20} = 1 \text{mega} \approx 1 \text{million} \quad (1,048,576)\)

- \(2^{30} = 1 \text{giga} \approx 1 \text{billion} \quad (1,073,741,824)\)
Powers of Two (SI Compatible)

- $2^{10} = 1 \text{kibi} \approx 1000 \ (1024)$

- $2^{20} = 1 \text{mebi} \approx 1 \text{million} \ (1,048,576)$

- $2^{30} = 1 \text{gibi} \approx 1 \text{billion} \ (1,073,741,824)$
Estimating Powers of Two

- What is the value of 2^{24}?

- How many values can a 32-bit variable represent?
Estimating Powers of Two

What is the value of 2^{24}?

$2^4 \times 2^{20} \approx 16 \text{ million}$

How many values can a 32-bit variable represent?

$2^2 \times 2^{30} \approx 4 \text{ billion}$
Addition

- Decimal

 $\begin{align*}
 &\quad 3734 \\
 + &\quad 5168 \\
 \hline
 &\quad 8902
 \end{align*}$

 $11 \leftarrow \text{carries}$

- Binary

 $\begin{align*}
 &\quad 1011 \\
 + &\quad 0011 \\
 \hline
 &\quad 1110
 \end{align*}$

 $11 \leftarrow \text{carries}$
Add the Following Numbers

\[
\begin{align*}
1001 + 0101 & = 1011 \\
+ 0110 & = 0110
\end{align*}
\]
Add the Following Numbers

```
  1
+ 1001
+ 0101
---
  1110

  111
+ 1011
+ 0110
---
 10001

OVERFLOW !
```
Overflow

- Digital systems operate on a fixed number of bits
- Addition overflows when the result is too big to fit in the available number of bits
- See previous example of 11 + 6
Overflow (Is It a Problem?)

- Possible faults
- Security issues

The $7 billion Ariane 5 rocket, launched on June 4, 1996, veered off course 40 seconds after launch, broke up, and exploded. The failure was caused when the computer controlling the rocket overflowed its 16-bit range and crashed.

The code had been extensively tested on the Ariane 4 rocket. However, the Ariane 5 had a faster engine that produced larger values for the control computer, leading to the overflow.

(Photograph courtesy ESA/CNES/ARIANESPACE-Service Optique CS6.)
Binary Values and Range

N-digit decimal number
- How many values? \(10^N\)
- Range? \([0, 10^N - 1]\)
- Example: 3-digit decimal number
 - \(10^3 = 1000\) possible values
 - Range: \([0, 999]\)

N-bit binary number
- How many values? \(2^N\)
- Range: \([0, 2^N - 1]\)
- Example: 3-digit binary number
 - \(2^3 = 8\) possible values
 - Range: \([0, 7] = [000_2 \text{ to } 111_2]\)
Signed Binary Numbers

- Sign/Magnitude Numbers
- One’s Complement Numbers
- Two’s Complement Numbers
Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits

- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

- Example, 4-bit sign/mag representations of ±6:
 +6 =
 - 6 =

- Range of an N-bit sign/magnitude number:

\[A : \{a_{N-1}, a_{N-2}, \ldots, a_2, a_1, a_0\} \]

\[A = (-1)^{a_{n-1}} \sum_{i=0}^{n-2} a_i 2^i \]
Sign/Magnitude Numbers

- 1 sign bit, N-1 magnitude bits

- Sign bit is the most significant (left-most) bit
 - Positive number: sign bit = 0
 - Negative number: sign bit = 1

- Example, 4-bit sign/mag representations of ± 6:
 - +6 = 0110
 - -6 = 1110

- Range of an N-bit sign/magnitude number:
 \[[-(2^{N-1}-1), 2^{N-1}-1] \]
Problems of Sign/Magnitude Numbers

- Addition doesn’t work, for example -6 + 6:

 \[\begin{array}{c}
 1110 \\
 + 0110 \\
 \end{array} \]

 10100 \textit{wrong!}

- Two representations of 0 (± 0):

 1000
 0000

- Introduces complexity in the processor design
 (Was still used by some early IBM computers)
One’s Complement

- A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer):

<table>
<thead>
<tr>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>One’s Complement</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>127</td>
<td>127</td>
</tr>
</tbody>
</table>
One’s Complement

- A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer):

<table>
<thead>
<tr>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>One’s Complement</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>=</td>
<td>+0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>=</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>=</td>
<td>2</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>=</td>
<td>…</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>=</td>
<td>127</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>=</td>
<td>-127</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>=</td>
<td>-126</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>=</td>
<td>…</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>=</td>
<td>-2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>=</td>
<td>-1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>=</td>
<td>-0</td>
</tr>
</tbody>
</table>
One’s Complement

The range of n-bit one’s complement numbers is:
\[-2^{n-1}-1, 2^{n-1}-1\]
8 bits: [-127,127]

Addition:

Addition of signed numbers in one's complement is performed using binary addition with end-around carry. If there is a carry out of the most significant bit of the sum, this bit must be added to the least significant bit of the sum:

Example: 17 + (-8) in 8-bit one’s complement

\[
\begin{array}{c}
0001 \ 0001 \quad (17) \\
+ \quad 1111 \ 0111 \quad (-8)
\end{array}
\]

\[
\begin{array}{c}
1 \ 0000 \ 1000 \\
+ \quad 1
\end{array}
\]

\[
0000 \ 1001 = \quad (9)
\]
Two’s Complement Numbers

- Don’t have same problems as sign/magnitude numbers:
 - Addition works
 - Single representation for 0

- Has advantages over one’s complement:
 - Has a single zero representation
 - Eliminates the end-around carry operation required in one's complement addition
Two’s Complement Numbers

- A negative number is formed by **reversing the bits** of the positive number (MSB still indicates the sign of the integer) **and adding 1**:

<table>
<thead>
<tr>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>Two’s Complement</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>127</td>
<td>127</td>
</tr>
</tbody>
</table>
Two’s Complement Numbers

A negative number is formed by reversing the bits of the positive number (MSB still indicates the sign of the integer) and adding 1:

<table>
<thead>
<tr>
<th>2^7</th>
<th>2^6</th>
<th>2^5</th>
<th>2^4</th>
<th>2^3</th>
<th>2^2</th>
<th>2^1</th>
<th>2^0</th>
<th>Two’s Complement</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>127</td>
<td>127</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-128</td>
<td>128</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-127</td>
<td>129</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>-3</td>
<td>253</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-2</td>
<td>254</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>255</td>
</tr>
</tbody>
</table>
Two’s Complement Numbers

- Same as unsigned binary, but the most significant bit (msb) has value of -2^{N-1}
 \[I = \sum_{i=0}^{i=n-2} b_i2^i - b_{n-1}2^{n-1} \]
 - Most positive 4-bit number:
 - Most negative 4-bit number:

- The most significant bit still indicates the sign
 (1 = negative, 0 = positive)

- Range of an N-bit two’s comp number:
Two’s Complement Numbers

- Same as unsigned binary, but the most significant bit (msb) has value of \(-2^{N-1}\)

\[
I = \sum_{i=0}^{i=n-2} b_i2^i - b_{n-1}2^{n-1}
\]

- Most positive 4-bit number: 0111
- Most negative 4-bit number: 1000

- The most significant bit still indicates the sign (1 = negative, 0 = positive)

- Range of an N-bit two’s comp number:

\([-2^{N-1}, 2^{N-1}-1]\) 8 bits: [-128,127]
“Taking the Two’s Complement”

- How to flip the sign of a two’s complement number:
 - Invert the bits
 - Add one

- Example: Flip the sign of $3_{10} = 0011_2$
“Taking the Two’s Complement”

- How to flip the sign of a two’s complement number:
 - Invert the bits
 - Add one

- Example: Flip the sign of $3_{10} = 0011_2$
 - Invert the bits 1100_2
“Taking the Two’s Complement”

- How to flip the sign of a two’s complement number:
 - Invert the bits
 - Add one

- Example: Flip the sign of $3_{10} = 0011_2$
 - Invert the bits 1100_2
 - Add one 1101_2
“Taking the Two’s Complement”

- How to flip the sign of a two’s complement number:
 - Invert the bits
 - Add one

- **Example: Flip the sign of** 3_{10}
 - Invert the bits
 - Add one

 \[
 3_{10} = 0011_2
 \]

 \[
 \text{Invert the bits: } 1100_2
 \]

 \[
 \text{Add one: } 1101_2
 \]

- **Example: Flip the sign of** -8_{10}

 \[
 -8_{10} = 11000_2
 \]
“Taking the Two’s Complement”

How to flip the sign of a two’s complement number:
- Invert the bits
- Add one

Example: Flip the sign of $3_{10} = 0011_2$
- Invert the bits 1100_2
- Add one 1101_2

Example: Flip the sign of $-8_{10} = 11000_2$
- Invert the bits 00111_2
- Add one 01000_2
Two’s Complement Addition

- Add 6 + (-6) using two’s complement numbers

\[
\begin{array}{c}
0110 \\
+ 1010 \\
\hline
1010
\end{array}
\]

- Add -2 + 3 using two’s complement numbers

\[
\begin{array}{c}
1110 \\
+ 0011 \\
\hline
0011
\end{array}
\]
Two’s Complement Addition

- Add $6 + (-6)$ using two’s complement numbers

\[
\begin{array}{c}
 111 \\
 \text{0110} \\
 + \text{1010} \\
 \hline
 \text{10000}
\end{array}
\]

- Add $-2 + 3$ using two’s complement numbers

\[
\begin{array}{c}
 111 \\
 \text{1110} \\
 + \text{0011} \\
 \hline
 \text{10001}
\end{array}
\]

- Correct results if overflow bit is ignored
Increasing Bit Width

- A value can be extended from N bits to M bits (where $M > N$) by using:
 - Sign-extension
 - Zero-extension
Sign-Extension

- Sign bit is copied into most significant bits
- Number value remains the same
- Give correct result for two’s complement numbers

Example 1:
- 4-bit representation of 3 = 0011
- 8-bit sign-extended value: 00000011

Example 2:
- 4-bit representation of -5 = 1011
- 8-bit sign-extended value: 11111011
Zero-Extension

- Zeros are copied into most significant bits
- Value will change for negative numbers

Example 1:
- 4-bit value = \(0011_2\) = \(3_{10}\)
- 8-bit zero-extended value: \(00000011_2\) = \(3_{10}\)

Example 2:
- 4-bit value = \(1011_2\) = \(-5_{10}\)
- 8-bit zero-extended value: \(00001011_2\) = \(11_{10}\)
Number System Comparison

<table>
<thead>
<tr>
<th>Number System</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsigned</td>
<td>([0, 2^{N-1}])</td>
</tr>
<tr>
<td>Sign/Magnitude</td>
<td>([-\left(2^{N-1}-1\right), 2^{N-1}-1)]</td>
</tr>
<tr>
<td>Two's Complement</td>
<td>([-2^{N-1}, 2^{N-1}-1)]</td>
</tr>
</tbody>
</table>

For example, 4-bit representation:

<table>
<thead>
<tr>
<th></th>
<th>Unsigned</th>
<th></th>
<th>Two's Complement</th>
<th></th>
<th>Sign/Magnitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>1000</td>
<td>0000</td>
<td>1000</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>-7</td>
<td>1001</td>
<td>0001</td>
<td>1001</td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td>1010</td>
<td>0010</td>
<td>1010</td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td>1011</td>
<td>0011</td>
<td>1011</td>
<td>0011</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td>1100</td>
<td>0100</td>
<td>1100</td>
<td>0100</td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td>1101</td>
<td>0101</td>
<td>1101</td>
<td>0101</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>1110</td>
<td>0110</td>
<td>1110</td>
<td>0110</td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>1111</td>
<td>0111</td>
<td>1111</td>
<td>0111</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>0011</td>
<td>0011</td>
<td>0011</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>0100</td>
<td>0100</td>
<td>0100</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td>0101</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td>0110</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>0111</td>
<td>0111</td>
<td>0111</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
<td>1010</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>1011</td>
<td>1011</td>
<td>1011</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>1101</td>
<td>1101</td>
<td>1101</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>1110</td>
<td>1110</td>
<td>1110</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td>1111</td>
<td></td>
</tr>
</tbody>
</table>
Lessons Learned

- How to express decimal numbers using only 1s and 0s
- How to simplify writing binary numbers in hexadecimal
- Adding binary numbers
- Methods to express negative numbers
 - Sign Magnitude
 - One’s complement
 - Two’s complement (the one commonly used)